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Abstract In history matching and sensitivity analysis,

flexibility in the structural modelling is of great impor-

tance. The ability to easily generate multiple realiza-

tions of the model will have impact both on the up-

dating workflow in history matching and uncertainty

studies based on Monte Carlo simulations.

The main contribution to fault modelling by the

work presented in this paper is a new algorithm for cal-

culating a 3D displacement field applicable to a wide

range of faults due to a flexible representation. This

gives the possibility to apply this field to change the

displacement and thereby moving horizons and fault

lines.

The fault is modelled by a parametric format where

the fault has a reference plane defined by a centre point,

dip and strike angles. The fault itself is represented as

a surface defined by a function z = f(x, y), where x, y

and z are coordinates local to the reference plane, with

the z-axis being normal to the plane.

The displacement associated with the fault outside

the fault surface is described by a 3D vector field. The

displacement on the fault surface can be found
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by identifying the intersection lines between horizons

and the fault surface (fault lines), and using kriging

techniques to fill in values at all points on the surface.

Away from the fault surface the displacement field is

defined by a monotonic decreasing function which en-

sures zero displacement at a specified distance from the

fault.

An algorithm is developed where the displacement

can be increased or decreased according to user-defined

parameters. This means that the whole displacement

field is changed and points on horizons around the fault

can be moved accordingly by applying the modified dis-

placement field on them. The interaction between sev-

eral faults influencing the same points is taken care of

by truncation rules and the ordering of the faults.

The method is demonstrated on a realistic synthetic

case based on a real reservoir.

Keywords Fault modelling · Fault displacement ·
History matching · Uncertainty analysis

1 Introduction

Several authors have pointed out the need for building

structural models that are well suited for performing

uncertainty analysis on geological horizons and faults.

Caumon et al. [4] use a set of techniques to model

structural uncertainty by perturbing stochastically the

geometry of a reference structural interpretation. This

extends the work presented in Lecour et al. [11] where

stochastic modelling of fault locations in reservoir grids

is used to perform sensitivity studies on volume calcula-

tions in the 3D earth model. Thore et al. [19] underline

the importance of assessing the sources of uncertainty in

the structural modelling and show how this has impact

on gross rock-volume calculations, well planning, flow
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simulation and history matching. In Seiler et al. [17] and

Seiler et al. [18] the structural uncertainty modelling is

included in the history matching workflow by account-

ing for the uncertainty in horizon and fault modelling.

Røe et al. [16] describe how the uncertainty associated

with depth migration, seismic interpretation and well

data can be incorporated in the structural modelling

by presenting a flexible method for stochastic simula-

tion of fault shape and position based on a parametric

fault model. The same fault model is used in this work

and is presented in Section 2 below.

Fault modelling is an important part of the struc-

tural modelling workflow. During the recent years, soft-

ware and method development has made significant im-

provements in terms of better quality, faster model

building and improved ability to update models. This

is due to simplified workflows for modelling of fault sur-

faces and fault truncations. To perform a model update

workflow through conditioning to dynamic data, like in

Seiler et al. [18], or to perform static uncertainty stud-

ies, like in Caumon et al. [4], it is necessary to create

multiple realizations of the model. In most cases this

is not so easy. Interpretation and depth conversion un-

certainties of fault surfaces and fault throw influence

volume calculations of segmented reservoirs and flow

across fault surfaces. It has been difficult to capture this

uncertainty without much manual work to create alter-

native fault realizations. Very often this is not done,

with the consequence that the effect of fault interpre-

tation uncertainty is not known or ignored.

