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Abstract14

In the Barents Sea and adjacent water, fishing grounds are closed for shrimp15

fishing by the Norwegian Directorate of Fisheries Monitoring and Surveillance Ser-16

vice (MSS) if the expected number of juvenile fish caught are predicted to exceed17

a certain limit per kilogram shrimp (Pandalus borealis). Today, a simple ratio es-18

timator, which do not fully utilize all data available, is in use. In this research we19

construct a Bayesian hierarchical spatio-temporal model for improved prediction of20

the bycatch ratio in the Barents Sea shrimp fishery. More predictable bycatch will21

be an advantage for the MSS due to more correct decisions and better resource al-22

location, and for the fishermen due to more predictable fishing grounds. The model23

assumes that the occurrence of shrimp and juvenile cod can be modeled by linked24

regression models containing several covariates (including 0-group abundance esti-25

mates) and random effects modeled as Gaussian fields. Integrated Nested Laplace26

Approximations (INLA) is applied for fast calculation. The method is applied to27

prediction of the bycatch ratio for Atlantic cod (Gadus morhua).28

Introduction29

Trawling for shrimps in the Barents Sea takes place at the seabed, mostly at around30

200-400 meters depths where the shrimp concentration is highest (Jakobsen and Ozhigin,31

2011, page 172). To limit the bycatch, and thereby ensure a sustainable ecosystem and32

fishery in the Barents Sea, rules are made on the amount of bycatch that is allowed.33

To reduce bycatch, sorting grids were imposed in 1992/1993 (ICES, 1994). A sorting34

grid is a device on the trawl that sorts out the fish bigger than shrimps and thereby35

reduces the bycatch. In 1983, the Joint Soviet-Norway Fisheries Commission imposed36

a regulation that implies that fishing grounds are closed if the expected number of fish37

caught exceeds a certain limit per kilogram shrimp (Veim et al., 1994). Today this38

ratio limit is 0.8 for cod, and there are similar rules for bycatch of haddock, redfish39

and Greenland halibut (Fiskeridirektoratet, 2005). These ratio limits are determined by40
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the biological status of the fish and shrimp stocks, as well as the economical value of41

the particular fish species (Veim et al., 1994). In this work we investigated bycatch of42

juvenile cod, but the methodology introduced is general and can be applied to bycatch43

of other species.44

The method used today for regulating the shrimp fishery is as follows: When MSS sus-45

pects that there is a high rate of bycatch in a certain area, an inspector from MSS joins46

or rents a trawler and counts the number of juvenile cod caught as bycatch by new trawl47

hauls in that area. The bycatch ratio is then predicted by dividing the total number of48

juvenile cod by the total catch of shrimps. Based on this prediction a decision is made49

whether to close the area. After an area is held closed for some time (often some months),50

data from new trawl hauls are collected and a decision whether to open is made.51

A statistical modeling approach for prediction of the bycatch ratio of cod in the Barents52

Sea shrimp fishery has previously been presented in Aldrin et al. (2012). The model53

considered in this paper is an extension of their model. The main extension from a54

statistical point of view is that all the parameters in our model are modeled simultaneously55

and that a Bayesian approach is applied. This results in a more statistical rigorous method56

to estimate the parameters and to quantify the uncertainty. We use integrated nested57

Laplace approximations (INLA, Rue et al., 2009, Martins et al., 2013) for performing the58

calculations involved. The INLA-technique is implemented in the user-friendly R-INLA59

package in R (R Core Team, 2014, the R-INLA package can be downloaded from http:60

//www.r-inla.org). R-INLA has recently been used to model bycatch of Greenland61

sharks in the Greenland halibut fishery (Cosandey-Godin et al., 2014). Our paper goes62

further in constructing methodology for decisions as well as also providing models for63

catch of targeted species.64

The main extension from a biological point of view is that we included several important65

explanatory variables. New variables considered are, among others, abundance estimates66

of 0-group cod (juvenile cod less than one year old) in the Barents Sea, the distance67

trawled and the type of trawling equipment used. In particular, a connection between68
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the yearly strength of the 0-group of cod in the Barents Sea and the bycatch of juvenile69

cod is of biological interest. Before September/October, the 0-group lives in the upper70

layers of the sea and grows to around the same size as the shrimps (mean length about71

