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Abstract: Estimating the catch-at-age of commercial fish species is an important part of the quota-setting process for
many different species and almost all countries with a fishing fleet. Current procedures are usually very time-
consuming and somewhat ad hoc, and the estimates have no measure of uncertainty. We previously developed a method
for catch-at-age of Norwegian Atlantic cod (Gadus morhua), but this only considered aged fish sampled randomly from
random hauls. In most countries, the sampling scheme is not so simple. There are usually a very large number of
length-only samples from which the age must be estimated using an age–length relationship, and often some or all of
the age samples are collected from data that are first stratified by length. This adds considerably to the difficulties in
the estimation. In this paper, we model the three different kinds of data simultaneously using a development of our ear-
lier Bayesian hierarchical model. This enables us to obtain estimates of the catch-at-age with appropriate uncertainty
and also to provide advice on how best to sample data in the future. The data types are random samples of age, length,
and weight; age and weight stratified by length; and length only.

Résumé : L’estimation de la récolte en fonction de l’âge est une étape importante du processus de définition des quo-
tas pour plusieurs espèces et dans presque tous les pays qui possèdent une flotte de pêche. Les méthodes courantes
exigent beaucoup de temps et elles sont ajustées à des situations particulières et elles ne comportent pas de mesure
d’incertitude. Nous avons développé antérieurement une méthode pour estimer la capture en fonction de l’âge chez la
morue franche (Gadus morhua) de Norvège, mais elle ne tient compte que des poissons d’âge connu échantillonnés au
hasard dans des récoltes aléatoires. Dans la plupart des pays, le plan d’échantillonnage est loin d’être aussi simple. Il y
a généralement un très grand nombre d’échantillons comportant seulement des longueurs, dont on doit estimer l’âge à
l’aide d’une relation âge–longueur, et souvent quelques-uns ou même tous les échantillons contenant des déterminations
d’âge ont été tirés de données préalablement stratifiées d’après la longueur. Une modification de notre modèle hiérar-
chique bayésien antérieur nous permet de traiter les trois types de données simultanément. Nous obtenons ainsi des
estimations de la capture en fonction de l’âge assorties d’une mesure d’incertitude appropriée; nous proposons aussi
comment mieux échantillonner les données dans le futur. Les types de données utilisées sont des échantillons aléatoires
des âges, des longueurs et des masses; des âges et des masses stratifiées en fonction de la longueur; et des longueurs
seules.

[Traduit par la Rédaction] Hirst et al. 1385

Introduction

As part of the process of setting fishing quotas, every
country in Europe with a fishing fleet reports the total an-
nual catch-at-age of various species to the International
Council for the Exploration of the Seas. Strictly speaking,
catch-at-age means the total number of fish caught at each
age. However, it is common to group less frequent ages to-
gether to form a number of age groups. In our case, fish
older than 12 years are considered one group. Also, an un-
known number of fish are caught but discarded at sea. We do
not take into account these discards. This kind of data is

sometimes known as market sampling, although in Norway,
a substantial part of the data is taken directly from the boat
rather than from the market.

The weight of the total catch is usually considered to be
known at a fairly fine resolution (in Norway, season by gear
by area by year) and the aim of the analysis is (i) to estimate
proportion-at-age and (ii) to estimate the mean weight of
fish to convert the total to numbers from weight. A variety
of different sampling schemes have been established for this
purpose, and the data are analysed in a range of different
ways. A common feature of most of these methods is that
there is no statistical model for the sampling process. Ad
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hoc methods are used, which are very time-consuming and
rely on individual judgement, which by definition is not re-
peatable. The Norwegian approach is outlined in Hirst et al.
(2004). With such methods, it is very difficult to get a mea-
sure of the uncertainty in the reported results. To address
this problem, Hirst et al. (2004) developed a Bayesian hier-
archical model for the Norwegian catch of northeast Atlantic
cod (Gadus morhua). This model, however, only addressed
the strategy of sampling fish at random from random boats
and estimating the age and measuring the weight of all of
the fish in the sample. There was no modelling of length in
this paper, and weight was modelled directly in terms of age.