In the present paper, several elements relevant for

dynamic flow properties and volumetric estimation with

uncertainty are addressed. These include the position of

faults and horizons, the magnitude of the displacement

caused by the faulting process and the impact this has

on the sealing effects and facies distribution around the

faults. By using a parametric fault model, it is possible

to modify an existing realization of fault surfaces and

fault throw simply by modifying some model parame-

ters instead of editing model input data manually or

by scripts. This makes it possible to include fault mod-

elling into Monte Carlo simulations or history match-

ing loops in order to estimate the effect of fault inter-

pretation uncertainty and throw on reservoir volumes

and flow. Seiler et al. [18] show how changing the fault

throw and fault position can be used to update the

structural model in a history matching workflow. This

is performed with the pillar-based fault model Havana,

presented in Hollund et al. [10], by scaling the displace-

ment operator and moving the fault pillars. The same

fault model is used in Rivenæs et al. [14] to show how

the uncertainty in fault properties for both faults on

the limit of seismic resolution and faults with throw

below seismic resolution affect the flow properties in

different well drilling scenarios. With a new and more

flexible surface based fault model, these operations will

become easier to perform.

An algorithm for creating a 3D displacement field

associated with a single fault plane is presented. The

chosen fault representation permits perturbing the dip,

strike and location of the fault, while the 3D displace-

ment field is used to move horizons representing the

effect of a change in fault throw. Mallet [12] defines a

similar transformation into an unfaulted space, while

the present paper focus on having a displacement op-

erator for each individual fault. The joint effect from

faults close to each other is taken care of by trunca-

tion rules applied on the fault operator defined from

the displacement fields. Caumon et al. [4], Lecour et

al. [11] and Holden et al. [9] focus on stochastic per-

turbation of fault geometries and fault throw, but in a

history matching workflow a deterministic way of per-

turbing the fault geometry and throw is desired. Effects

of changing fault throw on reservoir flow can implic-

itly be represented by changing the throw used in the

fault seal calculations as shown by Manzocchi et al. [13],

however, an explicit change of fault throw is needed for

volume calculations and for well planning.

2 Surface based fault model

Several approaches to model faults are in use, with each

type of model having certain advantages and certain

disadvantages. In Hollund et al. [10] and Holden et al.

[9], faults are modelled by bilinear planes connected

with pillars. This represents an easy format to oper-

ate on if geological structures are not too complicated

and it ensures correspondence between fault represen-

tation and the reservoir grid. However, this format is

not very flexible and does not capture more complex

structures like, for instance, listric faults. The concept

of modelling faults as triangulated surfaces is presented

in Caumon et al. [3] and Caumon et al. [5]. This format

allows for modelling with geological realism and cap-

ture complicated geological features. The cost to this

might be loss in flexibility and speed compared to a

parametric approach.

In the model presented in this paper, the fault is

represented by a fault surface along the same lines as

in Hoffman and Neave [8]. Each fault is related to a

reference plane defined by a strike angle (θ) and dip

angle (φ) as illustrated in Figure 1. On this plane a

reference point (X0, Y0, Z0), given in global coordinates,

is defined. The strike, dip and reference point define a

local coordinate system used for all operations on the
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Fig. 1 Local coordinate system (x, y, z) defined by refer-
ence point (X0, Y0, Z0), fault strike angle θ and dip angle φ.
The z-axis points in hanging wall direction. The edges of the
reference plane is drawn by green lines.

fault. The transformation from global (X,Y, Z) to local

coordinates (x, y, z) is given byxy
z

 =

 sin θ cos θ 0

cos θ cosφ − sin θ cosφ sinφ

cos θ sinφ sin θ sinφ − cosφ

 X −X0

Y − Y0
Z − Z0


(1)

with the positive z-axis pointing in the hanging wall

direction.

The fault surface is defined as a function z = f(x, y)

for all (x, y) on the reference plane. The value of f is

the deviation from the reference plane along the z-axis

(i.e. normal to the reference plane). This means that for

each (x, y) only one value of f(x, y) is defined, giving

only one position for the fault surface. Figure 2 shows

the vertical cross section at x = x′ where the fault

surface is represented by f(x′, y) as the deviation from

the reference plane. In the computer representation of

the fault model, f(x, y) is represented as a set of z-

values corresponding to the nodes of a regular 2D grid

in the reference plane.