8 cm Ottersen and Loeng, 2000). After September/October the 0-group changes to a72

demersal life stage, which means that they start living at the seabed of the Barents73

Sea (Jakobsen and Ozhigin, 2011, page 228-230). The trawlers target shrimps at the74

seabed and it is therefore reasonable to believe that the amount of bycatch within the75

shrimp fishery industry is related to the abundance of 0-group fish within the area. As76

far as we know there has been no statistical research on such a connection before.77

The results in this paper can help MSS to optimize their resource allocation and improve78

their decision making, and make short time future fishing grounds more predictable for79

the fishermen. The model proposed can easily be extended to prediction of bycatch for80

other species and to other fisheries. The model can also be combined with many types of81

random effects as well as observation models (e.g. zero-inflated models as suggested by82

Aldrin et al., 2012).83

Data84

We used 7363 observations of shrimp trawl hauls from 1994 to 2006 provided by the85

Institute of Marine Research (IMR) in Bergen, Norway. Originally we were given 742086

observations of shrimp catch and bycatch that were also used to predict bycatch ratios87

in Aldrin et al. (2012). But after a thorough study of the data, we discarded 57 observa-88

tions and further corrected 14 observations of shrimp catches that were wrongly given in89

kilogram instead of ton. See Fig. 1 for an illustration of the locations of the observations90

and Table 1 for a short summary of the data. In the data there were 5419 observations91

with a single trawl, 1727 with a double trawl and 217 with a triple trawl. Approximately92

a fifth of the observations lack information about the circumference of the trawl. For93

these observations, which had only simple and double trawls, we fixed the circumference94
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to the average number of meshes around the opening within the type of trawl, that is95

2200 meshes for a single trawl and 2480 meshes for a double trawl. There were 18.6 %96

zeroes in the bycatch data, and most of them were in the summer when we should often97

expect low bycatch.98

Every late summer, around August/September, IMR and the Polar Research Institute99

of Marine Fisheries and Oceanography (PINRO) in Murmansk, Russia, cooperate to es-100

timate 0-group abundance. These estimates were calculated by a standard procedure:101

Short trawls, each 0.5 nautical mile, were taken at three or more depths with head-line at102

0, 20 m, 40 m, and so on. The number of cod caught was then corrected with a capture103

efficiency function of cod length, and scaled up to make an estimate of the 0-group abun-104

dance per square nautical mile (Eriksen et al., 2009). Fig. 2 shows the spatial locations of105

the 0-group estimates in four different years. The number of estimates (spatial locations)106

varied from 230 to 400 in the period 1993 to 2006 which means we had detailed informa-107

tion about where the 0-group individuals were located in August/September.108

Models109

The Bayesian hierarchical model contains two main sub-models, one for catch of shrimps110

(kg) and one for bycatch (counts). Let C(s, t) be kilogram shrimp caught at time t and111

location s, scaled to be per nautical mile, and set Z(s, t) = log(C(s, t)). The model for112

the shrimp catch is defined as113

Z(s, t) = XZ(s, t)βββZ + αZ(s) + υZ(t) + γZ(s, t) + εZ(s, t). (1)

Here XZ(s, t) is a vector of covariates (e.g. seasonal effect and gear equipment) and114

βββZ is the corresponding vector of regression coefficients. Three random effect terms are115

included; the spatial random field, αZ(s), is intended to capture that the amount of116
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shrimps might depend on local features, e.g. shrimps are known to be located at frontal117

zone areas (Jakobsen and Ozhigin, 2011, page 173). The temporal random field, υZ(t),118

is intended to capture that catches change over time. The spatio-temporal random field,119

