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Abstract13

Knowledge about how many �sh that have been killed due to bycatch is an important14

aspect of ensuring a sustainable ecosystem and �shery. We introduce a Bayesian spatio-15

temporal prediction method for historical bycatch that incorporates two sources of available16

data sets, �shery data and survey data. The model used assumes that occurrence of bycatch17

can be described as a log-linear combination of covariates and random e�ects modeled as18

Gaussian �elds. Integrated Nested Laplace Approximations (INLA) is used for fast calcula-19

tions. The method introduced is general, and is applied on bycatch of juvenile cod (Gadus20

morhua) in the Barents Sea shrimp (Pandalus borealis) �shery. In this �shery we compare21

our prediction method with the well known ratio and e�ort methods, and make a strong22

case that the Bayesian spatio-temporal method produces more reliable historical bycatch23

predictions compared to existing methods.24

Keywords: Bycatch, Spatio-temporal, Bayesian, INLA, Commercial �shery25

1 Introduction26

Bycatch in commercial �sheries may potentially threaten a sustainable ecosystem and �shery,27

and knowledge about historical bycatch is therefore important. If bycatch is not recorded in the28

�shermen catch logbooks, which is the main source of information within commercial �sheries,29

historical bycatch needs to be estimated. In this research, we introduce a prediction procedure30

based on the newly constructed Bayesian hierarchical spatio-temporal bycatch model in Breivik31

et al. (2016). We further compare our method with the frequently used ratio method (Schea�er32

et al., 1996, page 204) and e�ort method (e.g. Walmsley et al., 2007; Hall, 1996) for a speci�c33

�shery.34

Typically two sources of data are available for predicting bycatch; the commercial catch logbooks35

the �shermen are obliged to report, and observations taken for monitoring purposes. The �rst36

source, referred to as �shery data, contains only target catch, whiles the latter, referred to37

as survey data, contains both target catch and bycatch. To predict historical bycatch in the38

commercial �shery, we combine the �shery data with the survey data.39

The ratio method and the e�ort based method are widely used to predict historical bycatch40
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(Davies et al., 2009; Vinther, 1999; Ye et al., 2000; Amandè et al., 2010; Ye, 2002; Walmsley41

et al., 2007). The ratio method scales the commercial target catch with the observed bycatch42

ratio in the survey data, while the e�ort based method scales the observed bycatch with the43

commercial trawl e�ort.44

The model proposed to predict historical bycatch takes a regression approach and utilizes possi-45

ble important explanatory variables (such as seasonal e�ects and the size of target catch). It also46

includes an underlying stochastic structure that partly explains the processes that the explana-47

tory variables fail to capture and simultaneously takes dependence structures into account. By48

using our bycatch model we can utilize observations taken over several years to describe global49

structures of bycatch. Our model-based approach is thereby able to provide good realistic by-50

catch predictions (with uncertainty) even in areas and time periods with few or no inspected51

trawl hauls.52

The prediction method introduced in this research is general and is applied to bycatch of juvenile53

cod in the Barents Sea shrimp �shery. A sorting grid, which sorts out the larger cod and reduces54

bycatch, was imposed in this �shery in 1992/1993 (ICES, 1994). Because of the grid, the55

bycatch is of no commercial value, and is discarded. There is a real time regulation of this56

�shery with respect to bycatch of juvenile cod, haddock (Melanogrammus aegle�nus), red�sh57

(Sebastes norvegicus and Sebastes mentella), Greenland halibut (Reinhardtius hippoglossoides)58

and undersized shrimp. If the Norwegian Directorate of Fisheries Monitoring and Surveillance59

Service (MSS) believes that an area has a higher bycatch ratio than allowed, that is e.g. 860

cod per 10 kilogram of shrimps (Fiskeridirektoratet, 2005), the area is temporarily closed. The61

survey data used in this research have previously been used by MSS to regulate the shrimp62

�shery (Breivik et al., 2016). See Little et al. (2015) for a summary of management methods63

with respect to bycatch in several other large �sheries.64

Bycatch was also predicted in Breivik et al. (2016) for regulation purposes. Our research di�ers65

mainly because we utilize huge amounts of �shery data, resulting in new computational di�-66

culties, and that the data distribution is changed from log-Gaussian to zero-in�ated negative67

binomial. Furthermore, the target catch is in this research a given covariate since it is included68

in both the �shery data and the survey data, while in Breivik et al. (2016) where future predic-69

tions was the focus, the shrimp catch was stochastic. To adapt to the information given in the70
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�shery data, the response variable for bycatch in Breivik et al. (2016) is changed from bycatch71

per nautical mile to total bycatch, and with duration trawled included as an o�set.72

The paper is organized as follows. Section 2 presents the data used for historical bycatch73

prediction. Section 3 provides a brief overview of historical bycatch prediction methods. Section74

4 presents the model and section 5 illustrates the inference and prediction procedure. Section75

6 presents the estimated model and predictions of historical bycatch. Section 7 validates the76

predictions and compares them with the ratio and e�ort method. Finally, section 8 and 9 present77

discussion and conclusions.78

2 Data79

Figure 1 shows the spatial distribution of the data. The left panel shows the spatial resolution80

of the �shery data (speci�c locations are not recorded), while the right panel shows the spatial81

locations of the survey data.82

There were reported in total 81,809 commercial shrimp catches during the period 1994 to 2006.83

Table 1 gives a short summary of possible covariates in the �shery data. Notice that the �shery84

data consists of daily catches, meaning that if a vessel has made several trawl hauls in the same85

small-scale spatial unit (see Figure 1) in a single day, this counts as one record.86

Data Description

Time Date of catch (day, month and year)
Location Which region the catch was taken (see small areas in Figure 1a)
Target catch Total shrimp catch by one boat in a given area and day (770kg, 13,750kg)
Duration Hours used to trawl by a boat in a given area and day (7 hours, 22.9 hours)
Number of trawls The number of trawls varies between (76%), two (23%) or three (1.7%)
Quarter of the year 1st (9.2%), 2nd (42%), 3rd (38%) and 4th (11%)

Table 1: Summary of �shery data, intervals in parentheses are 90% coverage intervals.

