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1 Introduction

There is a need for quantifying the effect of COzinjection in heterogeneous reservoirs, and
compare this with the injectivity in homogeneous reservoirs, where analytical calculations are
conducted, and documented in the literature. This note describes the contribution by NR into a
CLIMIT supported research project “Geological Storage of COz: Mathematical Modelling and
Risk Analysis (178013)” (MatMoRA). The MatMoRA project aims to develop analytical and
numerical tools to be used in risk assessment analysis of geological storage of COz. The flow
simulations of the reservoirs have been made at SINTEF ICT. The results of these are not
included in this note, which only covers the input realizations.

The main purpose of this note is to document which of the original SAIGUP realizations that
was used in the numerical CO2 injection tests at SINTEF. A full tabular overview is found in
Table 2.

2 The synthetic reservoir realizations

NR was a partner in the EU-supported project SAIGUP (contract number ENK6 — CT - 2000 —
00073), run in 2000-2003. Here, a large number of realistic, synthetic reservoirs were generated
for the shallow marine class of reservoirs. The methodology and results of that project have
been published in several articles in a special publication of the Petroleum Geoscience journal
(Petr. Geosci. Vol. 14, No 1. 2008). The rationale and choices of geological heterogeneity were
thoroughly described in the publications. This basis made it natural to adopt synthetic reservoir
realizations from the SAIGUP study also to investigate on the CO2 injectivity in heterogeneous
reservoirs. Although synthetic reservoirs from the SAIGUP domain does not include all classes
of possible storage reservoirs for injected CO;, the present study demonstrates a methodology
which is valid for a wider class of sedimentological scenarios. The purpose of the project
cooperation between NR and SINTEEF is to investigate and quantify the effect of heterogeneity
on COz injection in stochastically generated reservoirs and compare with numerical and
analytical studies on homogeneous reservoirs where injected CO: creates a perfect plume shape.

2.1 Unfaulted realizations

The SAIGUP reservoirs are 3 km by 9 km laterally and 80 m thick. The overall structure is
depicted in Figure 1, and shows the structural trap limited by aquifer to the north, west and
south, and a major fault to the eastern crest.

All cells east of the main fault are non-active cells (given by the ACTNUM keyword in ECLIPSE
format).

i
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Figure 1. Structural overview of the SAIGUP reservoirs, showing top map of non-faulted realizations.

The reservoirs are filled with rock properties based on the sedimentological and petrophysical
heterogeneity. In the SAIGUP domain of reservoirs, four sedimentological parameters were
varied stochastically within three different parameter groups. These were:

e Progradation direction relative to the dipping structure.

e Aggradation angle, controlling the ratio between the sediment supply and the change
in sea level. This parameter can be considered as the vertical angle of the continuity of
the sedimentological facies.

e Barriers on the flow both laterally and vertically, as 10%, 50% or 90% barrier coverage.

e Lobosity, determining the lateral heterogeneity arising from the ratio between the
sediment supply and the available accommodation space in the sea.

More details are found in Howell et al. 2008.

In the SAIGUP study, the progradation of the distributary system was changed between three
different directions. In this CO: storage setting where only injection from one well is
investigated, we only use two of these, being progradation up-dip of down-dip. The
aggradation and barrier parameters are exemplified in Figure 2, while the three different
progradation sets, for the up-dip case, are given in Figure 3.

8 m% CO2 storage capacity subject to geological uncertainty



MULT

1.000
]

0.750
0.500
0250

0.000 l

Figure 2. Aggradation angle increasing from top to bottom in side view pictures (left), and multiplicator representing vertical
barriers between two major subzones (middle) and vertical and horizontal barriers in a two-lobe up-dip progradational system
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Figure 3. Parallel shorefront (left), and one (middle) and two (right) shore front lobes shown in top view.

The reservoirs were generated from 3 aggradation angles * 3 barrier levels * 3 shorefront shapes
* 2 progradation directions, giving in total 54 stochastically generated synthetic reservoirs used
as test reservoir for CO: injection.

2.2 Faulted realizations

Several structural fault scenarios were included in the SAIGUP study. Only one of these was
included in this study in addition to the non-faulted case. The structural outline is shown in
Figure 4. The faults are seen to run along the main outline of the reservoir, and will be barriers
for flow towards the top of the structure. However, the faults will also imply a wider spread of

CO2 storage capacity subject to geological uncertainty m% 9



flow. The effective fault permeability of all fault scenarios is depending on the Shale Gouge
Ratio, which again depends on the amount of clay in each cell. The fault case from SAIGUP that
was used here (A23) had a fault permeability higher than the average among those tested in
SAIGUP. The key objective in this study is, however, to investigate on a more quantitative
manner if faults do affect CO: injectivity. It has therefore not been any effort to optimalize the
fault scenario chosen here.

