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Abstract

Background: Recent large-scale undertakings such as ENCODE and Roadmap
Epigenomics have generated experimental data mapped to the human reference
genome (as genomic tracks) representing a variety of functional elements across a
large number of cell types. Despite the high potential value of these publicly available
data for a broad variety of investigations, little attention has been given to the
analytical methodology necessary for their widespread utilisation.

Findings: We here present a first principled treatment of the analysis of collections
of genomic tracks. We have developed novel computational and statistical
methodology to permit comparative and confirmatory analyses across multiple and
disparate data sources. We delineate a set of generic questions that are useful across a
broad range of investigations and discuss the implications of choosing different
statistical measures and null models. Examples include contrasting analyses across
different tissues or diseases. The methodology has been implemented in a
comprehensive open-source software system, the GSuite HyperBrowser. To make the
functionality accessible to biologists, and to facilitate reproducible analysis, we have
also developed a web-based interface providing an expertly guided and customizable
way of utilizing the methodology. With this system, many novel biological questions
can flexibly be posed and rapidly answered.

Conclusions: Through a combination of streamlined data acquisition, interoperable
representation of dataset collections and customizable statistical analysis with guided
setup and interpretation, the GSuite HyperBrowser represents a first comprehensive
solution for integrative analysis of track collections across the genome and epigenome.
The software is available at: https://hyperbrowser.uio.no
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Background
Improvements in sequencing technologies in recent decades have enabled the deter-

mination of the DNA sequences of many large genomes as well as their functional

interrogation. Genome-wide profiles for a variety of biological features are being

systematically generated for a wide range of cell types, often via concentrated ef-

forts by dedicated consortia. The Encyclopedia of DNA Elements (ENCODE) [1]

http://www.editorialmanager.com/giga/download.aspx?id=11708&guid=ce5e7517-a976-4eca-bc96-8a1824ebf6b7&scheme=1
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project marked a substantial leap in this respect, by making available to the human

genomics community a broad collection of cell line-specific data on DNA accessi-

bility and transcription factor binding. The NIH Roadmap Epigenomics Mapping

Consortium further contributed a significant amount of additional tissue- and cell-

type-specific data to the public domain, including DNA methylation and histone

modification profiles for a large number of primary cells. Kundaje et al. [2] refer to

the combined collection of ENCODE and Roadmap data as 127 human reference

epigenomes. Most of these datasets are in the form of genomic tracks, i.e. sets of ele-

ments anchored to locations in a reference genome, which provide a good foundation

for the integration of data representing disparate genomic features.

The widespread utilization of these immense amounts of available data is ham-

pered by a lack of tools providing automatic data integration and sound statistical

analysis of large collections of diverse datasets. Frameworks and toolkits such as

Bioconductor [3] (R), bedtools [4] (command line), Galaxy [5] and HyperBrowser

[6] (web interface) have enabled the robust processing and analysis of genomic

tracks with reduced development effort using a variety of interfaces. However, these

tools are essentially limited to analyses involving either a single track or a pair

of tracks, with no support for the analysis of track collections beyond the trivial

concatenation of results per track. For investigations aiming to exploit larger data

collections through comparative analyses across epigenomes or across genomic fea-

tures, no general solutions are available (on any platform). Dedicated solutions do

exist for specific applications (e.g., assessing a cell type-specific accessibility of a set

of single nucleotide polymorphisms (SNPs) [7, 8] or annotating genomic variants

[9, 10, 11, 12]), for specific analytical scenarios (e.g., enrichment analysis of one

track against a collection [13]), and for specific basic operations (e.g., calculating

the number of base pairs covered by all tracks in a collection [14] or computing the

intersection of a collection of tracks with the elements of a single query track [10]).

Figure 1 presents these different frameworks and dedicated solutions in context.

The lack of comprehensive methodologies leads to ad hoc development of analytical

solutions in attempts to answer novel questions that draw on the power of large

public or in-house data collections. This may severely limit exploitation of the full

potential of current experimental technologies and public data repositories, partic-

ularly by research groups with limited bioinformatics resources. Furthermore, the

prevalence of ad hoc solutions has a negative impact on reproducibility. A new layer

of computational methodology is thus needed to directly approach generic questions

formulated in the domain of track collections.

Here, we present GSuite HyperBrowser, the first comprehensive solution for the

analysis of track collections across the genome and epigenome. GSuite Hyper-

Browser is an open-source, web-based system that enables analysis of a broad array

of both hypothesis-driven and data-driven questions that may be posed using large

collections of genomic tracks. We focus on questions of a comparative nature, where

a track is contrasted to (or analyzed in the context of) other tracks. The intended

input is one or more carefully assembled collections of tracks, with the tracks of a

collection typically varying along a single dimension of interest. The input could be

a collection of tracks for the same histone modification across cell types or a col-

lection of tracks representing different histone modifications in the same cell type.
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The system uses a formalized representation of track collections and includes tools

for compiling new collections from local files or public repositories. Analytical ques-

tions may relate to which tracks stand out from such a collection, which tracks of

a collection are the most similar to a separate (query) track, or how the occurrence

or co-occurrence of elements from individual tracks in the collection varies along

the genome. Included within the system is guidance on how these generic questions

can be meaningfully interpreted with respect to a specific genomic feature.