This surface based fault model is well suited for sev-

eral of the operations on faults that will typically be

part of uncertainty studies. Moving the fault or rotat-

ing it in strike or dip direction is easily accomplished

by changing parameter values, and several realizations

can be generated by varying one or more parameters

according to user-specified random distributions.

Like in the Havana model presented in Holden et al.

[9] and Hollund et al. [10] the surface based fault model

is not only represented by the fault surface, but also

by a 3D fault operator affecting the volume around the

fault. This operator is represented by a 3D displacement

vector field presented in the next section.

Fig. 2 Vertical cross section through the fault at x = x′.
The fault surface (in red) is represented by the function z =
f(x′, y) as the deviation from the reference plane (in green)
along the z-axis.

3 3D displacement vector field

The fault incidence is a complicated event carried out

through several steps where every mathematical for-

mulation is a simplification. The displacement of rock

caused by the faulting can be looked upon as a contin-

uous process in the sense that two neighbouring points

before the fault incidence, are also neighbours after-

wards due to the nature of the hard material involved.

This suggests that the faulting operation can be de-

scribed by a vector field defined on the whole volume
affected by the fault. Every single point in the volume

is moved along a 3D vector from its original position to

the faulted position, and the whole vector field can be

constructed by the assumption of continuity. For sim-

plification in the following, only dip-slip faults are con-

sidered. This means that the displacement on the fault

surface can be modelled by one 2D displacement field

and the displacement away from the fault surface as a

function of this. If slip also in strike direction should

be accounted for, an additional 2D displacement field

would have been necessary. The next section describes

how the 2D displacement field can be constructed from

intersection points between horizons and faults.

3.1 Constructing 2D displacement fields from fault

lines

By identifying fault lines, defined as intersection lines

between horizons and the fault surface, information
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about fault displacement along the fault surface can

be found. Figure 3 shows an example of fault lines from

a structural model where the interpreted horizon inter-

sects the fault surface. The fault line is shown in green

with straight line on the foot wall side and dashed line

on the hanging wall side. The displacement is measured

Fig. 3 Fault lines shown in green on the fault surface.
Straight line on the foot wall side and dashed line on the
hanging wall side.

along the reference plane. For a linear fault this refer-

ence plane coincides with the fault surface as illustrated

in Figure 4. For the general non-linear case the displace-

Fig. 4 Displacement illustrated on a linear fault. The dis-
placement is measured along the reference plane which in this
case coincide with the fault surface.

ment is measured as the distance between the point

where the horizon intersects the fault on the foot wall

side projected down to the y-axis and the point where

the horizon intersects the fault on the hanging wall side

projected down to the y-axis. This is illustrated in Fig-

ure 5 for two horizons H1 and H2 in a vertical cross

section at x = x′. This gives displacement values d1
and d2 for the horizons H1 and H2 respectively. The

displacement value is found as the y-value for the foot

wall intersection point subtracted the y-value for the

hanging wall intersection point giving positive values

for normal faults and negative values for reverse faults.

With this definition, the fault throw is the vertical pro-

jection of the displacement.

Fig. 5 Vertical cross section showing how the values for the
2D displacement field d(x, y) defined on the fault surface is
calculated from fault line information.

The 2D displacement field on the fault reference

plane is denoted d(x, y) and a regular 2D-grid is defined

in the xy-plane. For each fault a hanging wall(HW) /

foot wall(FW) displacement ratio can be found, either

based on theoretical considerations or estimated from

data. According to Gibson et al. [6], this ratio can be

predicted from the fault dip. This displacement ratio,

given as a user-specified parameter γ ∈ [0, 1], is used to

populate the 2D displacement grid. γ = 1 and γ = 0

means that all displacement is on the hanging wall side

and foot wall side respectively. The displacement ob-

served from fault lines and the value for the HW/FW

displacement ratio gives an estimate for the position

where the original (unfaulted) horizon intersects the

fault surface with the associated displacement value.