The Norwegian sampling scheme is probably unique in
Europe. Elsewhere, there is an emphasis on sampling large
numbers of fish for which only length is measured and
weighing and estimating the ages of only a few of these.
These aged fish are usually stratified by length (e.g., one fish
from each 5-cm length-class in a sample might be aged).
This kind of sampling in fact takes place to a lesser degree
in Norway as well, and additional length-only or age-given-
length data (often from independent sources such as the
Coast Guard) are utilized in the estimation. In this paper, we
develop a common model for all of these kinds of data.

The difficulties in the analysis arise mostly because it is
not possible to develop a proper sampling scheme for fishing
vessels. In general, they are sampled when and if they are
available. There are important differences in the catch be-
tween different seasons, fishing gears, and regions of the
sea, and if we call each combination of these factors a cell,
there are necessarily many cells with no samples. In addi-
tion, there is a large within-haul correlation in the ages and
sizes of the caught fish. Thus, the effective sample size is
very much smaller than the number of fish sampled (see
Aanes and Pennington 2003). This leads to a larger uncer-
tainty than would be apparent from a naïve assumption of
independence of fish.

The aim of this paper is to establish a proper statistical
framework within which market sampling data can be ana-
lysed. The hierarchical framework is very appropriate for
this kind of modelling because it can easily accommodate
the different sampling schemes and because it provides a full
measure of uncertainty. Random effects are included into the
model to take into account correlation between samples from
the same haul.

Bayesian approaches are usually used for making infer-
ence in hierarchical models (Gelman et al. 1995) and are
now slowly emerging into the fisheries community (e.g., see
Millar and Meyer 2000 and references therein). They have
also been used in stock assessments (Hilborn and Lierman
1998; Lewy and Nielsen 2003), estimation of depensation
(Lierman and Hilborn 1997), and estimation of biological
reference points (Prevost et al. 2003).

Materials and methods

Data
There are three main sources of data available to the Nor-

wegian Institute of Marine Research (IMR), which is re-
sponsible for estimating the catch-at-age of cod in Norway.
(i) The Amigo is a research vessel hired by IMR that sails

from port to port along the north Norwegian coast over a

period of about 6 weeks four times a year (roughly corre-
sponding to the four seasons). At each port, it takes a
sample of about 80 fish from any boats available at the
time. The fish sampled from a boat are intended to be a
sample from a single haul, and this is usually achieved.
In some cases, there may have been some mixing of
hauls before the samples are taken, however. There is
rarely more than one boat available. The fish are
weighed, the length measured, and the otoliths extracted
for estimating the age of the fish (Campana 2001). Each
year, about 200 boats, and thus about 16 000 fish, are
sampled. Note that the program only samples landings.
There are an unknown number of small fish discarded at
sea, although we refer to catch-at-age in this paper.

(ii) The Coast Guard, whose tasks include making sure that
the Norwegian fishery laws and regulations are kept,
have the right to inspect any vessel and to sample the
catch. In most cases, the vessels sampled by the Coast
Guard are a random sample of the vessels operating
within an area, but in a few cases, the inspections may
be based on suspicion of illegal fishing. Thus, it might
be expected that some of the samples would be biased
or unrepresentative for the total catch, although this
does not appear to be the case. In general, these samples
will only provide length measurements of the fish sam-
pled, although occasionally, there are some ages and
weights as well. The Coast Guard samples more of the
trawlers than the Amigo. The number of fish sampled in
each haul is very variable but averages about 100.

(iii) The reference fleet is a fleet of commercial fishing ves-
sels that have agreed to provide IMR with data on their
catch. The reference fleet was started in 2001 with six
vessels and consists currently of eight vessels. The fleet
targets several commercially important species includ-
ing cod. This sampling program is developing and will
expand in the years ahead. So far, it has consisted
mostly of length-only data, but there are an increasing
number of age samples. In 2002, this fleet sampled ap-
proximately 500 hauls of cod with around 90 fish sam-
pled in each haul.