We used 7,363 observations of shrimp and bycatch of cod from 1994 to 2006 taken by the MSS87

(the survey data), and provided by the Institute of Marine Research (IMR) in Bergen, Norway,88

see Table 2 for a short summary of the survey data. There were 18.5% zero-observations of89

bycatch. The survey observations are collected for regulation purposes and the trawl hauls are90

conducted using the same equipment as in the commercial �shery. These observations may91
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Figure 1: a) Map of the Barents Sea with small green rectangles describing the spatial resolution

of the �shery data. The larger red areas are used when calculating the ratio and e�ort estimates.

b) Map of the Barents Sea with red dots illustrating the survey data.

Data Description

Target catch Shrimp catch varied between 2.4 kilogram and 17.7 tons (20, 3,190)
Bycatch cod The number of cod varied between 0 and 35,775 cod (0, 1,008)
Time Time of catch down to minutes scale
Location Catch location (single point) given in longitude and latitude
Open/Closed Describes if the location was open for commercial �shery or not (83% open)
Duration trawled The hours used to trawl (1.6 hours, 6 hours)
Number of trawls The number of trawls varies between one (74%), two (23%) or three (3.0%)
Temperature Bottom sea temperature (0.17, 9.3)
Depth Ocean depth at catch location (227, 410)
Quarter of the year 1st (21%), 2nd (35%), 3rd (20%) and 4th (23%)

Table 2: Summary of data collected by the MSS, intervals in parentheses are 90% coverage

intervals.

either have been taken on board vessels active in the commercial �shery (23%), or by vessels92

hired by the MSS (77%) for collecting a su�cient amount of observations at selected areas where93

commercial shrimp trawling occurs.94

In addition to the variables in Table 1 we also use total abundance estimates of 0-group cod95

(juvenile cod less than one year old) in the whole Barents Sea to predict the historical bycatch.96

These estimates can be found in Jakobsen and Ozhigin (2011, pages 565-567).97
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3 Methods to estimate historical bycatch98

This section gives a brief overview of methods to estimate historical bycatch. Our research99

focuses on the third method (the model based method).100

3.1 The ratio method101

The ratio method (Schea�er et al., 1996, page 204) has been widely used to estimate historical102

bycatch. The ratio method uses the reported bycatch ratio in the survey data to scale the103

commercial target catch (here shrimp) to achieve estimates of bycatch, and is de�ned as104

B̂ratio
A,t =

∑n
i=1 bi,A,t∑n
i=1 zi,A,t

ZA,t = RA,tZA,t. (1)

Here (zi,A,t,bi,A,t) are the ith observed target catch and bycatch in the survey data in area A and105

time interval t, ZA,t is the total commercial target catch in area A and time interval t, and RA,t106

is the observed bycatch ratio in area A and time interval t. The historical bycatch in several107

time intervals can then be estimated in the whole Barents Sea as
∑

A

∑
tRA,tZA,t. We let the108

areas, A, be the small green rectangles in Figure 1a and each time intervals, t, be quarters of109

years. The ratio method with these areas and time intervals is currently used as a standard for110

providing o�cial historical bycatch estimates in the Barents Sea shrimp �shery (Ajiad et al.,111

2007; Hylen and Jacobsen, 1987).112

Equation (1) assumes there exists survey data in each area and time interval where commercial113

catches occurred. This is not always ful�lled, and in such situations it is a common procedure114

to expand the area on which the ratio, RA,t, is calculated. In our experiments, we expand the115

area in the following order: First we use all observations in the larger red area containing the116

area of interest (Figure 1a) within the given time interval. If there are no observations in this117

larger area, we use all the observations in the Barents Sea within the given time interval. If118

there are no observations in the Barents Sea, we use all observations collected one time interval119

before and after. We also experimented with expanding the time interval before increasing the120

spatial areas, but this had little e�ect on the results. Our �rst expansion step is similar to the121
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one used in Ajiad et al. (2007), but the next expansion steps were not documented in detail122

in Ajiad et al. (2007). Furthermore, as done in Ajiad et al. (2007), only observations taken at123

locations open for commercial �shery is used to calculate the bycatch ratio (1).124

3.2 The e�ort method125

Another much used method for estimating historical bycatch is the e�ort method (e.g. Walmsley126

et al., 2007). The e�ort method uses reported trawl e�ort in the commercial �shery to up-scale127

bycatch estimates from the survey data, and is de�ned as128

B̂e�ort
A,t =

∑n
i=1 bi,A,t∑n

i=1 timei,A,t
TA,t. (2)

Here timei,A,t is towing time used when bi,A,t was observed, and TA,t is the total commercial129

trawl time within area A and time interval t. Note that this method is (at this time) not used130

for estimating historical bycatch in the Barents Sea shrimp �shery (Ajiad et al., 2007; Hylen131

and Jacobsen, 1987), but we include it in this research since it is a natural alternative to the132

ratio method in this �shery.133

The e�ort method (2) also assumes there exists survey data in each area and time interval where134

commercial catches occurred. When this is not ful�lled, we increase the area, and potentially135

time, as described for the ratio method. Just as for the ratio method (1), only observations136

taken at locations open for commercial �shery is used to calculate the e�ort estimate (2).137

3.3 A model-based procedure138

A model-based procedure constructs a model for the observed bycatch and uses the model to139

estimate the unobserved historical bycatch. Let BC and BS be the bycatch from the �shery140

data and the survey data, respectively. We know BS and want to estimate BC. Let further141

Z = (ZC,ZS) be the target catch from both �shery data and the survey data. By using a142

probabilistic model, M , we can focus on the distribution143
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P (BC|BS,Z,M), (3)

and use this distribution to construct predictions of historical bycatch with uncertainty.144