γZ(s, t), is intended to capture that observations close in both space and time are probably120

more equal. All these random effects are modeled as Gaussian fields with dependence121

structures defined through covariance functions. Finally, εZ(s, t) describes measurement122

noise or micro-scale variability.123

We assume a similar model for the bycatch. Let B(s, t) be the number of juvenile124

cod caught at time t and location s, scaled to be per nautical mile, and set Y (s, t) =125

log(B(s, t) + 1). Our model for the bycatch is defined as126

Y (s, t) = XY (s, t)βββY + αY (s) + υY (t) + γY (s, t) + εY (s, t), (2)

where the interpretation of the terms involved are similar to model (1). The covariates127

that have been considered are given in Table 2. The 0-group abundance and shrimp catch128

covariate in Table 2 are only used in the bycatch model (2). Alternative models such as129

Poisson, negative binomial and a zero-inflated negative binomial distribution have also130

been considered, but they did not perform as well as the log-Gaussian distribution, see131

further comments on this in the discussion section.132

The seasonal effect included requires some further discussion. We used a Fourier se-133

ries (Lay, 2006, page 456) for the seasonal effect. The Fourier series is given by134

f(t′) =
r∑
i=1

(ci sin(it′) + di cos(it′)), (3)

were t′ ∈ [0, 2π] with t′(1st January) = 0, t′(31st December) = 2π and linear in time.135

Here ci and di correspond to regression coefficients within equations (1) and (2). Fourier136
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series are used since the seasonal effect should be the same at the start and the end of137

the year, and because seasonal effects typically have a harmonic pattern.138

The growth rate of the cod depends on the temperature (Jørgensen, 1992), and the139

time at which a 0-group cod changes to a demersal life phase might depend on its size.140

We therefore allow the seasonal effect to be a function of latitude since it is typically141

colder in the north. This is implemented in the model by first assuming two different142

Fourier series (3), one at the northernmost location point containing data and another143

at the southernmost location point. Seasonal effects at other locations are then defined144

to be convex combinations of the seasonal effects in these two points. The weights in145

the convex combination are chosen to range from 0 to 1 and to be linear in the vertical146

distance between the location and the northernmost and southernmost point.147

Spatial, temporal, and spatio-temporal Gaussian random fields148

We included three correlation structures in our models (1) and (2) via Gaussian random149

fields, one spatial, one temporal and one spatio-temporal. This section describes the150

correlation structures for the Gaussian random fields involved in models (1) and (2).151

For brevity we will not use the subheadings Z and Y when elaborating the correlation152

functions.153

We assume that the spatially correlated Gaussian field, α(s), has zero mean and follows154

the stationary Matern covariance function (Stein, 1999) given by:155

Cov(α(s1), α(s2)) =
σ2
α

2ν−1Γ(ν)
(κ||s1 − s2||)νKν(κ||s1 − s2||), (4)

where σ2
α is the marginal variance, ν is a smoothing parameter, κ is a spatial scale156

parameter, ||s1 − s2|| is the distance between s1 and s2 in kilometers and Kν(·) is the157

modified Bessel function of the second kind. In this study we fixed ν = 1 since this158
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value is implemented in the R-INLA package and since the value of ν is typically poorly159

identifiable (Blangiardo and Cameletti, 2015, page 194).160

We assume the time-dependent zero-mean Gaussian random field, υ(t), to be constant161

within years while independent between years, with variance σ2
υ. An AR(1)-structure in162

the yearly effect was also investigated, but this extra structure was not supported by163

data. It is important to note that we define the first month of the year to be September164

when we refer to a yearly effect in the bycatch model. This is reasonable because in165

September/October the 0-group starts entering a demersal life stage, and thereby starts166

living on depths where shrimp trawling occurs (Jakobsen and Ozhigin, 2011, page 230).167

In the shrimp model, the year starts in January.168

For the spatio-temporal interaction term, γ(s, t), we assume a stationary zero-mean Gaus-169

sian field with a separable covariance function. We test three different, but quite similar170

covariance functions. The first two are given by171

cov
(
γ(s1, t1), γ(s2, t2)