Results
Overview

The present work is concerned with sets of information elements anchored to specific

coordinates in a reference genome, which we refer to as genomic tracks (short form:

tracks). A genomic track may consist of e.g. the genome-wide set of experimen-

tally determined locations of DNA methylation or DNA binding by a transcription

factor. Often, an investigation may involve a carefully selected collection of tracks

representing either different genomic features for a single cell type or a single feature

for multiple cell types. We refer to a collection of tracks selected for a particular

analytical purpose as a suite of tracks (short: suite).

We define a simple and intuitive tabular format, GSuite, to represent suites of

tracks. The GSuite format can represent data at a local or remote server, can

include metadata, and can be seamlessly exchanged between individual tools in

an analysis workflow. To allow efficient compilation of track suites from a variety

of public repositories (like ENCODE and Roadmap Epigenomics) and thus enable

integration of disparate data sources, we propose that rather than downloading and

reorganizing tracks according to a unified structure, a concept akin to database

views is preferable; tracks can be browsed and selected in a unified manner but are

retrieved from their respective sources only when a user assembles a track suite.

Even for a pair of tracks, many different questions can be asked regarding their

relations [15]. In principle, the number of possible relations that can be queried for

multiple tracks grows exponentially with the number of tracks involved. Also, the

complexity of defining and interpreting analyses involving multiple heterogeneous

tracks is very high. A particularly useful type of question is the comparative as-

sessment of tracks in a suite, where the tracks may be contrasted based on their

relation to one another, to a particular separate track or to tracks of another suite.

We delineate a set of generic questions that are useful across a broad range of

investigations, explore their characteristics, and present a statistical methodology

for their resolution. Table 1 lists five of the main questions, along with associated

descriptive statistics and hypothesis tests (details provided in Additional file 1).

The descriptive statistics can be based on different measures of similarity, and the

hypothesis tests can be based on different null models [16]. A schematic view of the

statistical analysis related to one of these questions is provided in Figure 2.

The representation, acquisition and analysis of track suites are implemented in

a comprehensive, open-source software system, GSuite HyperBrowser. The system

builds on the Genomic HyperBrowser [6, 15] and offers a web-based interface pow-

ered by Galaxy [5], with several separate tools for the compilation, preprocessing

and analysis of track suites (Figure 3). The web interface includes an interactive
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tutorial to help new users quickly get up to speed with meaningful analyses, guid-

ance for every tool, results in the form of sortable tables and customizable plots,

and a set of thoroughly annotated examples of biological investigations.

Illustrative example

As an illustrative example, consider the exploration of how binding sites for a given

transcription factor (TF) co-occur with binding sites of other TFs and with var-

ious epigenomic marks. Because TF binding varies between cell types, such an

exploration should be conducted in a cell type-specific context. Here, we describe

a process for determining the co-occurrence of ChIP-seq peaks for the GATA1 TF

versus other TFs and functional epigenomic elements in K562 cells, an established

cell line for which abundant experimental data are available. All analysis steps are

performed using tools within the GSuite HyperBrowser system. Further details of

the analysis and biological interpretations are discussed in Additional file 2.

The first step is to browse available experimental datasets for K562 cells in the

ENCODE repository, compile a GSuite file referring all K562 ENCODE tracks and

download these to the server (318 tracks). Using tools for GSuite customization, we

isolated a single GATA1 track and compiled a suite of the 317 remaining tracks.

We then determined which tracks (in the suite) exhibit the strongest similarity (in

terms of peak co-occurrence) with the GATA1 track. The most critical aspect of such

an analysis is the precise specification of the measure of similarity (co-occurrence).

By selecting the tetrachoric correlation [17, 18, 19] as similarity measure, we obtain

a ranking of tracks that is not too dominated by the strongly varying number

of elements per track. The tetrachoric correlation, ρ, is defined by assuming that

the two tracks are generated by thresholding an underlying continuous, bivariate

normally distributed variable, where ρ is then defined as the correlation in the

underlying bivariate normal. The tetrachoric correlation ρ can be easily estimated

from given tracks, for example using maximum likelihood techniques; we have used

the R-package polycor [20] to estimate ρ. Using this measure, the transcription

factors SMARCA4, TAL1, EP300 and STAT5A were identified as high-ranking.