As opposed to the two previous methods, the model based method (3) does not assume there145

exist survey data in each area and time interval where commercial catches occur. However,146

for the model to give realistic predictions, it is crucial that it is able to utilize other sources147

of information such as relevant explanatory variables and dependence structures. Unlike the148

ratio (1) and e�ort method (2), the model-based procedure (3) is able to utilize survey data at149

locations closed for commercial �shery in order to predict historical bycatch.150

4 The model151

In this section we introduce our model for historical bycatch (3). The model is a modi�ed version152

of that introduced in Breivik et al. (2016). Let B(s,t) be the number of juvenile cod caught at153

time t and location s. We model B(s,t) as zero-in�ated negative binomial distributed, that is154

with density155

π(B(s,t))) = p(µ(s,t))IB(s,t)=0 + [1− p(µ(s,t))]NB(B(s,t);µ(s,t), ς). (4)

Here p(µ) represent an additional probability for zero, ID is an indicator function which is equal156

to one if D is true and zero otherwise, and NB(·;µ,ς) is the negative binomial density with157

expectation exp(µ) and dispersion parameter ς. The log-expectation, µ(s,t), of the negative158

binomial distribution in (4) is modeled as:159

µ(s,t) = X(s,t)Tβββ + α(s) + υ(t) + γ(s,t), (5)
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where X(s,t) is a vector of covariates and βββ the vector of corresponding regression coe�cients.160

Three random e�ect terms are included in the expectation, one spatial, α(s), one temporal, υ(t),161

and one spatio-temporal, γ(s,t). These are respectively intended to capture that the bycatch162

amounts may depend on local features, that bycatch changes between years and that observations163

close to each other in both space and time are highly correlated. The random e�ects are modeled164

as Gaussian random �elds.165

The additional zero-probability, p(µ) , in (4) is modeled as166

p(µ(s,t)) = 1−
( exp(µ(s,t))

1 + exp(µ(s,t))

)a
, (6)

where a > 0 and adjusts how the zero-probability changes with respect to (5).167

4.1 Covariates168

The covariates that have been considered are given in Table 3. Notice that shrimp catch is169

in this setting a given covariate, and di�ers from the model in Breivik et al. (2016) were the170

shrimp catch was considered stochastic. In Breivik et al. (2016) the time of the day was also171

found important for predicting bycatch, but this variable is not given in the �shery data and is172

therefore not used in this research. We use estimated abundance of 0-group cod in the whole173

Barents Sea as a covariate. Breivik et al. (2016) tried to utilize the spatial locations of the 0-174

group estimates as a spatial predictor, but did not �nd support in the data for such a procedure.175

Note that the number of trawls used at the same time is included as a categorical variable and176

not as an o�set, this is done since the shape of the trawl may vary with the number of trawls177

used at the same time.178

We use a Fourier series (Lay, 2006, page 456) for the seasonal e�ect. The Fourier series is given179

by180

f(t′) =

r∑
i=1

(ci sin(it′) + di cos(it′)), (7)
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Covariates Type Description

0-group Continuous Logarithm of aggregated 0-group abundance of cod
Temperature (standardized) Continuous Bottom sea temperature
Depth (standardized) Continuous Ocean depth at catch location
Target catch Continuous Logarithm of hourly shrimp catch
Number of trawls Categorical The number of trawls used at the same time
Seasonal e�ect Continuous Fourier series (7)
Time (scaled to years) Continuous Linear covariate of time
Duration Continuous Duration of trawl (used as o�set)

Table 3: Covariates considered.

were t′ ∈ [0,2π] is a linear function of time such that t′ = 0 for 1st January and t′ = 2π for 31st181

December. The parameters ci and di in (7) correspond to regression coe�cients in (5), and r is182

the number of harmonics in the Fourier series. As in Breivik et al. (2016), we allow the seasonal183

e�ect to be a function of latitude to accommodate for di�erent cod growth ratios which depends184

on temperature (see Breivik et al. (2016) for details).185

4.2 Correlation structure186

We assume as in Breivik et al. (2016) that the spatially correlated Gaussian �eld in (5), α(s),187

follows a stationary Matern covariance structure:188

Cov(α(s1),α(s2)) =
σ2α

2ν−1Γ(ν)
(κα||s1 − s2||)νKν(κα||s1 − s2||), (8)

where σ2α is the marginal variance, || · || is the Euclidean distance measure in kilometers, ν is a189

smoothing parameter, κα is a spatial scale parameter and Kν(·) is the modi�ed Bessel function190

of the second kind. As in Breivik et al. (2016) we �x ν = 1 since this value is typically poorly191

identi�able (Blangiardo and Cameletti, 2015, page 194).192

We assume as in Breivik et al. (2016) the time-dependent zero-mean Gaussian random �eld, υ(t),193

to be constant within years while independent between years, with variance σ2υ. We further de�ne194

the �rst month of the year to be September when we refer to the yearly e�ect. This is reasonable195

because the 0-group enters a demersal life stage after September, and thereby starts living on the196

seabed where shrimp trawling occurs (Jakobsen and Ozhigin, 2011, page 230). Note that this197
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temporal structure comes in addition to possible linear time trend and seasonal e�ects.198

The spatio-temporal interaction term, γ(s,t), is modeled with mean zero and a separable sta-199

tionary exponential covariance structure given by200

Cov
(
γ(s1,t1), γ(s2,t2)

)
= σ2γ exp

(
− ||s1 − s2||

θs
− |t1 − t2|

θt

)
. (9)

Here σ2γ is the marginal variance, || · || is the Euclidean distance measure in kilometers, |t1 − t1|201

is the time di�erence in days and θs and θt are range parameters in space and time.202