)
= σ2

γ exp
(
− ||s1 − s2||q

θs
− |t1 − t2|

θt

)
(5)

with q = 1 or 2. Here ||s1 − s2|| is the distance between s1 and s2 in kilometers, |t1 − t1|172

is the time difference in days and θs and θt describe the correlation lengths in space and173

time. Both q = 1 and q = 2 give special cases of the Matern covariance function (4) as174

the spatial contribution to the separable spatio-temporal interaction (5), the first with175

ν = 0.5 and the second with ν =∞ (Minasny and McBratney, 2005).176

The third covariance function considered was introduced within the R-INLA framework177

by Cameletti et al. (2013) and also tested (but rejected) in Cosandey-Godin et al. (2014).178

In this case the covariance function is indirectly defined through the introduction of a179

spatial grid overlapping the area of interest and a dynamic model for changes between180
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time points:181

ξξξr = aξξξr−1 +ωωωr, ωωωr ∼ N(0, Σ̃ΣΣ) r = 1, ..., T. (6)

Here ξξξr = (ξ(s1, r), ..., ξ(sd, r)) are the values of the spatio-temporal process at time182

point r and grid points s1, ..., sd, a is an unknown autoregressive parameter and ξξξ0 ∼183

N
(
0, Σ̃ΣΣ/(1 − a2)

)
. The covariance matrix Σ̃ΣΣ is specified such that it approximates a184

Matern covariance matrix in space for the d spatial grid points with ν = 1 (see Cameletti185

et al., 2013, for further details).186

Notice that the covariance structures in (5) and (6) are almost identical, except that in (6)187

we discretize time and approximate the Matern covariance function (4) with ν = 1 as the188

spatial contribution to the separable spatio-temporal interaction. See the appendix for a189

detailed derivation of this.190

Predictions of bycatch ratio for management191

The bycatch ratio in an area A at time t is defined by (Ye, 2002):192

RA,t =

∑
sss∈A Bycatch(sss, t)∑

sss∈ATarget catch(sss, t)
, (7)

where Bycatch(sss, t) is the number of juvenile cod caught in a trawl haul at location sss at193

time t, and Target catch(sss, t) is the kilogram of shrimp caught. The bycatch ratio (7)194

can be interpreted as the total bycatch ratio over a large number of hypothetical trawls195

taken in area A at time t.196

The bycatch ratio (7) in an area A at time t is predicted as in Aldrin et al. (2012) by197

Monte Carlo estimation:198
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R̂A,t =
1

N

N∑
i=1

∑G
g=1B

i(sssg, t)∑G
g=1C

i(sssg, t)
. (8)

Here the outer sum is the Monte Carlo estimation, the inner sums approximate the sums199

in (7) where {sss1, ..., sssG} is a sufficiently dense set of spatial grid points in A. Here it is200

important that N must be large to encounter the uncertainty in R̂A,t, and G must be201

large to ensure that the estimated bycatch ratio can be interpreted as the total bycatch202

ratio over a large number of hypothetical trawls. We used N = 2000 and found G ≈ 200203

appropriate in our application.204

In our research we have seen that the magnitude of the seasonal effect on shrimp catch205

and the spatio-temporal correlation parameters varies in space and therefore we only206

used observations relatively close to the center of the area of interest when predicting the207

bycatch ratio (7). In our application the areas are typically defined by a few vertices,208

and the center of the area we define as the point with shortest sum of distances to all209

the vertices defining the area. To obtain the bycatch ratio predictions we only used210

observations closer than 600 km from the center of the area of interest. We expect that211

these observations are enough for making a good prediction and that we gain by excluding212

observations far away in space because of the more accurate estimation of the magnitude213

of the seasonal effect of shrimp catch and range of the spatio-temporal correlation in the214

area of interest.215

Inference216

The models for shrimp catch (1) and bycatch (2) are general additive latent Gaussian, and217

efficient computation can thereby be performed through the R-package R-INLA (http:218