These TFs have all been previously reported as relevant for GATA1 (see discussion

in Additional file 2).

Because we did not filter out any K562 tracks included in the suite, the rank-

ing includes experimental replicates for GATA1 as well as non-TF datasets such

as histone modifications and DNase I accessibility. This provides a broad view of

co-occurrence, including indications for TF cooperation, consistency across exper-

imental replicates for the same TF, and the association of GATA1 with different

chromatin states. As a confirmatory extension of the analysis, one can examine

whether the high-ranked tracks are significantly more similar to GATA1 than the

average for all tracks in the suite. This question can be answered by a hypothesis

test available in the same tool used to produce the ranking; it uses a test statis-

tic comparing the similarity of each track to the average of the suite. Different

null models may be reasonable; for instance, a null model may assume that the

data in the whole suite are fixed, whereas the peak locations in the separate track

(GATA1) are assumed to be stochastic according to a distribution that preserves

the empirical distribution of lengths and distances between the peaks [15]. Because
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an average across the suite forms part of this test statistic, data for the whole suite

are required to compute each single measure, meaning that the analysis is at the

integrative multiplicity level (as defined in the section on Classes of multiplicity).

Representing suites of genomic tracks: the GSuite format

Fundamentally, a collection of datasets is fully defined by a set of references to

its constituents. For convenience, a plain text file of Uniform Resource Locators

(URLs) for the contained datasets should be valid as a representation of a dataset

collection. To further support relevant analyses, the format should permit inclusion

of metadata defining important attributes of each individual dataset.

We have defined a simple format that meets these requirements: GSuite. A plain

text file of one URL per line is a valid GSuite instance. The format further allows

the definition of headers that, among other functions, declare whether the included

datasets are available locally or remotely. A tool that downloads datasets referred to

by a collection can then iterate through the source GSuite, download each referred

file, and replace the URLs with paths to the locally stored files. In addition to the

URLs of the tracks, a GSuite file may include tab-separated columns representing

metadata values for each dataset. A full definition of the GSuite format is provided

in Additional file 3.

Compiling suites from public repositories

Although repositories such as ENCODE and Roadmap Epigenomics provide free

access to large amounts of data, they are not designed for the extraction of large

numbers of datasets according to shared characteristics, e.g., extracting large suites

of tracks tailored toward a particular analysis. Furthermore, the different reposito-

ries do not use a common nomenclature, hindering the integration of related data

from several repositories.

A common solution to the integration of data from multiple repositories is to

download all data from their respective sources, and construct a meta-repository

structured according to a common terminology (e.g., [15, 21, 22]). However, such

manual curation and organization is laborious, susceptible to errors or misunder-

standing, and can easily become outdated. We therefore adopted a different ap-

proach to integrate tracks from multiple sources. Rather than downloading and

re-organizing genomic tracks, we use a concept akin to database views; users can

browse and select remotely located tracks based on metadata, resulting in a list

of URLs of the chosen tracks (GSuite). The GSuite can be further modified and

shared as a simple text file. The underlying genomic tracks are only downloaded

when a user explicitly asks to create a local copy of the data.

As a low-level access point, we provide a single interface for accessing different

repositories according to their original (repository-specific) metadata terminology.

This interface avoids the loss or misrepresentation of the exact metadata provided

by the individual repositories.

We also provide a high-level access point that sacrifices some degree of metadata

precision to permit selection of related tracks across sources according to a unified

vocabulary (e.g., all tracks for a particular histone modification across repositories).

The high-level access point builds on the low-level access point and is based on a
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curated transformation of individual repository-level vocabularies into the unified

vocabulary.

The low-level and high-level access points currently support ENCODE [1],

Roadmap Epigenomics [2], the International Cancer Genome Consortium data por-

tal [23] and the NHGRI-EBI GWAS Catalog [24].

Classes of multiplicity for analyses of track suites

The analysis of multiple tracks ranges from simple repetition of the same compu-

tation on each track to analyses in which the tracks are highly intertwined in the

computations and interpretations.

To better delineate the different levels of integration associated with various anal-

yses, we define the following classes of multiplicity for track suite analyses:

Trivial multiplicity (Figure 4(A)): A statistic is computed for each track in a

suite, but the computed values are neither compared nor integrated across tracks

in the suite of interest. This resulting list of values per track can be convenient for

obtaining an overview of a suite. Because it is merely a repetition of computations,

it does not introduce any challenges related to multiplicity. An example of trivial

multiplicity is to count the number of peaks for each track for transcription factor

binding sites in a given cell type.