5 Inference and prediction procedure203

This section elaborates the inference and prediction procedure, and is divided into two subsec-204

tion. The �rst subsection elaborates the inference, while the second subsection elaborates the205

prediction procedure. Note that only survey data are used for inference, and the �shery data206

are used combined with the survey data for prediction.207

5.1 Inference208

Only the survey data are used for inference on models and model parameters. The Bayesian209

inference is performed with the integrated nested Laplace approximation (INLA) technique (Rue210

et al., 2009; Martins et al., 2013) with use of the R-package R-INLA (http://www.r-inla.org).211

The INLA technique is an e�cient procedure for fast approximation of the parameters and latent212

�elds in the model. Non-informative priors are used, see appendix A.1, and we refer to Breivik213

et al. (2016) for more details on the inference procedure.214

Which correlation structures to include is �rst selected with use of all the relevant covariates.215

The covariates are then selected with a backwards elimination procedure given the selected216

correlation structure. This ordering for selecting parameters is the same as in Breivik et al.217

(2016); Zuur (2009, page 121).218

We have used the Bayes factor (Gelfand, 1996) for selection of correlation structures and covari-219

ates. In Breivik et al. (2016) three other validation criteria were used to evaluate the covariance220
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structure in the model for bycatch of cod. Then all the model selection criteria agreed and221

we believe it is satisfactory to only use the Bayes factor in this research. The Bayes factor is222

the ratio of the marginal likelihoods (ML) given by ML = P (BS|M). See Rue et al. (2009) on223

how the ML is calculated within R-INLA. Our model selection procedure has one exception.224

The 0-group regression parameter is highly confounded with the yearly e�ect by construction.225

Because of this the marginal likelihood is not adequate for selection of the 0-group when the226

yearly e�ect is included. Just as in Breivik et al. (2016), if the yearly e�ect is included, the227

0-group is included if it has predictive power.228

5.2 Historical bycatch prediction229

The historical bycatch is predicted by �rst �tting the selected model from section 5.1 with the230

survey data using R-INLA, and then, based on the given estimated model, using a prediction231

procedure which samples from the posterior distribution. This subsection elaborates on the232

historical bycatch prediction.233

Let ϕϕϕ = {ϕ(s,t)} be the vector of latent �elds where234

ϕ(s,t) = α(s) + ν(t) + γ(s,t) (10)

if all �elds are included in the model (5), while some of the terms can be missing in general. Let235

also ϕϕϕC and ϕϕϕS be the subvectors of ϕϕϕ corresponding to the commercial bycatch and surveillance236

bycatch. The latent structure is of the form237

ϕϕϕC
ϕϕϕS

 ∼ N(000,ΣΣΣ) = N


000

000

 ,

ΣΣΣCC ΣΣΣCS

ΣΣΣSC ΣΣΣSS


 , (11)

where ΣΣΣ represents the selected covariance structure with sub-elements ΣΣΣCC ,ΣΣΣCS ,ΣΣΣSC and238

ΣΣΣSS de�ning respectively the correlation between the commercial bycatch, the cross correla-239

tion between the commercial bycatch and the surveillance bycatch and the correlation between240

the surveillance bycatch. All these terms are derived from the set of latent �elds that are241
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included in the model. Note that we do not know the exact locations of the �shery data,242

L = {(s,t) : (s,t) corresponds to �shery data locations}, needed in the covariance structure. To243

account for the uncertainty in L, we assume for simplicity that the �shery data are independent244

and uniformly distributed on the areas reported (the green rectangles in Figure 1a).245

The distribution of the commercial bycatch given the survey data is given by246

π(BC|BS) =

∫
π(BC|βββ,ϕϕϕC,θθθ)π(ϕϕϕC|θθθ,ϕϕϕS,L)π(θθθ,βββ,ϕϕϕS|BS)π(L)dLdθθθdβββdϕϕϕSdϕϕϕC. (12)

Samples from this distribution can be obtained by the following algorithm:247

1. Sample N1 sets of catch locations L.248

2. Sample N1 sets of hyperparameters, regression coe�cients and latent structures, ϕϕϕS , from249

the posterior distribution π(θθθ,βββ,ϕϕϕS |BS) using R-INLA.250

3. Use the updating equations:251

E[ϕϕϕC|ϕϕϕS] = ΣΣΣCSΣΣΣ−1SSϕϕϕS

Var[ϕϕϕC|ϕϕϕS] = ΣΣΣCC −ΣΣΣCSΣΣΣ−1SSΣΣΣSC

(13)

to sample N2 realizations of ϕϕϕC given ϕϕϕS for each set of (θθθ,βββ,L).252

4. For each sampled set of (βββ,ϕϕϕC, θθθ) sample one value from π(BC|βββ,ϕϕϕC,θθθ).253

The algorithm above samples N1N2 realizations of historical bycatch in the commercial �shery.254

We selected N1 = 100 and N2 = 50 for the prediction of historical bycatch.255

In Breivik et al. (2016) a prediction procedure implemented in R-INLA was used. Such a256

prediction procedure could also have been used in this research, but then the full precision257

matrix for the spatio-temporal Gaussian random �eld is required. We avoided working with this258

large dense matrix by constructing a prediction procedure outside of R-INLA which only uses259

sub-matrices of the full covariance matrix ΣΣΣ.260

13



6 Prediction of historical bycatch261

The object of this research is to predict the historical bycatch, and this result section is divided262

into two subsections. The �rst subsection brie�y shows the selected covariates and correlation263

structures, and the second subsection shows the historical bycatch predictions of cod in the Bar-264

ents Sea shrimp �shery. See appendix A.2 for details regarding the computational features.265

6.1 Covariates and correlation266

Table 4 lists covariates that were selected for prediction of bycatch. By inspecting the credibility267

intervals, we found a clear e�ect of the 0-group. Furthermore, the inclusion of the 0-group halved268

the variance of the year e�ect, leading to better predictive power, and is therefore included in the269

model. As in Breivik et al. (2016), compared to using a single trawl, double trawl was shown to270

increase bycatch while no e�ect was found for triple trawl. That triple trawl does not a�ect the271

bycatch is intuitively surprising, and may be because only 3% of the survey data are collected272

with use of triple trawl (see Table 2). Thereby may we not have enough observations to estimate273

a possible triple trawl e�ect.274

All three random terms in (5) were selected. This selection of random structure is the same as275

in Breivik et al. (2016). See Table 4 for a summary of the estimated hyperparameters.276

Covariates (eq. 5) Hyperparametes

Parameter Mean 95% C.I. Parameter Mean 95% C.I.