The HW/FW displacement ratio for the fault in Fig-

ure 5 is 0.7, meaning that most of the displacement

is on the hanging wall side. This defines the positions

f(x′, y′) and f(x′, y′′) where the unfaulted version of

horizons H1 and H2 cross the fault surface. The val-

ues for the displacement function d are identified as

d(x′, y′) = d1 and d(x′, y′′) = d2.

The displacement values associated from fault lines

constitute a set d = {d(x1, y1), d(x2, y2), . . . , d(xn, yn)}
of known values for the 2D displacement field. These are

used in simple kriging to populate the whole field. Sim-

ple kriging is a linear interpolation technique used to es-

timate the value of an unknown function at a location

given known values, a trend and a spatial covariance

structure. See Goovaerts [7] for a detailed description

on kriging. The estimation of the trend is described in
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Section 3.2. The kriging equation for the unknown value

d∗(x, y) of the displacement field at location (x, y) is

d∗(x, y) = µ(x, y) + kK−1(d− µ), (2)

where µ(x, y) is the trend value, k = {Cov(x1− x, y1−
y), . . . ,Cov(xn−x, yn−y)} is the vector of covariances

between the location (x, y) and the locations of the

known displacement values, K is the covariance ma-

trix for the known displacement values, d, and µ is

the vector of the trend values at the locations of the

known displacement values. The covariance structure

is defined by a variogram function with user-specified

standard deviation, shape and ranges. The correlation

structure is assumed stationary, but the standard devi-

ation may vary, with lower values in areas with lot of

data, and decreasing to zero towards the fault tip-line.

3.2 Trend estimation

The trend function for the displacement is given by an

ellipse with centre point (x0, y0), length (lx) in strike di-

rection and height (ly) in dip direction. Argumentation

for the elliptic shape of the fault displacement is found

in Barnett et al. [1] and Walsh and Watterson [22].

The ideal, theoretical case has maximum displacement

at the centre point and zero displacement reached at

the elliptic tip-line. The normalized displacement pro-

file used in the present model is found in Walsh and

Watterson [21] and is given by

µ0(x, y) = 2 · (1− r(x, y)) ·
√

(1 + r(x, y))2

4
− r(x, y)2,

(3)

where r(x, y) =

√(
x−x0

lx

)2
+
(

y−y0

ly

)2
is the normal-

ized radial distance from the centre. The tip-line is the

elliptic line defined by r(x, y) = 1. Outside this line

the trend equals zero. Let dmax be the maximum dis-

placement assumed at the centre of the ellipse. This

gives the trend function µ(x, y) = dmaxµ0(x, y). Prior

information on the relationship between the maximum

displacement and the length of the ellipse and the rela-

tionship between the length and the height is provided

as user input. A discussion on these parameters can be

found in Walsh and Watterson [22].

The algorithm used for estimating the parameters

in the trend function is as follows:

1. Find the maximum of the known displacement val-

ues and use this as an initial guess for dmax.

2. Find initial guesses for lx and ly based on the prior

information for the relationships between dmax, lx
and ly.

3. Find the optimal position of the ellipse centre by

minimizing the sum of squared errors between the

displacement and the trend over all points

(x1, y1), . . . (xn, yn) with respect to (x0, y0).

4. Use the optimal ellipse centre and find the optimal

length and height by minimizing the sum of squared

errors with respect to lx and ly.

5. Use the linear regression model

d(xi, yi) = dmaxµ0(xi, yi) + ε(xi, yi) i = 1, . . . n (4)

with residuals ε(xi, yi) to find least squares estimate

for dmax as (
∑
x2i )(

∑
xiyi)

−1.

For illustration, the Emerald field reservoir model,

which is one of the tutorial examples of the reservoir

modelling software RMS (Roxar [15]), has been cho-

sen. Figure 6 shows the structural model for the Emer-

ald field indicating one large truncating fault (F1), and

one smaller fault (F2) which is truncated by F1. There

are four horizons in the model, and the fault lines for

these horizons are drawn on the fault surfaces. The up-

per four lines represent the intersection between the

horizons and the fault on the foot wall side and the

lower four lines represent the intersection between the

horizons and the fault on the hanging wall side. The

differences between lines of identical colours represent

the displacements and the large displacement on F1 is

clearly visible.