Contrasting multiplicity (Figure 4(B)): A statistic is computed separately for each

track of a suite, possibly in relation to reference tracks (outside the suite), with an

aim of contrasting (typically ranking) the values computed for each track from

the suite. Co-occurrence is typically of main interest. Although the computations

are performed separately (as for trivial multiplicity), the aim of comparing the

computed values puts additional requirements on the statistics used. As discussed

in Additional file 2, measures designed to capture the similarity/co-occurrence of

tracks may be inappropriately affected by the number of elements in each track. An

example of contrasting multiplicity is evaluating the co-occurrence of binding sites of

a selected transcription factor (TF) against each track from a suite of transcription

factor ChIP-seq peak tracks (note: this is the same example as was presented in the

,,Illustrative example” section above)[1]. In this example, using the Jaccard index

[25] as the similarity measure produced a ranking that appeared severely affected by

the overall number of peaks in each track from the suite. The severity of this effect

is also shown on simulated data (Additional file 2). Use of the Forbes coefficient

[26] or tetrachoric correlation [17, 18, 19] did not show such an effect, and resulted

in a markedly different ranking. Especially the use of the tetrachoric correlation

resulted in a biologically very reasonable ranking of potentially cooperating TFs.

Since track size has such a strong influence on the Jaccard index, we generally don’t

recommend its use in situations where tracks are to be ranked.

Integrative multiplicity (Figure 4(C)): A statistic is computed based on pair-wise

measures across all tracks in a suite. The statistic may be a single value representing

the suite as a whole or it may be in the form of one value per track from the suite.

[1]As in ,,Exploring transcription factor co-occurrence using two alternative mea-

sures of similarity”, one of the complex example analyses on the GSuite Hyper-

Brower website, which is also briefly presented in the ,,illustrative example” section

above
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For descriptive statistics computed per track, integrative multiplicity implies that

the value of a given track will depend on the context of other tracks included in

the suite. An example of integrative multiplicity is the computation of how typical

each track in a suite is with respect to the suite, i.e., its average co-occurrence with

other tracks in the suite. A computational challenge associated with the integrative

multiplicity class is that the data for each track are typically used in several parts

of the computations. A simple algorithm would thus either need to read the same

data repeatedly from physical storage or simultaneously store the data for all tracks

in memory. More advanced algorithms based on map-reduce and memoization of

intermediate computations would therefore generally be preferable (and are applied

in GSuite HyperBrowser).

Higher-order multiplicity (Figure 4(D)): A statistic is defined based on higher-

order relations (beyond pairwise) between the tracks in a suite, implying that a

computation must work on elements from many or all tracks from a particular ge-

nomic region simultaneously. Then, the statistic cannot be subdivided into multiple

pairwise across-track computations. An example is the computation of how many

base pairs across the genome are associated with open chromatin in more than half

of a set of considered cell types (covered by more than half of the genomic tracks

of a suite).

Hypothesis testing

A hypothesis test for multiple tracks investigates whether the aspect of interest for

the track or tracks in question is present in the data more/less than what is expected

by chance. For all questions in Table 1, we have defined an associated statistical

test that can facilitate the assessment of the robustness of the effects observed from

the descriptive statistics (Additional file 1).

Statistical tests can be based on parametric distributions or Monte Carlo simula-

tions. Due to the complex structure of a genome, genomic data sets are often not

well described by simple parametric distributions. For this reason, simulation has

been the preferred choice even for relations involving only a pair of tracks [15, 27].

We have further demonstrated that the simplifying assumptions that are typically

required to allow parametric testing on genomic track data will often increase the

risk of false-positive findings [16]. Based on such considerations, we find that for

the questions of Table 1, the limitations and simplifying assumptions required for

parametric testing make Monte Carlo-based simulation a more promising direction.

The following are the main elements of a Monte Carlo-based statistical test:

1 a test statistic: a measure that describes the aspect of interest;

2 a null model: a model that tracks would follow if generated by chance;

3 a null distribution: the distribution of the test statistic when data follow the

null model; and

4 a p-value: the proportion of the null distribution that is more extreme than

the value of the test statistic on the observed (real) data.

For statistical testing to be meaningful, a test statistic must be specified that pre-

cisely matches a particular aspect (question) of interest and assumes a realistic

(relevant) null model.

Our approach follows [15]: we argue that good, robust results can be obtained

by preserving some structure from the tracks while performing the randomization



Simovski et al. Page 8 of 18

algorithm. After specifying what we consider relevant null model assumptions, we

derive algorithms for sampling tracks from a particular null model and computing

the test statistic for each simulated track. We observe that the relevant null models

(and thus the associated simulation algorithms) are mostly shared between ques-

tions and can be divided into the following three categories (described in terms of

simulation algorithms):

• Sampling algorithms that treat each track separately. Any sampling algorithm

for single tracks can be extended in this manner to suites, e.g., those presented

in [15].