The “cells” that we consider in this paper are the individ-
ual combinations of the regions in Fig. 1, season (corre-
sponding roughly to the quarters of the year), gear (bottom
trawl, Danish seine, gill net, longline, and handline), and
year (1995–2002, but the reference fleet only began in
2001). One cell therefore represents one gear in one region
in one season of one year. Our sampling unit is the haul. The
Coast Guard and reference fleet always provide data from
individual hauls, and although we suspect that the Amigo
data sometimes contain fish from mixed hauls (although al-
ways from the same cell), we do not believe that this is an
important effect. We do not consider the actual boat that was
sampled to be of interest. For the Amigo and Coast Guard
data, it is very unlikely that the same boat would be sampled
twice (at least in the same year), but clearly, the reference
fleet provides many samples from the same few boats. Any
boat effect, however, is largely due to the particular gear be-
ing used, and the remaining effect will be very small com-
pared with the differences between hauls.

For the purposes of the analyses in this paper, we have
formed super-regions by grouping the regions in the map. In
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fact, we have used the eight standard IMR groups of (3, 2,
10, 11, 13, 14, 15, 16, 17, 24, 1), (12), (4), (5, 37, 39), (0),
(6), (7, 28), and (20, 21, 22, 23, 25, 27). It is necessary to do
some grouping because most regions have little or no data,
although other groupings are possible. We have grouped
ages over 12 together, and there are no fish younger than 2,
giving us 12 age groups.

In the next sections, we develop the various components
of the model: the proportion-at-age, length-given-age, and
weight-given-length. The components are brought together
in the likelihood for the whole data set. We then explain how
to obtain samples from the posterior distribution of the pa-
rameters given the data using Markov Chain Monte Carlo
(MCMC) (Gilks et al. 1996). Finally, we show some results
and illustrate how these change when different data sources
are included in the analysis. This also enables us to provide
some guidance on how best to sample in the future.

Model for proportion-at-age
The samples from a boat are assumed to be randomly

drawn from the total population of fish in that haul, and the
hauls are themselves assumed to be randomly sampled from
all of those within the appropriate cell. The numbers-at-age

in a sample from haul h from cell c, Xc,h, are therefore
multinomial:

Xc,h ~ multinomial( pc,h,nc,h)

The number of fish sampled from the haul, nc,h, is assumed
not to depend in any way on pc,h.

The vector of proportions-at-age in the haul, pc,h, has A el-
ements, one for each age group. Let pc,h(a) be the ath ele-
ment, where 0 ≤ pc,h(a) ≤ 1 and p ac ha

A
, ( )′ =

′=∑ 1
1. This is

reparameterized as

p ac h
c h
a

c h
a

a
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exp( )
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=
′
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∑
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Fig. 1. Map of sampling area showing the Norwegian Directorate of Fisheries statistical regions in which the total catch is reported.



Here, y(c) means the year, s(c) the season, g(c) the gear, and
r(c) the region corresponding to cell c. From now on for
clarity, we drop the c and just refer to α y

ayear, , etc.
The α terms and ς r

aregion, are the main effects for year,
season, gear, and region. The α terms are fixed effects and
ς r

aregion, is a spatially smoothed random effect. It is neces-
sary to estimate the proportions in areas with no data, and
our approach is to introduce some spatial smoothing. This is
accomplished by assuming that ς r

aregion, follows a Gaussian
conditional autoregressive distribution (e.g., Carlin and
Louis 1996). The alternative would be to group areas such
that there were none with no data. This is unsatisfactory for
several reasons, particularly because the grouping would
have to be done differently in each analysis. It is assumed
that there will always be some data for all levels of the fixed
effects that are of interest. The ς c

acell, terms are independent
random effects modelling the interactions between the main
effects (e.g., see Gelman et al. 1995). In other words, the
differences between the fit from the main-effects-only model
and the true cell means are modelled by the ς c

acell, terms.
The differences between hauls within a cell are modelled by
the random effects ς c h

a
,

haul, . These must be random (rather
than fixed) effects because there are many cells and hauls
with no data. We assume that all of the interactions (i.e., the
ς c

acell, terms) can be modelled by a single distribution. It
would be plausible to assume that some interactions (e.g.,
between season and year) had a higher variance than others,
but we have found no evidence for this in the data (for more
details of the parameters, including identifiability constraints
and the prior distributions, see Appendix A).