//www.r-inla.org, Rue et al., 2009, Martins et al., 2013). We have always used default219

priors (who are reasonably non-informative, see details in the appendix), and thereby let220
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the 7363 observations inform the posterior distributions.221

For computationally efficiency we approximate the spatial Gaussian fields, αZ(s) and222

αY (s) in equation (1) and (2), with Markov random fields. The approximation method223

used is explained in Lindgren et al. (2011) and is based on that the Matern covariance224

function (4) is a solution of a stochastic partial differential equation (SPDE). This solution225

can be approximately represented by a Markov random field with a sparse precision matrix226

which makes it possible to apply fast Laplace approximations (Rue et al., 2009).227

Since we approximate the spatial Gaussian field with a Markov random field we need to228

define a spatial grid, this grid is shown in Fig. 3. Such triangulation based grids are easy229

to create in the R-INLA package and have several clear advantages compared to regular230

square grids. To make the Markov random field approximation continuous we further let231

the value at each point in the domain (that is not a vertex) be a convex combination of the232

estimated values at the three vertices defining a triangle around it (Lindgren et al., 2011).233

Many of the observations are very close in space. In order not to make the triangulation234

very dense, we have chosen the triangulation such that no edges are closer than 20 km235

from each other. This has negligible effect on the results and it speeds up the calculations236

compared to letting each observation location be a vertex.237

The covariance structure for the spatio-temporal effects defined in (5) is currently not238

directly available in R-INLA. However, a generic class is available where the precision239

matrix is given by Q = τC where τ−1 is the marginal variance and C is fully specified.240

In our case C is a function of the parameters θs and θt in (5) resulting in that R-INLA can241

only be applied for prespecified values of these parameters. By running R-INLA several242

times and maximizing the marginal likelihood, posterior modes for θs and θt are obtained.243

In this research we only used the posterior mode of θs and θt and thereby neglected the244

uncertainty in these two parameters. To do fast approximation, R-INLA further requires245

sparse precision matrices. We made the precision matrix sparse by truncating to zero all246

elements in C that are less than 0.01 and are referring to locations more than one range247

unit away from each other. The range is here defined as the distance in time and space248
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with correlation equal to 0.1. We tried different small thresholds for setting the elements249

C to zero, and the differences of the results were negligible.250

Consider now the spatio-temporal correlation structure introduced in Cameletti et al.251

(2013), see equation (6). A problem in using this correlation structure for our data is252

that the observations are unstructured in space and time. To use this approach we need to253

discretize time and define a spatial grid approximation also for this part of the model (6).254

For computational reasons, a very coarse spatial as well as temporal discretization is255

needed. We chose to discretize time in intervals of 30 days, and used a spatial mesh with256

346 edges and with no edges closer than 50 km from each other.257

Model selection258

For model selection, we used the procedure recommended in Zuur (2009, page 121) where259

first the correlation structures are specified (through selection of which of the three ran-260

dom effects that should be included), using all relevant covariates, followed by a selection261

of significant covariates using the selected correlation structure.262

We used four methods when evaluating correlation structures: Bayes factor (Gelfand,263

1996), pseudo-Bayes factor (Gelfand, 1996), the DIC-value (Spiegelhalter et al., 2002)264

and mean square error (MSE) of the observed values compared with the expected value265

of (1) and (2), respectively. The Bayes factor is the ratio of the marginal likelihoods266

(ML) from a pair of models. The pseudo-Bayes factor is the ratio of the cross-validation267

densities (CVD) given by CVD =
∏n

i=1 P (yi|yyy−i,M), where yyy−i are all the observations268

except yi and M represents the model. See Rue et al. (2009) on how the ML and269

CVD are calculated within R-INLA. When calculating the MSE we remove every tenth270

observation and predict these, this we repeat ten times until we have predictions for all271

the observations. We used the Bayes factor for backward elimination of covariates.272
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Computational features273