• Sampling algorithms that sample elements across tracks from a suite. Track

segments (pairs of reference genome coordinates) can be placed in a single

pool shared across tracks and sample segments for each track with or without

replacements from this pool and with or without preserving the variation of

frequency and length of segments across the tracks. A particular challenge

with this sampling approach is how to handle intra-track overlap of segments

without introducing sampling biases. Further details on alternative sampling

algorithms are provided in Additional file 1.

• Sampling algorithms sampling across suites. These fall into the following two

types: one type that pools track elements across both tracks and suites and

thus represents a (slight) further complication of the previous category and

a second type that permutes entire tracks between suites. Further details are

provided in Additional file 1.

There is a crucial difference in the interpretation between hypothesis tests at the

contrasting and integrative multiplicity levels. A statistical test that uses a pairwise

track similarity measure as a test statistic and a sampling algorithm that treats

each track separately will result in p-values at the contrasting multiplicity level (p-

values relate to the null hypothesis for each track from a suite in isolation). Such

p-values do not provide information about how a particular track is differentiated

from other tracks in a collection, but the p-values of different tracks can be compared

to assess the relative confidence. By contrast, if either the test statistic is defined

across tracks from the suite or if the sampling algorithm draws elements across

tracks, the resulting p-values will be at the integrative multiplicity level. Such p-

values may represent null hypotheses related to whole suites or how a given track

is differentiated from the remaining tracks in the suite.

The basic mode as an interactive tutorial of the system

To accommodate a broad range of usage scenarios, the main tools in the GSuite

HyperBrowser are defined in a generic and highly customizable manner. Gener-

ality of tools and a rich palette of parameter options are often indispensable for

appropriate handling of data during the course of an actual project (and often have

important consequences for the interpretation of results), but might mean unnec-

essary complexity for new users who wish to first familiarize themselves with the

system. The system therefore includes a dedicated tutorial version of the tool inter-

face, which simplifies the definitions of basic analyses and streamlines the learning

experience. This ,,basic mode” of the system offers a simplified view of a tool’s

parameter list, hiding options that are typically sufficiently represented by the de-

fault values during initial exploratory test runs by users. Perhaps most importantly,
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the entry point of the basic mode is a set of interactive analysis examples that il-

lustrate the typical usage of the GSuite tools within particular domains (e.g., the

study of genome variation or the study of transcription factor binding). Each exam-

ple includes detailed instructions for performing a simple integrative analysis and

provides relevant datasets necessary for its execution. The examples also offer infor-

mation regarding generalization of the presented analyses and guidance for utilizing

one’s own datasets. Entering and leaving the tutorial mode is possible at any time,

which will respectively hide or reveal the full set of parameters defined for each tool.

Figure 5 shows a screenshot of the tool interface as it appears on the web server.

Examples of biological investigations using the system

While the interactive tutorial illustrates core analytical approaches for a breadth of

biological questions, a full investigation will usually involve its own specific steps for

data preparation and supporting analysis. To provide an impression of the variety

of aspects that may be involved, we include a set of transparent and reproducible

examples of biological investigations using the system. The investigation examples

are available under the ”Examples” tab on the system front page and include an

example that reproduces individual findings from the literature (relationship be-

tween mutations in a given cancer and cell-specific open chromatin), an example of

novel investigations (whether SNPs associated with various diseases are located in

miRNA genes), an example of studying experimental biases/artifacts (clustering of

tracks associated with different cell types and experimental setups) and an example

of studying computational biases (how the exact formula used to measure track

similarity has a decisive impact on the results and interpretations).

Discussion and Conclusions
Reference genomes have allowed a broad range of genomic features to be represented

in a uniform manner, which facilitates data integration and the discovery of rela-

tions and interplay between various features. With recent initiatives to unravel data

from multiple epigenomes (cell-type-specific data for a variety of epigenetic marks),

a new layer of computational methodology is needed. Similar to the previous gener-

ation of computational tools that allowed a question regarding a genome-scale data

set to be resolved through a single operation, the next generation of tools (or an

updated version of existing tools) should directly approach questions formulated in

the domain of collections of genomic tracks.

The most trivial level of functionality for analyzing data collections, based on

iterative, single or pair-wise analysis of genomic tracks, is already available on var-

ious platforms for genomic track analysis. More complex solutions regarding track

collections have been provided only for specific questions by means of dedicated

tools (e.g., LOLA [13]). The analysis of track collections (e.g., analysis across a set

of functional elements or cell types) has received little attention in the literature.

We present here a first step in this direction.

The present work includes three distinct contributions: 1) a computational and

statistical methodology for compiling and analyzing collections of genomic tracks; 2)

an implementation of the proposed methodology in the form of a large open-source,
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integrated software system; and 3) a web-based interface to the developed function-

ality. The user interface enables meaningful analysis customization by providing

expert guidance.