Fig. 6 The Emerald field structural model with fault lines
for four horizons drawn on each fault surface.

Figure 7 shows the F1 fault with displacement val-

ues found from fault lines as described above. The

HW/FW displacement ratio is 0.7. The dots represent

grid nodes in the local 2D grid, with coloured nodes

representing known displacement values. The maximum

displacement value, located in the pink area, is 590 me-

ters.

A trend field for the displacement is estimated us-

ing the algorithm described above. The trend is shown
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Fig. 7 The fault F1 from the Emerald field structural model
with dots representing nodes in local regular 2D grid. The
coloured nodes represent known displacement values found
from fault lines.

in Figure 8. The elliptical shape of the trend is clearly

visible. It is also obvious that the estimated length and

height of this ellipse by far extend the actually mod-

elled fault. This reflects the large displacement in the

limited area where there are actually identified fault

lines. A priori the length of the ellipse is assumed to be

20 times the maximum displacement, and the height is

assumed to be half the length. The centre of the trend

ellipse is estimated to be further north-east than the

location of the maximum value found from fault lines.

The maximum displacement in the trend ellipse is esti-

mated to 545 meters.

Fig. 8 The fault F1 from the Emerald field structural model
with the elliptical trend estimated from the data and apriori
parameters.

The result of the kriging with the elliptical trend

and the known displacement values is shown in Fig-

ure 9. The correlation structure follows a spherical var-

iogram with a range of 2000 meter in strike direction

(x) and 1000 meter in dip direction (y). This displace-

ment field corresponds exactly to the known values at

the locations where these are found. Since the ellipse

centre for the trend does not coincide with the max-

imum known value, the high displacement values are

shifted to south-west along the fault.

Fig. 9 The fault F1 from the Emerald field structural model
with the displacement field calculated by kriging.

3.3 Displacement field in volume around the fault

surface

The displacement decreases away from the fault surface

until it dies out at the reverse drag radius (Barnett

et al. [1]). This decrease is non-linear, and along the

z-direction the profile follows the curve suggested in

Cardozo et al. [2], and given by

α(x, y, z) =

(
1− |z − f(x, y)|

R

)2

, (5)

where R is the reverse drag radius. This profile is illus-

trated in Figure 10. The full 3D displacement field is

defined as a vector field, with a vector

D(x, y, z)

= {Dx(x, y, z)ux, Dy(x, y, z)uy, Dz(x, y, z)uz} (6)

for each spatial location. Here ux,uy,uz are unit vec-

tors along the x-, y- and z-axes respectively. The x-

component Dx is in the present model defined to be

zero everywhere, reflecting that there is no strike-slip

displacement. This is done for implementation simplic-

ity and is not a necessary limitation for the model. The

y-component, Dy has different expression on the hang-

ing wall and foot wall sides. For 0 < z − f(x, y) < R,
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Fig. 10 The profile for the displacement decrease in the nor-
mal direction away from the fault surface. The horizontal axis
shows the distance from the fault surface with 1.0 being at the
reverse drag radius. The vertical axis shows the proportion of
the fault surface displacement at the normal projection of the
point.

that is within the reverse drag radius on the hanging

wall side, the expression is

Dy(x, y, z) = γ · d(x, y) · α(x, y, z) (7)

giving positive values for normal faults and negative

values for reverse faults. For −R < z − f(x, y) < 0,

that is within the reverse drag radius on the foot wall

side, the expression is

Dy(x, y) = (γ − 1) · d(x, y) · α(x, y, z) (8)

giving negative values for normal faults and positive

values for reverse faults. The z-component is given by

Dz(x, y, z) = f(x, y +Dy(x, y, z))− f(x, y), (9)

implying that the distance from the point to the fault

surface (along the normal) remains constant through

the displacement operation.