Constant -0.89 (-3.7,1.1) ς (eq. 4) 2.09 (1.95,2.23)
depth (standardized) -0.29 (-0.34,-0.25) a (eq. 6) 1.70 (1.53,1.88)
0-group 0.49 (0.21,0.76) σ2α (eq. 8) 5.9 (2.2,14.8)
double trawl 0.43 (0.29,0.58) κα (eq. 8) 0.0050 (0.0027,0.0078)
Shrimp catch (log scale) 0.36 (0.32,0.40) σ2υ 0.36 (0.11,0.87)

σ2γ (eq. 9) 1.9 (1.75,2.08)

θt (eq. 9) 38 (mode) unknown
θs (eq. 9) 156 (mode) unknown

Table 4: Estimates and 95% credibility intervals of the signi�cant regression coe�cients and the

hyperparameters.

Figure 2 illustrates the spatial, seasonal and yearly e�ects for bycatch of cod. By comparing277

the spatial contribution, α(s) in equation (5), from Figure 2a with the juvenile cod migration278

pattern in Jakobsen and Ozhigin (2011, page 227) we see a clear overlap. The seasonal e�ect,279
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Figure 2: a) The spatial e�ect. b) The seasonal e�ect at 69 degrees north (red line) and 80

degrees north (black line) with 95% credibility intervals. c) The yearly e�ects added the zero-

group e�ect with 95% credibility intervals, note that each interval illustrates the e�ect from 1st

September in the denoted year to 31st August in the next year.

Figure 2b, is included with one harmonic in the Fourier series (7) and depends on latitude. Just280

as in Breivik et al. (2016), the seasonal e�ect increases later in autumn in the north compared281

to in the south, see Figure 2b.282

6.2 Prediction283

This subsection presents the predicted number of juvenile cod killed as bycatch each year in284

the Barents Sea shrimp �shery. Our predictions are reported with posterior means and 90%285

prediction intervals. The predicted yearly historical bycatch (with uncertainty) is shown in286

Figure 3. The predicted yearly historical bycatch with quarterly predictions are further given287

in Table 5. There seems to be variation between years, which is reasonable since the �shing288

intensity and the cod year class strength changes from year to year.289

In addition, Figure 3 includes historical bycatch estimates with the ratio method (red crosses)290

and e�ort method (green triangles). We see that our method is often in agreement with the291

ratio and e�ort methods, but clearly di�ered from the ratio method in year 1998 and 2004. A292

main reason why they di�er is because of the sensitivity of the ratio method to small shrimp293

catches. In the fourth quarter of year 2004 there were �ve observations in the survey data294

which lead to a bycatch ratio of 38.9 in a speci�c area north in the Barents Sea. In this area295

the commercial �shery was 128 times more e�cient than the MSS to catch shrimp per hour of296
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Figure 3: Posterior means of yearly historical bycatch with 90% prediction intervals. The red

crosses are the ratio estimates (1) and the green triangles are the e�ort estimates (2).

trawl, which implies that the ratio estimate was not representative for the commercial �shery.297

Removing these �ve observations resulted in a ratio method estimate of 3.9 million instead of298

30.6 million cod in year 2004, which is much more in agreement with our model-based approach.299

The di�erence in year 1998 can be explained likewise, and is omitted for brevity. The e�ort300

method (2) is not sensitive to small shrimp catches since it neglects the target catch, but is301

however sensitive to short trawl hauls.302

Note that depth is included as a covariate in the prediction procedure, while not given in the303

�shery data (see Table 1). The depth at the commercial catch location is in this research304

extrapolated to be the same as the depth at the closest surveillance observation in space for305

prediction. The survey data are concentrated where commercial shrimp trawling occurs, and we306

therefore assume this approximation is su�cient.307

7 Validation308

In this section we validate the models ability to produce reliable bycatch predictions with uncer-309

tainty. This validation section is divided into three subsections. The �rst subsection validates310

predictions and uncertainty estimates of aggregated bycatch. The second subsection validates311
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Year Total 1st quarter 2nd quarter 3rd quarter 4th quarter Shrimp catch

1994 5.0 (2.5,9.2) 2.5 (0.8,5.7) 0.7 (0.3,1.3) 0.9 (0.2,2.5) 0.9 (0.3,1.9) 18900 tons

1995 8.3 (4.9,14.1) 2.9 (1.3,6.1) 2.5 (1.6,3.7) 1.7 (0.4,4.8) 1.2 (0.2,3.4) 15600 tons

1996 19.4 (9.2,39.0) 6.4 (1.0,19.3) 8.0 (3.5,17.1) 4.2 (2.2,7.6) 0.7 (0.2,1.7) 20500 tons

1997 11.9 (5.9,23.1) 2.6 (0.7,6.6) 4.8 (2.2,10.4) 3.5 (1.0,9.1) 1.0 (0.3,2.6) 25600 tons

1998 29.3 (17.0,48.3) 17.7 (8.4,32.9) 7.6 (4.0,13.0) 2.6 (0.6,6.8) 1.5 (0.3,4.0) 41200 tons

1999 14.3 (4.2,34.5) 7.5 (1.3,21.7) 4.4 (1.0,12.0) 2.0 (0.4,5.4) 0.3 (0.1,0.5) 48400 tons

2000 3.9 (1.9,7.4) 1.9 (0.5,5.0) 0.6 (0.3,1.0) 0.8 (0.3,2.0) 0.5 (0.2,1.3) 52000 tons

2001 8.3 (5.6,12.2) 2.8 (1.6,4.8) 2.7 (1.5,4.7) 1.2 (0.4,2.8) 1.5 (0.9,2.5) 42200 tons