The main approach for the integration of data in the bioinformatics field has

been to download data from multiple sources and restructure it according to a

uniform hierarchy ([21, 28]). Here, we adopted a different approach by developing

solutions to allow users to retrieve data from databases when a specific collection of

tracks is needed (instead of downloading and re-organizing data in a general manner

in advance). This approach has advantages and disadvantages. Downloading and

integrating track collections as needed introduces a delay for users at the time of

compilation compared to relying on pre-collected data. This delay is to some degree

rectified by a scheme for locally caching data previously downloaded (by any user).

The advantage of the chosen approach is that as long as the repositories continue to

release their data according to the same protocol, the tool will continuously provide

access to all available data in their latest versions. Another strong advantage is the

transparency of the approach—users can directly view the URLs at which data were

retrieved and the exact time the data were retrieved from a given repository. The

currently supported repositories all contain data for the human genome, but the

methodology can be readily applied to data connected to any reference genome.

Due to the size and heterogeneity of the genomes of higher organisms, even anal-

yses of single genomic tracks can be complex. Integrative analyses across multiple

tracks (typically across cell types or features) add a further layer of complexity. To

cope with this complexity, highly customizable tools and extensive user guidance

are essential. By developing an integrated software system with a set of robust com-

ponents for data handling and statistical analysis at the core, we have enabled a

range of sophisticated analyses to be performed with limited effort. The developed

methodology is accessible to a broad user base via the system’s web interface, which

provides inbuilt tool guidance and offers an interactive tutorial with a rich list of

domain-specific analysis suggestions. Transparency and reproducibility of analyses

are ensured by integration with the Galaxy framework, where data, tool and pa-

rameter choices are automatically tracked in the background and any step in the

analysis can be repeated with the option of changing the original data or parame-

ters.

The Galaxy system also includes a native way of representing multiple datasets,

termed dataset lists/collections, which we consider mostly complementary to

GSuite. A strong aspect of dataset lists is their tight integration with Galaxy tool

execution, which allows any standard Galaxy tool to be executed iteratively on each

dataset of a collection. Through its representation as a tabular text file, GSuite is

interoperable across systems and can be easily manipulated using any tool or soft-

ware that operates on tabular datasets, inside or outside the Galaxy system. Fur-

thermore, GSuite supports the specification of custom metadata for each dataset in

a collection, which is exploited extensively in our tools and example analyses. We

believe a general integration of the GSuite format within the Galaxy system, includ-

ing functionality for converting between GSuite and dataset lists, could improve the

usability of both the GSuite HyperBrowser and the standard Galaxy platform.

The methodology presented here does not cover the full spectrum of analyses

that can be envisioned for collections of genomic tracks. First, the current statistics
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and null models only relate to pure location data (Point and Segment tracks [29]).

Extending the work to handle Valued Points and Segments (e.g., genes with expres-

sion values and tracks from case vs. control elements) as well as Function tracks

(e.g., signal tracks with ChIP-seq intensities) would clearly broaden the range of

supported biological investigations. Second, the present methodology is primarily

focused on questions that can be reduced to pairwise track relations. Analysis of

higher-order relations between functional elements is a very interesting challenge

but requires methodological development beyond what is described here. Third,

even for the class of analyses considered here, there are many further questions

for which statistical methodology would be useful. Fourth, although data from any

source can be uploaded to the system, a consistent terminology for track metadata

would enable better unified access to track data sources and their content. We be-

lieve that the development of a widely accepted ontology for describing biological

and experimental characteristics of tracks should be given high priority to ease data

integration and avoid misinterpretation of results achieved when employing public

data for research. Ideally, this should be organized as a community effort to en-

sure international uptake. Fifth, experimental data at the single-cell level is rapidly

becoming a powerful tool in biomedical research [30, 31]. Although the methodol-

ogy presented here can be used directly on single-cell data, these data may give

rise to a range of additional questions beyond what is considered in the present

work. Through a principled methodological approach and implementation based on

generic core components, the open-source GSuite HyperBrowser system is prepared

for future extensions in a variety of dimensions.

In conclusion, we believe the GSuite HyperBrowser would permit robust and

reproducible solutions to a breadth of cases for which ad hoc development is the

only current possibility.

Methods
System implementation

The GSuite HyperBrowser is an integrated software system written mainly in

Python, with extensive use of the NumPy library for efficient data handling, as

well as some supporting code in R and Javascript (in total, 170,000 lines of code).

The GSuite HyperBrowser makes use of code components from the Genomic Hyper-

Browser [15] to represent individual tracks and to analyze single tracks and pairwise

relations between tracks. The user interface is based on the Galaxy system [5], which

ensures robust user and dataset management, and includes features supporting re-

producible research. To provide users with a more dynamic user interface, the tools

in GSuite HyperBrowser is based upon Galaxy ProTo (https://github.com/elixir-

no-nels/proto), an alternative tool definition API for the Galaxy framework. To

ensure computational efficiency, track data are preprocessed into an indexed, bi-

nary format based upon arrays written consecutively to disk [29], while analysis

computations are based on a map-reduce scheme that limits memory requirements

and a scheme for memoizing intermediate computations [15].