Models for length-given-age and weight-given-length
We plot log(length) against log(age) for all of the hauls in

one cell (Fig. 2a). The lines are nonparametric fits for the in-
dividual hauls using the Splus function “supsmu”. The
equivalent plot of log(weight) against log(length) is also pro-
vided (Fig. 2b). It can be seen that there is a reasonably lin-
ear relationship between the variables, with some differences
between hauls. We model both relationships as linear with a
constant slope and variable intercept. This is unproblematic
for the length–weight relationship, but the age–length model
could be improved. There is some evidence of a nonlinear
relationship, which may cause problems at high and low
ages. Other models would be possible and may in particular
be necessary for other species with different growth patterns.
The von Bertalanffy (1938) growth curve is commonly used
in fisheries science and could be used as an alternative. See
Haddon (2001) for a discussion of possible growth curves.

Note that it would be possible to model weight given age
directly but that modelling it via length enables us to get a
better estimate of the mean weight-at-age in cells with
length but no age data. Since the length–weight relationship
is so strong, there would in any case be no advantage in
modelling weight directly in terms of age.

We assume that length-given-age and weight-given-length
are log-normal, with constant variances, and means linear in
log(age) and log(length), respectively, in an individual haul.
The slopes are constant, but the intercepts vary between cells
and boats within a cell:

log( ) log( ), , , , , , , ,length age fish
c h f c h c h f c h f= + +β β ε0 1

log( ) log( ), , , , , , , ,weight length f
c h f c h c h f c h f= + +δ δ ν0 1

ish

Here, lengthc,h,f is the length of the f th fish from haul h in
cell c, weightc,h,f its weight, and agec,h,f its age; εc h f, ,

fish and
ν c h f, ,

fish are independent zero mean Gaussian random variables.
The slopes β1 and δ1 are common to all cells and hauls,

and the intercepts β0,c,h and δ0,c,h are given by

β β β β β0, ,c h y s g= + + +base year season gear

+ + +ε ε εr c c h
region cell haul

,

δ δ δ δ δ0, ,c h y s g= + + +base year season gear

+ + +ν ν νr c c h
region cell haul

,

εr
region and νr

region are conditional autoregressive distribution
parameters with properties to those of ς r

aregion, in the age
model (see Appendix A). εc

cell and νc
cell and are random “all

interactions” effects equivalent to ςc
acell, . εc

haul and νc
haul are

between-haul random terms. The β and δ terms are fixed ef-
fects similar to the α terms in the model for proportions-at-
age (for more details, see Appendix A).
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Fig. 2. Plots showing the relationship between (a) length and age
and (b) weight and length for all hauls within a cell. The lines
are nonparametric fits for individual hauls. Ages have been jit-
tered for clarity.



Inference on unknown parameters
Parts of the model are standard, and ordinary methods

such as maximum likelihood could have been applied. This
is certainly true for the length-given-age model and the
weight-given-length model. With all ages known and with
no random effects involved in the age model also, the pa-
rameters in the multinomial model describing the age pro-
portions could easily be found by maximum likelihood. Both
the inclusion of random effects in the multinomial model
and missing ages make maximum likelihood estimation
much more complicated. Further, a frequentist approach to
estimation makes it difficult to take the uncertainty in the
parameters into account. It is probably possible to use a
frequentist model, perhaps by using the Expectation Maxi-
mization (EM) algorithm to maximize the likelihood in the
presence of missing data, combined with a parametric boot-
strap to obtain the uncertainty. This does not seem to us to
be the best approach to the problem, however.

Our approach has been the Bayesian one. The full infor-
mation about the parameters (including random effects) is
described through the posterior distribution. This distribution
is difficult to calculate, but approximations can be obtained
through Monte Carlo sampling. The actual sampling is per-
formed through an MCMC algorithm using a combination of
Gibbs sampling and Metropolis–Hastings steps. The details
are given in Appendix B, but in outline, the approach is as
follows. (i) If the ages and lengths of all of the sampled fish
were known, it would be simple to simulate the parameters
of the length-given-age model (since this is just a linear
model). It would also be relatively simple to simulate the
parameters of the proportion-at-age model (although the in-
clusion of random effects complicates the simulations some-
what). Also, parameters from the different submodels (age
model, length-given-age model, and weight-given-length
model) are independent in this case. (ii) If the parameters of
the length-given-age model and the proportion-at-age model
are known, it is simple to simulate the ages of the fish with
only length data (since age-given-length is multinomial).
(iii) We therefore treat the missing ages as parameters and
use Gibbs sampling to alternate between simulating the
missing ages and simulating the other model parameters. It
is also possible to use block updating for most of the param-
eters apart from the precisions.