Figure 4. Structural outline of faulted case is shown from two angles. Faults run predominantly along the reservoir.

All 54 non-faulted reservoir realizations are repeated with respect to cell content of all
parameters. In addition, non-neighbouring connections (NNC’s) are added, and the geometric
locations of the cells are shifted due to the faulting. Thereby, there is straightforward to
investigate the effect of the fault compared to the non-faulted case.

3 Pore volume heterogeneity

Since the reservoirs are stochastically generated, they will not be exactly similar with respect to
petrophysical properties. The pore volume distribution is shown in Figure 5.
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Figure 5. Pore volumes of 54 non-faulted realizations used in CO; injection study.

The mean pore volume is 255.2 million cubic meters (MM3), with a standard deviation of 18.1
MM3. Sorting the pore volumes and identifying them with the two progradation directions
gives Figure 6.

10 m% CO2 storage capacity subject to geological uncertainty
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Figure 6. Pore volume dependency of progradation direction. Progradation equal to "1" indicates up-dip and "2" down-dip,
respectively.

Similarly, colouring the pore volumes dependency on the aggradation and the lobosity
produces Figure 7.
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Figure 7. Pore volume dependency of aggradation (left) and lobosity (right). Aggradation equal to "1" indicates low, "2" for
medium and “3” for high angle, respectively. Lobosity equal to "1" indicates parallel shoreface, "2" for 1 lobe and “3” for 2 lobes,
respectively.

The differences shown in Figure 6 and Figure 7 are also quantified in tabular form in
Table 1.

Group Progradation Aggradation Shoreface

Parameter level |Up-dip |Down-dip |Low Medium |High Parallel |1 lobe 2 lobes
Mean 252.4 257.9| 2485 265.3 251.8 261.6 251.4 252.6
Std.dev 19.6 16.4 15.0 8.8 234 18.2 16.2 18.9

Table 1. Pore volumes as a function of primary parameter level. All values in million cubic meters.

CO2 storage capacity subject to geological uncertainty m% 11



The main observation is that the differences are largest for the aggradation angle. Especially for
the medium aggradation, the pore volumes are significantly higher than both the low and the
high angle case. This is a consequence of the stochastically generation of the reservoir, not
intended, but important to consider when analyzing the results of the CO: injection studies.

Progradation and shoreface shape do not exhibit large differences, and the barrier levels should
neither, as the multiplicators are not volumetric entities.

4 Fine scale realization

All the realizations described earlier have been on a 40*120*20 grid. These have all been
obtained from upscaling from an 80*240%*80 fine scale grid where the geological realizations are
constructed.

It was decided to generate also one fine scale realization. The rationale was to be able to
investigate the effect from the grid scale and upscaling on the CO: injectivity. The unfaulted
realization number 35 in the original SAIGUP suite was chosen, by random. The top and
bottom structural maps were only available on the coarse scale. Therefore, the values from the
original detailed geostatistical resolution were mapped into a new grid generated by sampling
the coarse scale map values into the finer, more detailed scale. Laterally, this means that each
coarse scale cell was the mother of 4 fine scale structural map values. The resampling procedure
shown in Figure 8 for one cell was repeated for all cells in the fine scale representation.
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Figure 8. The mapping process from a structurally unfaulted geostatistical fine scale domain into the synthetic fine scale
reservoir is shown. Each, in this case, SATNUM value is 1,J,K-sampled within the zone created by the 80 meter thick difference
between the structural bottom and top reservoir.
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The multiplicator (MULT) values which represent the barriers were, however, not directly
sampled into the fine scale grid. These were only available in the coarse scale representation,
and needed, consequently, to be downscaled, without introducing holes in the barriers. Each
coarse scale barrier value (MULT-value) was therefore scaled according to the ratio in
resolution, for each direction. This means for instance that for a MULTX-value, which was to be
downscaled by a factor 2, the square root of the value was put in both cells in the x-direction.
Vertically, with a factor 4 between the grid resolutions, a value “x” was replaced by four “x#”-
values neighbouring each other. The process is depicted in Figure 9.

Figure 9. Downscaling MULT values. The coarse scale representation (right) produces several neighbouring cells with identical
values on the fine scale representation (left). Multiplicator values (between 0 and 1) are increased since their product should
become the original coarse scale value.

5 Realization index

Table 2 gives an overview on the numbering and parameter values of the input to the stochastic
realizations in the synthetic suite of realizations.