2002 4.3 (2.6,7.0) 2.3 (0.8,4.8) 1.1 (0.7,1.7) 0.2 (0.1,0.4) 0.7 (0.4,1.2) 49500 tons

2003 8.8 (6.9,11.2) 0.7 (0.3,1.2) 5.0 (3.6,6.9) 2.8 (2.0,4.0) 0.3 (0.1,0.7) 33200 tons

2004 4.4 (3.3,5.8) 1.4 (0.8,2.2) 1.8 (1.2,2.5) 0.7 (0.4,1.1) 0.5 (0.3,0.9) 35000 tons

2005 5.9 (4.0,8.8) 1.4 (0.8,2.5) 2.2 (1.3,3.6) 1.8 (0.9,3.2) 0.5 (0.2,1.2) 34000 tons

2006 4.9 (2.7,8.4) 1.5 (0.4,4.0) 2.5 (1.3,4.4) 0.3 (0.2,0.6) 0.5 (0.1,1.5) 27900 tons

Table 5: Yearly and quarterly historical bycatch predictions of cod with 90% prediction intervals

(in millions), and yearly aggregated Norwegian commercial shrimp catch.

model assumptions. The third section investigates prediction bias and power using a simulation312

study. Due to the computational cost of integrating out the uncertainty in the hyperparameters,313

validation is performed with empirical Bayes, i.e. using posterior mode of hyperparameters. We314

have observed that the bycatch predictions are typically little a�ected by using the posterior315

mode of the hyperparameters, which indicates that this procedure does not strongly in�uence316

the validation.317

7.1 Validation of predictions318

This subsection validates the predictions, and shows that the model is able to give realistic319

predictions and uncertainty measures. The �shery and survey data are typically clustered in320

space and time. Therefore, to make the validation representative for the prediction purpose, the321

survey data are divided into clustered training and test sets. The clustering is accomplished by322

�rst dividing the survey data into �shing trips. A �shing trip is here de�ned as the largest set323

of observations taken by one distinct boat such that every time gap between two observations324

next to each other in chronological order is less than 3 days. The clustered test sets are then325

constructed with the same reasoning as in Hastie et al. (2009, page 241) by uniformly dividing326

the �shing trips into ten groups with equally many �shing trips within each group. Each group327
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is then used as a test set and the others as the training set. This procedure is repeated 100328

times leading to in total 1000 test and training sets. Note that we only use the survey data for329

validation of predictions since we know the true observed bycatch in the survey data, and can330

thereby compare the predictions with the truth.331

Figure 4 shows predicted aggregated bycatch in the test sets versus the true observation with332

Bayesian p-values (Gelman et al., 2003, page 162). We see from Figure 4a that our model has333

predictive power, and by inspection of the Bayesian p-values in Figure 4b we observe that the334

model is able to give reasonable uncertainty estimates (since the p-values are roughly uniformly335

distributed). The relatively few small Bayesian p-values in Figure 4b indicates that the upper336

bound of the prediction intervals of historical bycatch in Figure 3 and in Table 5 might be slightly337

overestimated. Figure 7 illustrates the Bayesian p-values if we neglect parts of the random338

e�ects in the model (5), and we observe that the random e�ects are crucial for estimating the339

uncertainty, properly.340

Coverage of bycatch predictions in the test sets in three common prediction interval levels are341

given in Table 6. Just as in Figure 4b, we observe that our model typically overestimate the342

upper bound of the prediction intervals.343
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Figure 4: a) Plot of predicted bycatch versus observed bycatch per hour trawl in the test sets,

with color code illustrating the two sided p-values. b) Histogram of the Bayesian p-values. The

horizontal line show the expected frequency of p-values if the model was correct.

The accuracy of the prediction procedures is investigated with the mean absolute relative error344
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P.I. level Inside P.I. Under P.I. over P.I.

90% 92.4% 6.2% 1.3%
95% 95.6% 4.0% 0.4%
99% 98.4% 1.2% 0.2%

Table 6: Coverage of our model in three common prediction interval levels.

of aggregated bycatch in the test sets. The relative error is de�ned as345

relative error =
prediction− true value

true value
. (14)

With the ratio method, e�ort method and our model based approach the mean absolute relative346

error is equal to 0.51, 0.34 and 0.32 respectively. This indicates that our prediction procedure347

is more accurate than the ratio method which is currently in use for providing o�cial historical348

bycatch estimates in the Barents Sea shrimp �shery.349

The two range parameters in the spatio-temporal interaction (9) are estimated with all the350

survey data (that is both the training and test set) when predicting bycatch in the test sets.351

This was done due to the computational cost of estimating these parameters. We have observed352

that the posterior mode of the range parameters in the spatio-temporal interaction is approxi-353

mately unchanged when estimated with several di�erent training sets, which indicates that this354

procedure does not in�uence the validation of prediction.355

7.2 Validation of model assumptions356

Model assumptions are investigated using Pearson type residuals (McCullagh and Nelder, 1989,357

page 37) as recommended in Zuur and Ieno (2016). The residuals are calculated by sequen-358

tially leaving out every tenth surveillance observations and predicting them. Plots of Pearson359

residuals versus time and space coordinates and versus explanatory variables are investigated360

for correlation structures and for evidence of non-linearity in (5), and no clear violations are361

observed. All these plots are given in the online supplementary information. We also include362

Pearson residuals plotted against the order of each continuous variable, these are included to363

make clustered Pearson residuals easier to validate visually. As an example, Figure 5 shows364
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Figure 5: a) Pearson residuals versus time. b) Pearson residuals in chronological order.