Using this approach, it is possible to find the joint poste-
rior distribution of all of the parameters very quickly. On a
reasonably powerful computer, 1 year’s data can easily be
analysed in less than 5 min. Obviously, the time increases
with the number of years of data, but even 8 years worth
takes under an hour. Convergence of the MCMC chains is
fast because of the block-updating. Research is currently un-
derway to make this even more efficient.

Estimating catch-at-age
We need to estimate the total catch-at-age a in cell c, Tca.

To take the uncertainty of the parameters into account, pa-
rameters (including random effects for cell and for those
hauls that are observed) are samples from the joint posterior
distribution (as described in the previous section). Given the
parameters in the model, it can be shown that this is a sim-
ple function of those parameters (see below). Denoting one
set of such parameters by θ, the total catch-at-age given the

parameters can be written as a function Tca(θ) of θ. A Monte
Carlo estimate of the catch-at-age is then given by the mean
of the Tca(θ)s. Uncertainty measures can be calculated simul-
taneously, i.e., standard errors are estimated by empirical
standard errors of the Tca(θ)s.

Consider now the calculation of Tca(θ) for a given set of
parameters θ. We have Tca = Tc × meanc(p(a)), where Tc is
the total catch in the cell in numbers of fish and meanc(p(a))
is the mean proportion-at-age over all hauls in the cell (i.e.,
the mean over all hauls taken by all boats fishing in that cell,
not just those observed). We assume that there are a large
number of these hauls so that the mean is equal to the ex-
pected value, giving us Tca = Tc Ec(p(a)).

The total catch in a cell, Wc, is given in weight rather than
numbers. We therefore need the mean weight of fish caught
in the cell, wc, to calculate T W wc c c= / . We have

log( ) log( ), , , , , , , ,weight length f
c h f c h c h f c h f= + +δ δ ν0 1

ish

log( ) log( ), , , , , , , ,length age fish
c h f c h c h f c h f= + +β β ε0 1

Thus:

log( ) ( log( ), , , , , , , ,weight c h f c h c h c h fa= + +δ δ β β0 1 0 1

+ +ε νc h f c h f, , , ,)fish fish

= + +δ δ β δ β0 1 0 1 1, , , , , ,log( )c h c h c h fa

+ +( ), , , ,δ ε ν1 c h f c h f
fish fish

= + + +A A a Cc h c c h f fβ log( ), ,

Here, Ac and Bc are constant for all hauls in a cell and given
from the simulations, Ah is an unknown random haul de-
pendent intercept, and Cf is an unknown random fish effect.
From the earlier equations:

Ac y s g r c= + + + + +( )δ δ δ δ ν νbase year season gear region cell

+ + + + + +δ β β β β ε ε1( )base year season gear region cell
y s g r c

Bc = δ β1 1

Ah is a random haul dependent intercept:

Αh c h c h= +ν δ ε, ,
haul haul

1

This is constant in a haul but a Gaussian random variable
within a cell:

A Nh ~ ,0
1 1

2

τ
δ

τweight
haul

length
haul

+
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Cf is a random fish effect:

C f c h f c h f= +δ ε ν1 , , , ,
fish fish

This is a random fish effect, with a constant distribution:

C Nf ~ ,0
1 1

2

τ
δ

τweight
fish

length
fish

+
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Hence, the weight of a random fish f of age ac,h,f in haul h,
cell c, is lognormal:
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log( ), , , ,weight c h f c h fa

~ log( ),, ,N A A B ac h c h f+ + +cell
weight
fish

length
fi

1 1
2

τ
δ

τ sh

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Its expectation (over all fish in the haul) is