Realization
conversion Sedimentological parameter Coding numbers (Sintef)
Sintef- Saigup- | Barrier Aggra- Progra- Fault | Bar- Lob- Agg- Pro- Fau-
real real % Lobosity  dation dation pattern| nr nr nr nr nr
1 89 10 Parall Med up-dip U 1 1 2 1 0
2 98 50 Parall Med up-dip U 2 1 2 1 0
3 107 90 Parall Med up-dip U 3 1 2 1 0
4 35 10 1 lobe Med up-dip U 1 2 2 1 0
5 44 50 1 lobe Med up-dip U 2 2 2 1 0
6 53 90 1 lobe Med up-dip U 3 2 2 1 0
7 62 10 2 lobes Med up-dip U 1 3 2 1 0
8 71 50 2 lobes Med up-dip U 2 3 2 1 0
9 80 90 2 lobes Med up-dip U 3 3 2 1 0
10 88 10 Parall Low up-dip U 1 1 1 1 0
11 97 50 Parall Low up-dip U 2 1 1 1 0
12 106 90 Parall Low up-dip U 3 1 1 1 0
13 34 10 1 lobe Low up-dip U 1 2 1 1 0

CO2 storage capacity subject to geological uncertainty m% 13
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67 34 10 1 lobe Low up-dip A23 1 2 1 1 1
68 43 50 1 lobe Low up-dip A23 2 2 11 1
69 52 90 1 lobe Low up-dip A23 3 2 101 1
70 61 10  2lobes Low up-dip A23 1 3 1 1 1
71 70 50  2lobes Low up-dip A23 2 3 1 1 1
72 79 90 2 lobes Low up-dip A23 3 3 1 1 1
73 90 10 Parall High up-dip A23 1 1 3 1 1
74 99 50 Parall High up-dip A23 2 1 3 1 1
75 108 90 Parall High up-dip A23 3 1 3 1 1
76 36 10 1 lobe High up-dip A23 1 2 3 1 1
77 45 50 1 lobe High up-dip A23 2 2 3 1 1
78 54 90 1 lobe High up-dip A23 3 2 3 1 1
79 63 10 2 lobes High up-dip A23 1 3 3 1 1
80 72 50 2 lobes High up-dip A23 2 3 3 1 1
81 81 90 2 lobes High up-dip A23 3 3 3 1 1
82 86 10 Parall Med down-dip A23 1 1 2 2 1
83 95 50 Parall Med down-dip A23 2 1 2 2 1
84 104 90 Parall Med down-dip A23 3 1 2 2 1
85 32 10 1 lobe Med down-dip  A23 1 2 2 2 1
86 41 50 1 lobe Med down-dip  A23 2 2 2 2 1
87 50 90 1 lobe Med down-dip  A23 3 2 2 2 1
88 59 10 2 lobes Med down-dip  A23 1 3 2 2 1
89 68 50 2 lobes Med down-dip  A23 2 3 2 2 1
90 77 90 2 lobes Med down-dip  A23 3 3 2 2 1
91 85 10 Parall Low down-dip A23 1 1 1 2 1
92 94 50 Parall Low down-dip A23 2 1 1 2 1
93 103 90 Parall Low down-dip A23 3 1 1 2 1
94 31 10 1 lobe Low down-dip  A23 1 2 1 2 1
95 40 50 1 lobe Low down-dip  A23 2 2 1 2 1
96 49 90 1 lobe Low down-dip  A23 3 2 1 2 1
97 58 10 2 lobes Low down-dip  A23 1 3 1 2 1
98 67 50 2 lobes Low down-dip  A23 2 3 1 2 1
99 76 90 2 lobes Low down-dip  A23 3 3 1 2 1
100 87 10 Parall High down-dip A23 1 1 3 2 1
101 96 50 Parall High down-dip A23 2 1 3 2 1
102 105 90 Parall High down-dip A23 3 1 3 2 1
103 33 10 1 lobe High down-dip A23 1 2 3 2 1
104 42 50 1 lobe High down-dip A23 2 2 3 2 1
105 51 90 1 lobe High down-dip A23 3 2 3 2 1
106 60 10 2 lobes High down-dip A23 1 3 3 2 1
107 69 50 2 lobes High down-dip A23 2 3 3 2 1
108 78 90 2 lobes High down-dip A23 3 3 3 2 1

Table 2. Conversion table between realizations in the CO; injection sensitivity study.

6 Final remarks

The symbiotic cooperation between SINTEF and NR has proven successful in this preliminary
study. The CLIMIT-granted project “Impact of Realistic Geologic Models on Simulation of CO2
Storage” which will run in 2010 to 2011 will follow up on this cooperation, also together with
the University of Bergen as the coordinator and CIPR as project partner.

CO2 storage capacity subject to geological uncertainty m?“; 15
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