Figure 11 shows a vertical cross section at x = x′

with the Dy- and Dz-components of the displacement

vector D. The position of an arbitrary point away from

the fault surface before and after the fault incident is

shown.

The effect of the 3D displacement operator is shown

in Figures 12 and 13 for a linear and a listric fault

respectively and with different parameter values. Figure

12 shows an example with six horizons and a planar

fault where the displacement is equally distributed on

hanging wall and foot wall sides (γ = 0.5) and where

the reverse drag radius is 1000 m in one case and 3000

m in the other.

Fig. 11 Vertical cross section showing the 3D displacement
vector D decomposed into Dy and Dz and the position of a
point before and after the fault incidence.

In Figure 13 six horizons are subject to a listric fault

with all displacement on the hanging wall side and with

two different reverse drag radii.

4 Truncations and interactions between faults

Truncations in the present fault model are specified in

pairs of truncating and truncated faults giving a set

of truncation rules. For each pair an indicator specifies

if the fault is truncated on the hanging wall or foot

wall side of the truncating fault. Two faults intersecting

each other do not necessarily define a truncation, so

the model has flexibility to handle both λ-, y- and x-

faults. This means that the truncation rules are applied

to join fault blocks together in a specific fault network

representation. This is partly what is described as the

fused fault block approach in Hoffman and Neave [8].

The displacement field for the truncated fault is also

truncated. This is illustrated in Figure 14 showing two

faults where the smaller is truncated by the larger. All

displacement is on the hanging wall side for both faults.

The volume affected by the displacement operator of

the larger fault is shown in green in the upper picture,

while the volume affected by the displacement operator

of the smaller truncated fault is shown in red in the

lower picture.

Figure 15 shows the effect of truncation on the es-

timated displacement field for fault F2 in the Emerald

model. This fault is truncated by F1. The upper figure

shows the displacement field for F2 without taking the

truncation into account, while the lower figure shows

the displacement field when accounting for the trunca-

tion by F1.
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Fig. 12 : Effect of displacement operator on a linear fault
with displacement equally distributed to hanging wall and
foot wall sides. Upper: Unfaulted. Middle: Faulted with re-
verse drag radius 1000m. Lower: Faulted with reverse drag
radius 3000m.

The truncation rules can be applied to define an or-

dering of faults. This is based on the principle that a

truncating fault is older than the faults it truncates.

The fault lines from the structural model represent the

net effect of the displacement from several faults. To

find the fault lines representing the actual displacement

from the fault when the fault incident occured, a se-

quential restoration of the faults is needed. The fault

lines from the youngest fault is in this sense correct and

the displacement field for this fault can be generated

without modifications. If the fault lines from the sec-

ond youngest fault are influence by the younger, these

must be restored back to its original position by ap-

plying a reverse fault operator for the youngest fault.

These restored fault lines are then used for generating

the displacement field for this second fault. This proce-

dure is applied to all faults in the correct order. Figure

16 shows the original foot wall fault lines (in green) for

Fig. 13 Effect of displacement operator on a listric fault with
all displacement on hanging wall side. Upper: Reverse drag
radius 2500 m. Lower: Reverse drag radius 5000m.

Fig. 14 Volume affected by the displacement of the large,
truncating fault in green and volume affected by the displace-
ment of the smaller, truncated fault in red.

two horizons of the fault F1 in the Emerald model to-

gether with the restored fault lines (in black). At the

intersection with the two truncated faults (F2 and F3)

the effects of the truncations is removed giving conti-

nuity in the restored fault lines. At the truncation with

F3, the restored fault line is lifted up to the level at the



Fault displacement modelling using 3D vector fields 9

Fig. 15 Emerald model showing displacement field for fault
F2. In the upper figure the truncation by fault F1 is not
accounted for in the displacement field. To the right the dis-
placement field is truncated by F1.

foot wall side of F3. This is because the hanging wall /

foot wall displacement ratio for F3 is 1.0, meaning that

all the displacement is on hanging wall side. At the in-

tersection with F2 the restored fault lines lie between

the original ones meaning that the displacement for F2

is equally distributed on both sides.