E a A B ac h c h f c h f c c c h f, , , , , , ,( ) exp[ log( )]weight = +

× +
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣
exp( ) expAh

1
2

1
21

τ
δ

τweight
fish

length
fish

⎢
⎢

⎤

⎦
⎥
⎥

Taken over all hauls in a cell, this expectation is itself a ran-
dom variable, also lognormal, since exp(Ah) is lognormal:

log( )) ~ log( ), , , , , , ,E a N A B ac h c h f c h f c c c h f(weight +
⎛
⎝
⎜

+ +
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1
2

1
21 1

τ
δ

τ τweight
fish

length
fish

weight
hau

,
l

length
haul

+
⎞

⎠
⎟⎟

δ
τ

1
2

The expected weight of a fish of age a in a cell is therefore

E a A B ac c c(weight | ) exp log( )= +
⎡

⎣
⎢

+ +
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ +1

2
1
2

1
2

1 1
τ

δ
τ τweight

fish
length
fish

weight
haul

length
haul

+
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
⎤

⎦
⎥
⎥

δ
τ

1
2

Again assuming a large number of hauls in a cell so that the
mean weight-at-age is equal to its expected value, the mean
weight of a fish in the cell is given by

w E p a E ac c
a

c= ∑ ( ( )) ( | )weight

There is no explicit formula for Ec(p(a)), but the estimator

� ( ( ))
exp[ ( )]

exp[ ( )]

,

,

E p a
E

E

c c h
a

c c h
a

a

A
=

′

′=
∑

α

α
1

is almost unbiased, so long as the within-cell variance of
αc h

a
, for each age is small compared with the difference be-

tween the E c h
a( ),α for the different ages within the cell. This

is certainly the case for our data.

Results

The model can be fitted in about 30 min for 8 years of
data on a modestly powerful computer. We take every tenth
sample from an MCMC run of 10 000, after a burn-in of
1000 samples. There are no problems with convergence, and
the thinning removes the serial correlation in the samples.
We obtain as output the joint posterior distribution of total
catch for each age group for any combination of cells as
well as the (joint) posteriors of all the individual parameters.
We expect that interest will usually be mostly in the catch-
at-age results, along with the uncertainty in the estimates,
which is directly available from the posteriors. One example
of these results is shown (Fig. 3) where the posterior means

for each age, along with 95% credible intervals, are plotted
for 1995 and 2002 using data from 1995 to 2002. Obviously,
the 12 age groups are not independent, but the error bars
give a good indication of the uncertainty. If, for example,
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Fig. 3. Estimates of catch-at-age in (a) 1995 and (b) 2002 using
only Amigo data (crosses) and all data (circles). Bars are 95%
credible intervals.

Fig. 4. Numbers of Amigo hauls (crosses) and extra hauls (cir-
cles) sampled in each year.



the results were to be used for a virtual population analysis,
samples from the full joint posteriors for all required years
would be available. These could be used to obtain the poste-
rior distributions of the parameters calculated in the virtual
population analysis.

These plots also illustrate the effect of using the length-
only data in addition to the length and age data from the
Amigo. The numbers of Amigo and extra (i.e., reference fleet
and Coast Guard) hauls sampled per year are shown in
Fig. 4. The extra samples are virtually all length only, al-
though it is expected that in the future, there will be more
age-given-length samples. In 1995, there were only about
50% as many extra samples as Amigo samples, and there is
almost no difference in the results. By 2002, however, there
were about four times as many extra as Amigo samples, and
there is a useful reduction in the size of the error bars. Also,
some of the point estimates have moved outside the Amigo-
only intervals.

The model parameters are also of interest, and we show
some examples in Figs. 5 and 6. The first (Fig. 5) shows the
posterior distributions of standard deviations of the random
effects in the age model, i.e., 1/τ age

cell , 1/τ age
haul , and 1/τ age

region .

The region standard deviation is the most uncertain, not sur-
prisingly, since we only use eight regions in its estimation.
The haul standard deviation is the most precisely estimated.
Note that the region standard deviation should be scaled by
the number of neighbours of a region in the distribution of
ς r

aregion, , and so, for a region with several neighbours, the
posterior mean of the standard deviation would in fact be
smaller than the posterior means of the other two standard

deviations. It is difficult to make any useful interpretation of
these parameters, except to see which are well or badly esti-
mated.