Pearson residuals plotted against time. Variogram and autocorrelation plots are included in the365

online supplementary information, and give no indication of violations.366

7.3 Validation through a simulation study367

In this subsection we investigate the bias of historical bycatch predictions when assuming our368

model describes the underlying stochastic structure of the bycatch observations. The ratio and369

e�ort method are observed to be typically biased, while no such structure is observed for the370

model-based procedure. The validation is conducted by �rst simulating bycatch conditioned on371

the observed shrimp catch (only 10% of the �shery data from each year, chosen at random, is372

used due to computation time). See appendix A.3 for a description of the joint simulation of373

BC and BS. The bias is then investigated through the distribution of the relative error (14) of374

the aggregated simulated commercial bycatch.375

A boxplot summary of 100 simulated relative errors of aggregated yearly bycatch in the com-376

mercial �shery is shown in Figure 6. We see that there is a tendency to overestimate bycatch377

when using the ratio method (Figure 6a), and a tendency to underestimate when using the378

e�ort method (Figure 6b). This bias can be explained by that the commercial �shery focuses on379

areas with high density of shrimps, while survey data are relatively random located were shrimp380

trawling occurs. Our research indicates (Table 4) that a doubling of shrimp catch (given un-381

changed trawling e�ort) imply a bycatch increase of approximately 28%, while the ratio (1) and382

e�ort (2) methods on the other hand assumes 100% and 0% increase respectively. Given that383
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the commercial �shery catches shrimps more e�ectively than the MSS, this indicates that the384

ratio method typically overestimates while the e�ort method typically underestimates historical385

bycatch.386
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Figure 6: Illustration of relative error with the ratio method (a), with the e�ort method (b) and

with our model based approach (c). Note that the y-axis is on logarithmic scale.

Figure 6c illustrates the relative error when using our model based approach. Given that our387

model represents the true underlying stochastic structure, we observe that it gives reasonable388

unbiased predictions and thereby has predictive power.389

�When simulating data from the model, the simulated data should be comparable to the original390

data. If not, the model needs improvement� (Zuur and Ieno, 2016). By investigating the391

simulations with the true observed bycatch, with respect to number of zeros, maximum value,392

total bycatch, median bycatch and visual inspection, we observed that they are comparable (see393

online supplementary information for details).394

8 Discussion395

The object of this research has been to predict historical bycatch in commercial �shery by using a396

Bayesian spatio-temporal latent Gaussian model. This discussion is divided in three parts. First397

we discuss the importance of random e�ects in our model. Secondly we discuss the observation398

model used. Thirdly we compare the historical bycatch with abundance estimates of cod.399
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8.1 The importance of random e�ects400

Predictions of bycatch using model-based procedures has been conducted earlier. Murray (2005)401

used a generalized additive model to predict the total bycatch of loggerhead turtles in the402

Atlantic Sea scallop dredge �shery without random e�ects. Pennino et al. (2014) investigated403

a spatio-temporal model for bycatch without the spatio-temporal interaction. Figure 7 shows404

the estimated p-value of aggregated bycatch in the test sets if we use no random e�ect or405

a spatio-temporal structure without spatio-temporal interaction respectively. By comparing406

Figure 7 with Figure 4b we see that the model including all selected random e�ects much better407

estimates the uncertainty since the Bayesian p-values are more uniformly distributed.408

Cosandey-Godin et al. (2014); Ward et al. (2015) investigated spatio-temporal models for by-409

catch with a separable spatio-temporal interaction function that discretizes time and uses an410

autocorrelated structure of order one in time and a Matern correlation structure in space. Such411

a discretized spatio-temporal structure was also considered with the survey data in Breivik412

et al. (2016), but the continuous correlation function (9) was favored and therefore used in this413

research. A problem encountered with the spatio-temporal correlation function in Cosandey-414

Godin et al. (2014) is that our data are unstructured and a coarse grid in both space and time415

is needed for the model to be computationally feasible due to the large imposed grid structure416

in space and time (Cameletti et al., 2013). We have predicted the historical bycatch in several417

years with use of the spatio-temporal interaction function in Cosandey-Godin et al. (2014) (with418

time discretized in 30 days, and with spatial locations more then 80 km from each other in419

the spatial grid) and the predictions were similar to ours most of the years (not shown). Some420

years however were predicted di�erent, but by using �ner temporal discretization (20 days), the421

predictions were more similar. This is not surprising since a relatively �ne temporal and spatial422

discretization results in that the spatio-temporal interaction structure in Cosandey-Godin et al.423

(2014) is approximately similar to the one used in this research (Breivik et al., 2016).424

8.2 Survey data compared with �shery data425

This research utilizes two data sources, survey data and �shery data, and it is assumed that the426

survey data are representative for the �shery data for predicting bycatch given shrimp catch.427

In �sheries research it is commonly assumed that expected catch is expressed as a product of428
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Figure 7: Bayesian p-values of hourly bycatch in the test sets without using random e�ects (a)

and with spatial and temporal random e�ects but without the spatio-temporal interaction (b).

The horizontal line show the expected frequency of p-values if the model was correct.

the catchability and the local density of the species (Thorson et al., 2016). The survey data429

are collected using the same type of equipment as used in the commercial �shery. Thereby, we430

argue that the assumption of representative catchability is reasonable. The density of bycatch is431

indi�erent of the purpose of the trawl. However, some of the survey observations are taken due432

to expected high bycatch ratios of a commercial �sh species or of undersized shrimps, e.g. due433

to seasonal e�ects or information received by the �shery (MSS, pers. comm.). The commercial434

�shery may also behave di�erently when an observer is on board, e.g. to avoid high bycatch435

ratios for saving time and fuel needed to leave a closed area. The presence of observations taken436

due to information not included in the analysis (e.g. the �sheries knowledge about the spatio-437

temporal interaction e�ect for cod) may introduce a bias in the predictions. This possible bias is438

assumed to be small, and is neglected in our analysis. Note that the MSS regulates with respect439

to several other �sh species, as described in section 1. These species have di�erent juvenile440

migration patterns compared to cod (Jakobsen and Ozhigin, 2011), which is an argument for441

why such a possible bias introduced should be small. We want to emphasis that the procedure442

used in this research should be generalized to other �sheries with caution if there are reasons to443

question the assumption of representative survey data.444

The exact spatial locations of the �shery data are not given, which di�ers from the survey data.445
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To accommodate for the uncertainty in location, the commercial catch locations are sampled446

uniformly within the areas reported (see green rectangles in Figure 1). It is reasonable that the447

catch locations are clustered in both time and space, which typically increases the uncertainty448

of the predictions through the spatio-temporal interaction. However, we assume that this e�ect449

is small and neglect it in our analysis. Note further that the commercial catches are reported as450

daily catches, meaning that two separate catches are treated as one if they are caught the same451

day and in the same area. This di�ers from the survey data, where each catch is distinctly given.452