GSuite representation

Collections of tracks are represented as lists of references (URLs) with correspond-

ing metadata in the GSuite tabular text format. The system includes robust func-

tionality for composing, modifying and validating collections in this format. The
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system also includes functionality for crawling and for searching and retrieving

data from public repositories. The crawling functionality works similarly to a web

crawler, accessing metadata from supported repositories to generate a database of

the available datasets in the form of URLs along with metadata accompanying

each dataset. This database can then be queried on metadata contents, resulting

in a novel GSuite file containing Uniform Resource Identifiers (URIs) to original,

remotely stored datasets. Before analysis, remote datasets of a GSuite file can be

retrieved and stored locally on the web server in hidden Galaxy history elements,

resulting in a transformed GSuite file with custom Galaxy URIs that point to such

storage. A caching scheme is also implemented, making sure that the datasets for

each unique URI that refers to stable content is only retrieved once. The caching

simply stores the Galaxy URI for the first retrieval in a register and makes sure

that consecutive retrievals result in the same URI.

Descriptive statistics and null models

The test statistic needs to be custom-tailored to a particular question. It will thus

vary between different questions involving suites of tracks, and will also vary ac-

cording to slight variations of each question. Still, we find that test statistics for

the whole range of questions we have studied can be defined based on a shared

hierarchy:

• Pairwise track statistic (T): computes a measure of co-occurrence between a

pair of tracks, e.g. the Forbes measure (
N∗|Ai∩Aj |
|Ai|∗|Aj | , where Ai and Aj are the

set of genome locations (bps) covered by two tracks i and j, while N is the

size of the genome) [26]. This can be a final per-track result in itself (at the

contrasting multiplicity level) or part of a higher order computation.

• Integrative statistic (Q): combines values of T for multiple track pairs. This

operates on a structure of track pairs (and corresponding T values), e.g. a sin-

gle track paired with each other track of a suite. The combination of T values

can e.g. be the average, max or min of values of T (e.g., 1
n−1 ∗

∑
j 6=i T (Ai, Aj),

where n is the number of tracks in the suite). Analyses based on a Q-statistic

are by definition at the integrative or higher-order multiplicity levels.

• Suite statistic (R): Statistic that describes an entire suite. It may combine

multiple values of Q. Each Q-value will typically represent a one-to-many

computation between tracks in a suite, with the R-value typically representing

a many-to-many combination of tracks in a suite. The combination of Q values

can e.g. be the average, max or min of values of Q (e.g., 1
n ∗

∑
iQ(Ai, A−i)).

Analyses based on a R-statistic are by definition at the integrative multiplicity

level.

• Pairwise suite statistic (S): Statistic that describe the relationship between

two suites. Also this statistic may combine multiple values of Q in the same

manner as the R-statistic. Analyses based on an S-statistic are by definition

at the integrative or higher-order multiplicity level.

Most hypothesis tests in the system are based on Monte Carlo evaluation of p-

values, where a particular simulation algorithm produces explicit tracks for the null

model and a particular test statistic is used to generate values for the null distri-

bution. Several alternative simulation algorithms are proposed, preserving distinct

properties within the scope of individual tracks or across the collection.
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Detailed formulas for descriptive and test statistics, as well as detailed sampling

algorithms for Monte Carlo evaluation of statistical significance, are provided in

Additional file 1.
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Figure 1
The GSuite HyperBrowser in the context of existing tools and frameworks for ge-

nomic track analysis. The codebases of frameworks such as bedtools [4], BioPy-

thon [33], Bioconductor [3], Galaxy [5] and the Genomic HyperBrowser [15] add a

domain-specific layer on top of general programming languages, providing generic

constructs for representing genomic track data and core operations on tracks (in-

cluding some minimal support for analyzing multiple tracks). The GSuite Hyper-

Browser codebase is the first general platform to add a new layer of constructs for

directly representing collections of tracks and providing core operations (analyses)

to be applied to such track collections. Although the functionality of this codebase

is provided through a web interface, the codebase is open source, and the same

constructs may be used by any other relevant Python-based platform. Also, the

underlying approach is general and could be correspondingly implemented in other

programming languages. In addition to such general purpose framework, there are a

variety of purpose-specific tools for track data. GenometriCorr [34], deepTools2 [35]

and GREAT [36] are examples of tools that operate on single/pairs of tracks and

support specific analyses or domains. Furthermore, several tools implicitly make use

of collections of genomic tracks for analyses in specific domains (e.g., FORGE [8],

GREGOR [7] and CISTROME [22]) or for specific types of analyses (e.g., EpiGraph

[37], MULTOVL [14], EpiExplorer [38] and LOLA [13].