The second example (Fig. 6) shows the posterior means of
the season effects in the age model (i.e., α s

aseason, ). Note that
the values for age 6 and season 1 are defined to be zero. A
high value for this parameter means a higher probability of
catching fish from age group a in season s. Take, for exam-
ple, the first plot (age < 3). The value for season 1 is defined
to be zero. The mean for season 2 (solid line) is slightly
greater than zero; the mean for season 3 (dotted line) is big-
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Fig. 5. Posterior distributions of the standard deviations of the random effects in the proportion-at-age model. Solid line, area standard
deviation; dotted line, haul standard deviation; dot-dashed line, cell standard deviation.

Fig. 6. Posterior distributions of the season effects in the
proportion-at-age model. Solid line, season 2; dotted line, season
3; dot-dashed line, season 4. Season 1 is defined to be zero.



ger again, and for season 4 (dot-dashed line), it is even big-
ger. Thus, the proportion of this age group in the catch
increases with season. This may be because the fish get sig-
nificantly bigger. This effect can be seen to a lesser degree
for ages 3 and 4, but it disappears, or maybe even reverses,
for older fish.

Discussion

The model described is as far as we know the first com-
prehensive approach to analysing multiple sources of catch-
at-age data, in a way that can include all types of sampling
schemes that we know of. It is explicit in its assumptions
and given these assumptions properly accounts for the un-
certainty in the estimation. It is very fast (at least compared
with traditional methods) and in addition to the catch-at-age
estimates can also give information on the model parame-
ters, which may be interesting biologically.

We have shown herein that adding length-only samples to
the age samples improves the precision of the catch-at-age
estimates. The relatively small improvement even with a
large sample of lengths reflects the relative lack of informa-
tion in these samples. One very useful function of our model
would be to explore the effect of adding more length sam-
ples or changing the sampling strategy in some other way. It
would be possible to simulate from the model and investi-
gate any desired changes in numbers and locations of sam-
ples. We hope to do this in a later paper.

There are a number of additions and improvements that
could be made. Perhaps the most interesting would be to in-
clude errors in the age reading. This was done for the sim-
pler sampling scheme of Hirst et al. (2004) and with some
development could be included in this model. This may be
important because unpublished work from the IMR suggests
that on average, about 10% of the ages of cod may be wrong
by 1 year, increasing up to 40% for older fish. It would also
be possible to include different length-given-age or weight-
given-length models, which may be appropriate for different
fish species, or a different spatial model that may suit differ-
ent fisheries.
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Appendix A. Details of the model.

In all three models (proportion-at-age, length-given-age,
and weight-given-length), the fixed effect parameter values
are relative to the baseline terms αbase,a, βbase, and δbase, and
it is necessary to set one level of each fixed effect to zero for
identifiability:

α α α β βy
a

s
a

g
a

y s* * * * *
year, season, gear, year season= = = = = β g*

gear

= = = =δ δ δy s g* * *
year season gear 0

For the proportion-at-age model, the proportions must
sum to 1, and so we have the additional restriction that all
parameters for one age group a* are set to zero:

α = α α α, ∗base year, season, gear,a
y

a
s

a
g

a* * *= = = 0

We use a* = 6 (usually the most common age group) and
y* = s* = g* = 1. The choice of y*, s*, and g* is unimpor-
tant, but convergence is fastest if a* is one of the most com-
mon age groups. Setting the parameters to zero for some
value of a* has the undesirable effect of giving the catch-at-
age for this age group a smaller posterior variance than for
the other age groups. A better restriction might be to make
the mean over all age groups constant.