Since every point in the reservoir volume might be

affected by the displacement from several faults, a net

displacement vector for the point should account for

the joint effect from the displacement of all faults that

influence the point. The net displacement operator is

found by applying the displacement operator for each

individual fault to the point sequentially from the oldest

to the youngest fault.

In the restoration, or de-faulting operation, a reverse

fault operator is needed. To find an explicit expression

for the inverse of the 3D displacement vector D defined

by expressions (6) - (9) is not possible since there is

no closed expression giving d(x, y) as a function of y.

This gives an undefined equation set. One possible so-

Fig. 16 Fault lines for the foot wall side of the fault F1
in the Emerald model. Green lines show the original fault
lines from the structural modelling with discontinuity at the
intersections with the truncated faults F2 and F3. The black
lines show the fault lines after the effect of the truncations is
removed. Away from the truncations the original and restored
fault lines coincide.

lution is to create a 3D grid for the volume influenced

by the fault and calculate the faulted position for each

node in the grid. The inverse operator is then defined

by mapping back from the cube of faulted positions us-

ing interpolation. With many faults, however, this is

both memory- and CPU-demanding. The alternative

approach, which is actually used, is to calculate the in-

verse of the 2D displacement function d(x, y) as one grid

for hanging wall side and one grid for foot wall side. The

faulted point is projected onto the fault surface and the

inverse 2D function is used by taking into account the

side of the fault and the distance to the fault surface.

Since this will only give correct answer for constant dis-

placement, an iterative approach using binary search is

used until the deviation from the correct point is within

some predefined tolerance level. The displacement func-

tion is assumed to be quite smooth, so this approach

gives a reasonably precise and fast approximation.

5 Applications of 3D displacement field

The horizon interpretations near faults has normally

larger uncertainty than away from faults. The horizons

are often based on extrapolation from interpreted seis-

mic surfaces. Using the fault lines based on these inter-

pretations to generate a displacement field gives a tool

for quality control by analyzing the displacements. Im-

proving the horizon modelling close to faults can have

important impact on the modelling of fluid flow across

faults (Hollund et al. [10]), well planning (Rivenæs et al.

[14]) and fault sealing properties (Yielding et al. [20]),

to mention just a few applications.
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One of the advantages of having a fault model with

a 3D displacement field explicitly defined, is the possi-

bility of easily modifying the fault by changing the dis-

placement. By the model presented above, the whole 3D

displacement field can easily be changed by either scal-

ing it with a factor, or by adding a constant to the 2D

displacement field. This can be applied in a determin-

istic setting where the displacement is set to vary for

example between minimum, maximum and best guess

values, or in a stochastic setting where several realiza-

tions are generated by Monte Carlo simulations. Every

modification of the displacement field means that all

points in the influence area of the fault are moved. Sec-

tion 6 shows examples of the effect of changing displace-

ments by moving the points on the horizons in accor-

dance with the modified fault operator after changing

the displacement fields. The main steps in the algo-

rithm for moving a point is to first reverse the fault-

ing operation by moving the point back to its original

(pre-faulted) position. The point is then moved to its

modified (faulted) position by applying the modified

displacement vector using expressions (6) - (9).

6 Examples from a synthetic case based on real

reservoir

The effect of the 3D displacement operator described

above is demonstrated on a synthetic reservoir with el-

ements from a real case. There are three faults in the

reservoir box, named A (to the left in the figures), B

(middle) and C (right). The faults A and B form a Y,

while B and C form a λ. C truncates both A and B,

while A truncates B. The original state of the reservoir

structure is shown in Figure 17. The figure shows the

three faults in a 3D cube with the reservoir layers and

in a vertical cross section.

The fault pattern defines four fault blocks shown in

Figure 18.