Figure 2
Illustration of the analysis question ,,Which tracks (in a suite) coincide most

strongly with a separate single track?” (see Additional file 1). The input to the

tool is a single query track (Q) and a set of reference tracks (R1, R2 and R3). The

contingency tables show the pairwise overlap between the query track and each of

the reference tracks. The Forbes coefficient [26] is calculated from each contingency

table, and used to rank the reference tracks according to similarity to the query.

Figure 3
Overview of typical analysis phases and the tools included in the GSuite Hyper-

Browser system. A set of tools for assembly and customization of track collections

(GSuites) lead up to a diverse range of tools for statistical and visual analysis of

relations between a multiplicity of tracks.

Figure 4
Schematic illustration of the four defined classes of multiplicity:

A) Trivial multiplicity - a statistical analysis is executed independently per

dataset in the collection.
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B) Contrasting multiplicity - a statistic is computed per dataset in the collection

and the results are interpreted relative to each other, e.g. ranked from highest

to lowest.

C) Integrative multiplicity - a statistic is computed on all pairs of datasets in the

the collection. Results are aggregated either per dataset or for the collection

as a whole.

D) Higher-order multiplicity - a statistic is defined on higher-order relations be-

tween datasets (beyond the pairwise level).

Figure 5
Interactive basic mode of operation. Guided analysis starting with a pre-defined

catalog of biological questions, leading to a finalized answer in few simple steps.
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Table 1: Analytical questions on track collections
Question Input data Descriptive

results
Hypothesis testing
focused on individ-
ual tracks

Hypothesis
testing fo-
cused on full
suite

Example of us-
age

Which
tracks (in
a suite) are
most rep-
resentative
and most
atypical for
the suite?

A single
suite of
tracks

Ranking
of tracks
based on
aggregated
(*C) co-
occurrence
against all
other tracks
of the suite

Is the most repre-
sentative track of
the suite more sim-
ilar to the rest than
one would expect
any of the tracks to
be representative of
by chance? (*A)

Are the tracks
in the suite
(as a whole)
more similar
than expected
by chance?

Check for
outliers in a
collection of
replicate exper-
imental tracks
of DNaseI
hypersensitivity

Which
tracks (in a
suite) coin-
cide most
strongly with
a separate
track?

A single
suite of
tracks and
a single
track

Ranking
of tracks
based on co-
occurrence
against the
separate
track

Does a given track
from the suite co-
occur with the sep-
arate track more
than one would ex-
pect by chance?
(*B)

Do the tracks
in the suite
(as a whole)
coincide with
the separate
track more
than expected
by chance?

Compare the
enrichment
of a set of
trait-associated
SNPs in open
chromatin
regions of
different tissues

Do certain
tracks of
one suite
coincide
particularly
strongly
with certain
tracks of
another
suite?

Two suites
of tracks

A heatmap
of co-
occurrence
for all pair-
wise com-
binations of
tracks from
the two suites

Is a track from one
suite co-occurring
with a track from
the second suite
more than expected
by chance (given
the general propen-
sity of each of the
two tracks to co-
occur with tracks
of the other suite)?

Does the
distribution of
co-occurrence
values for
pairwise track
combinations
have more ex-
treme values
than it would
be expected
by chance?

Assess the
enrichment
of somatic
variants of
different cancer
types in het-
erochromatin
of different cell
types

In which
regions of
the genome
do tracks of
a suite have
the most
occurrences?

A single
suite of
tracks and
a set of
genome
regions to
be used as
bins

Ranking of
bins based on
aggregated
(*C) cover-
age by tracks
in the bin

Is the aggregated
(*C) coverage by
tracks in the given
bin higher than
one would assume
from the coverages
of different tracks
across the genome
as a whole?

Is the oc-
currence of
segments for
tracks of a
suite varying
between bins
more than
expected by
chance?

Find genes with
particularly high
frequency of
somatic variants
across a set of
cancer patients

In which
regions of
the genome
do tracks
of a suite
exhibit the
strongest
tendency to
co-occur?

A single
suite of
tracks and
a set of
genome
regions to
be used as
bins

Ranking of
bins based
on aggre-
gated (*C)
pairwise co-
occurrence
of all tracks
of the suite
against each
other

Do the segments
co-occur more than
expected in a given
bin (given their
general propensity
to co-occur across
the genome)?

Does the
degree of
co-occurrence
between seg-
ments for
tracks of a
suite vary
more between
bins than
expected by
chance?

Find regions
of the genome
where ChIP-seq
peaks repre-
senting binding
of a set of
transcription
factors co-occur
frequently
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