We give all nonzero fixed effects noninformative prior
distributions:

α ,base 0,1/ 0.001a N a a~ ( ) *� ≠

α y
a N y y a ayear, 0,1/0.001~ ( ) *, *� ≠ ≠

α s
a N s s a aseason, 0,1/0.001~ ( ) *, *� ≠ ≠

α g
a N g g a agear, 0,1/0.001~ ( ) *, *� ≠ ≠

and so on for the β and δ terms.
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The spatial terms ς r
aregion, , ε r

region, and νr
region have Gaussian

conditional autoregressive prior distributions (e.g., see Carlin
and Louis 1996):

ς r
aregion, * = 0

ς ς ς
τr

a
j r

a
r

a

r

N
n

region, region, region,

age
region

* ~ ,≠

⎛ 1

⎝
⎜⎜

⎞

⎠
⎟⎟ ≠, *a a

ς ς
∂

r
a

r j
a

j r

nregion, 1 region,= −

∈
∑

( )

where ∂(r) is the set of neighbours of region r and nr is the
number of neighbours of region r.

The priors for ε r
region and νr

region are similar.
The ς, ε, and ν terms are independent random effects,

again set to zero for a = a*, with the following priors:

ς τc
a N c a acell

age
cell0,1 ), ~ ( / , *� ≠

ς τh
a N hhaul

age
haul0,1 ), ~ ( / �

ς ςc
a

h
a c hcell haul, *, * ,= = 0 �

The ε and ν priors are similar. All precision terms τ are
given vague Gamma(0.01,0.01) priors.

A sensitivity analysis showed no effect of varying the pri-
ors. It is known that in some models, the choice of prior for
the precision terms can be very influential on the results, but
in our case, this is not true. The reason for this is probably
that there are only a relatively small number of precisions to
estimate, and there is a large amount of data. The only no-
ticeable effect of varying the precision priors between
Gamma(0.1,0.1) and Gamma(0.001,0.001) was to slow the
sampling routine down somewhat for the vaguest priors.

Note that throughout the paper, we have parameterized the
Gaussian distributions in terms of the precision (i.e., the re-
ciprocal of the variance), i.e., we write N(µ,1/τ) rather than,
for example, N(µ,σ2). This is the usual Bayesian notation
used for algebraic simplicity because we usually give τ a
Gamma prior distribution.
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Appendix B. Markov Chain Monte Carlo
(MCMC) algorithm.

Denote by θage, θlga, and θwgl the set of parameters involved
in the age, length-given-age, and weight-given-length model,

respectively. Our goal is to simulate from the posterior dis-
tribution p(θage,θlga,θwgl | data). Note first that

p(θage,θlga,θwgl | data) = p(θage,θlga | data)p(θwgl | data)

so that simulation of θwgl can be performed separately
from (θage,θlga). In the current implementation, the simulation
of θwgl is performed using Gibbs sampling by sequentially
altering between the following steps:

(i) Simulate fixed effects conditional on random effects,
precision parameters, and data.

(ii) Simulate random effects conditional on fixed effects,
precision parameters, and data.

(iii) Simulate precision parameters conditional on fixed
effects, random effects, and data.

Since this part of the model is an ordinary regression
model (with random effects), each step can be performed by
standard methods (e.g., see Gelman et al. 1995, chap. 8).

Concerning the simulation of (θage,θlga), note that these
two sets of variables become dependent because of the
length-only data. Denote by amiss the set of missing ages cor-
responding to the length-only data. Simulation of (θage,θlga)
is performed through the following three main steps:

(i) Simulate the missing ages amiss conditional on (θage,θlga)
and data.

(ii) Simulate θage conditional on θlga, amiss, and data.
(iii) Simulate θlga conditional on θage, amiss, and data.
Given (θage,θlga), all missing ages are independent multi-

nomial variables, making them easy to draw.
For given amiss, the length-given-age model is a standard

regression model similar to the weight-given-length model
and simulation of θlga can be performed as for θwgl. The sim-
ulation of θage is more difficult owing to the nonlinear de-
pendence between data and parameters. In the current
implementation, simulation of θage is performed through the
following two main steps:

(i) Simulate the αc h
a
, given the rest of θage and data.

(ii) Simulate the rest of θage given the αc h
a
, and data.

Given the rest of θage, all αc h
a
, are independent and can be

simulated through Metropolis–Hastings steps. Given the
αc h

a
, , the rest of the age model can be considered as a stan-

dard regression model and simulation of the remaining pa-
rameters can be performed similar to the simulation of θlga
and θwgl.
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