Figure 19 shows the effect of changing the displace-

ment for Fault A by a factor of 3 with all displacement

on the hanging wall side. In the upper figure the effect

is shown in a 3D cube of the whole reservoir box,while

the lower figure shows a vertical cross section.

In Figure 20 both Fault A and Fault B have changed

displacement by a factor of 3. For fault A the displace-

ment is equally distributed on hanging wall and foot

wall side, while for Fault B all displacement is on hang-

ing wall side. The two faults have equal reverse drag

radius. The figure shows the joint effect this has on

the position of the horizons. The displacement change

applied to Fault B affects only the fault block between

Fault A and Fault B since Fault B is truncated by Fault

Fig. 17 Original position of horizons and faults. Faults A
and B form a Y. Faults B and C form a λ. Fault C truncates
faults A and B, while fault A truncates fault B. Upper: 3D
cube with horizons and faults. Lower: Vertical cross section.

Fig. 18 Example reservoir consisting of three faults dividing
the volume in four fault blocks.

A, while the change applied to Fault A also has an ef-

fect to the right of Fault B since there is no truncation

at Fault B. The algorithm works such that the moving

of points due to the change of displacement is first ap-

plied to the youngest fault (in this case Fault B) and

then to the older (Fault A).

Figure 21 shows the gridded reservoir with colours

of grid cells indicating the distance the cells has been

moved as an effect of changing the displacements. The

warmer colours mean downward displacement, while

cold means upward. The upper figure shows the case

where only Fault A has changed displacement. Cells on

both sides of the fault are influenced. The lower fig-

ure shows the case where both fault A and fault B have
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Fig. 19 Displacement for Fault A changed by a factor of 3
with all displacement on hanging wall side. Upper: 3D cube.
Lower: Vertical cross section.

changed displacement, but with all displacement on the

hanging wall side for Fault B.

The effect of how truncations impact the displace-

ment fields is shown in Figure 22. The original hori-

zons are shown by lines while the colouring of the zones

shows the changed positions. In the upper cross section

plot, the displacement for Fault B has been increased by

a factor of 3 and the displacement is equally distributed

on hanging wall and foot wall side of the fault. Even if

the distances between Fault B and the other two trun-

cating faults are shorter than the reverse drag radius,

the effect of changing the displacement stops at both

Fault A and Fault C because of the truncation. This is

visible for all horizons. In the lower cross section plot,

the displacement for Fault A has been increased by a

factor of 3 with all displacement on the hanging wall

side and with a long reverse drag ratio. Since Fault B

does not truncate A, the change of displacement con-

tinues over Fault B, but stops at Fault C which is the

truncating fault.

7 Conclusions

A surface based fault method is presented. This model

is parametrized in such a manner that the fault can

easily change position, orientation and throw by ex-

plicitly changing parameter values. This flexibility is

an important tool in sensitivity analysis and history

Fig. 20 Displacement for both Fault A and Fault B changed
by a factor of 3 with displacement equally distributed on
hanging wall and foot wall sides for both fault A and all dis-
placement on hanging wall side for Fault B and equal reverse
drag radius. Upper: 3D cube. Lower: Vertical cross section.

matching. The displacement of the volume around the

fault is defined as a 3D vector field based on infor-

mation from intersections between horizons and faults

and a parametric formulation of the displacement away

from the fault surface. All points affected by the fault
can be modified by operations performed on this vec-

tor field. The algorithm developed on the basis of the

fault model allows points on horizons to be moved ac-

cording to user-specified changes to the displacement

caused by the fault. When several faults are influenc-

ing each other, the interactions between them are taken

care of by explicit truncation rules, and these rules also

influence the displacement fields applied to the hori-

zons. The methodology is demonstrated on synthetic

examples based on a fault pattern from a real reservoir.
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Fig. 21 Gridded reservoir showing cells that are influenced
by the change of displacement. Warm colours mean down-
ward displacement. Cold colours mean upward displacement.
Upper: Fault A has changed displacement. Lower: Both fault
A and fault B has changed displacement
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