That the commercial bycatch is modeled with daily catches may introduce an overestimation of453

the uncertainty.454

8.3 Observation models455

Breivik et al. (2016) models bycatch with use of a log-Gaussian observation model. However,456

O'hara and Kotze (2010); Warton et al. (2016) make a strong case that counting data should457

be modeled with a counting distribution rather than a log-Gaussian. After a comment from a458

reviewer, a zero-in�ated negative binomial observation model was therefore investigated in this459

research. By comparing the predictions of aggregated bycatch in the test sets in section 7.1, the460

zero-in�ated negative binomial model was favored due to a clear observed underestimation by461

the log-Gaussian model. The removal of this underestimation is a main reason for modifying462

the model in Breivik et al. (2016) to a zero-altered negative binomial model. Since we use the463

user-friendly R-package R-INLA, such a change of data distribution is easily achieved by only464

changing a few lines in the R-code. However, the non-Gaussian data distribution results in a465

more complex and time consuming inference of the latent structure, especially when utilizing466

the uncertainty in the hyperparameters (Rue et al., 2009).467

8.4 The impact of bycatch on the cod population468

This subsection compares estimated abundance of one year old cod with the predicted historical469

bycatch. Figure 8 shows the total historical bycatch of cod in each year as a percentage of470

the estimated aggregated abundance of one year old cod obtained from (ICES, 2015). This471

�gure might give a rough indication on how much bycatch is caught compared with aggregated472

abundance estimated in the beginning of the year. Note, however, that the uncertainty in the473
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Figure 8: Historical bycatch as percentage of the estimated aggregated abundance of one year

old cod (ICES, 2015) in the Barents Sea. The intervals represent 90% prediction intervals when

neglecting the uncertainty in the abundance estimates.

abundance estimates are not given in ICES (2015), and therefore should the prediction intervals474

given in Figure 8 be wider (these are only based on uncertainty in the bycatch predictions).475

Note further that there is a regulation regime in the Barents Sea which closes areas when high476

bycatch ratios are observed, and without the regulation regime the historical predictions could477

have been larger. The relative low total bycatch may hence illustrate the success of the current478

regulation regime.479

9 Conclusions and further work480

We conclude that the model-based procedure produces reliable predictions (including uncertainty481

measures) of historical cod bycatch in the Barents Sea shrimp �shery, see section 7.1. We further482

make a strong case that the Bayesian spatio-temporal model based method outperforms both483

the ratio and e�ort methods for prediction of historical bycatch. This argument is based on the484

following observations elaborated in the article:485

� The ratio and e�ort methods are sensitive to small shrimp catches and short trawl hauls486

respectively, see section 6.2.487

� The model based method produces reliable predictions with uncertainty estimates, see488

section 7.1.489

� The shrimp catch is positively correlated with bycatch (Table 4), indicating that both the490
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ratio and e�ort methods are biased, see section 7.3.491

Further work is desirable on prediction of historical bycatch for other species and in other492

�sheries to investigate the generality of the model based approach. We strongly believe similar493

spatio-temporal models are useful for bycatch predictions of other species and in other �sheries.494

The R-code used for predicting bycatch is available upon request.495
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Appendix502

A.1 Priors503

The priors for the hyperparameters used in this research are given in Table A.1. These are504

constructed to be relatively non-informative. The gamma distribution used has the parametriza-505

tion:506

π(x|α,β) =
βα

Γ(α)
τα−1 exp(−βx). (A.1)

R-INLA by default uses an improper prior for the intercept regression coe�cient and aN(0,1000)507

distribution for the other regression coe�cients.508
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Parameter Prior Parameter Prior

log(σ2α) N(0,10) 1/σ2ν gamma(1,0.00005)
log(κ) N(0,10) 1/σ2γ gamma(1,0.00005)

log(ς) N(1,1) θt and θs ∝ 1
log(a) N(2,1)

Table A.1: Prior distributions.

A.2 Computational features509

The �rst step of our historical bycatch prediction procedure is to estimate the parameters in510

the model given the survey data. This took approximately 1.4 hours on an Intel Core i5-2500511

CPU 3.30GHz × 4 processor (with good starting values of the Newton method used to �nd512

posterior mode of the hyperparameters within R-INLA and after the posterior mode of the range513

parameters in the spatio-temporal interaction was found). The second part of the predicting514

procedure of historical bycatch is done on a cluster of computers. Notice the parallel structure515

caused by the independent simulation of catches. We used 20 cores each with 32 gigabyte516

memory and 2.20GHz. This second part took 1.5 hour to 5 hours for each year, depending on517

the number of daily catches.518

A.3 Joint simulation of BC and BS519

This section elaborates the joint simulation procedure for commercial bycatch and bycatch in520

survey data. The simulation is done with the following algorithm:521

1. Find the posterior mode of the hyperparameters, θ̂̂θ̂θ, given BS.522

2. Sample βββ∗ and ααα∗ = {α∗(s)} from π(βββ,ααα|BS, θ̂̂θ̂θ).523

3. Sample B∗
C
and B∗

S
from π(BC,BS|θ̂̂θ̂θ,βββ∗,ααα∗).524

Notice that we use the full posterior distribution of the regression coe�cients and the spatial525

e�ect while we only use the posterior mode of the hyperparameters.526
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