The research was done on a computer with Intel Core i5-2500 CPU 3.30GHz× 4 processor,274

and R-INLA utilizes all the four cores. With the 7363 observations the calculations took275

about 16 minutes for the final bycatch model and five minutes for the final shrimp catch276

model after the posterior mode of the spatio-temporal parameters θs and θt (eq (5)) was277

found.278

Results279

The results section is divided into three parts: 1) covariates, 2) covariance structure, and280

3) model performance with regards to decision making on time/area closures compared281

to previous models in this fishery (Aldrin et al., 2012).282

Covariates283

Table 3 lists the covariates that were selected for the prediction of shrimp and bycatch.284

For the description of the seasonal effects (3) we included one harmonic term in the285

shrimp model, and three harmonic terms in the bycatch model. The seasonal effect of286

bycatch varied in space, the further north the later the seasonal effect will increase in late287

fall/early winter. See Fig. 4 for illustration of the seasonal effects.288

By looking at credibility intervals, we found a clear effect of the strength of the 0-group289

of cod in the Barents Sea on the bycatch when aggregating the 0-group estimates over290

space, see Table 3. Our model predicts that if the 0-group abundance doubles, the291

bycatch increases by approximately 29% with 95% credibility interval (13%, 47%). The292

Bayesian factor was indifferent to the inclusion of the 0-group when the yearly effect was293

included, but the inclusion of the 0-group halved the variance of the year effect, giving294

better predictive power when included. We therefore decided to include this effect into295
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the model.296

The more shrimp that is caught, the more bycatch we can expect. If we double the shrimp297

catch the bycatch increases with approximately 18% (16%, 21%). In times of the year298

when there is neither midnight sun nor polar nights the model predicts that it is much299

harder to catch shrimp and we get less bycatch in the night. The size of the coefficients300

implies that the shrimp catch reduces with 34% (27%, 41%), and the bycatch reduces301

with 23% (11%, 33%). Since both the bycatch and the shrimp catch decrease during302

night time trawling, this variable has lesser effect on the bycatch ratio. In time of the303

year when there is midnight sun or polar nights we found no night effect.304

The model found that larger equipment often leads to larger catch. Compared to using305

a single trawl, the model predicts that the shrimp catch increases by 80% (67% , 95%)306

if we use a double trawl and 222% (153%, 306%) if we use a triple trawl. We have307

few observations with triple trawls, which might explain the large uncertainty of this308

coefficient. The bycatch is predicted to increase by 32% (17%, 48%) if we use a double309

trawl while we did not find any increase by using a triple trawl. That triple trawls have310

no effect on the bycatch we think is intuitively surprising, the reason might be that the311

shape of the trawl differs when several trawls are used or that we do not have enough312

observations with triple trawls.313

Covariance structure314

When considering model selection with respect to the covariance structure (random ef-315

fects), both the shrimp and bycatch models, including spatio-temporal correlation struc-316

ture given by (5) with q = 1, were clearly favored, see Table 4. The optimal shrimp catch317

model contains only a spatial and a spatio-temporal interaction term in (1). The optimal318

bycatch model includes a spatial, a temporal as well as a spatio-temporal interaction term319

in (2).320
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Table 5 shows the values of the parameters in the correlation structure in the final model321

while Fig. 5 shows the spatial effects of the bycatch and the shrimp catch. The ranges322

in space and time in the spatio-temporal Gaussian fields (5) are estimated to be ap-323

proximately 160 days and 150 km for the shrimp catch and 90 days and 310 km for the324

bycatch.325

From the estimated mean of the marginal variances in Table 5 we can interpret how the326

variation in the observations are distributed among the random terms in (1) and (2). We327

see that most of the variation was in the spatial part, secondly in the spatio-temporal328

part, thirdly in the unstructured part and least in the temporal part. Note that, as stated329

above, the latter part is only included in the optimal bycatch model.330

Decision making331

In this section we illustrate how the model performs with respect to the important decision332

of whether to open or close an area for shrimp fishing. Remember that an area should333

be closed if the bycatch ratio (7) is expected to exceed 0.8 cod per kilogram shrimp. We334

predict the bycatch ratio (7) through (8). In this section we first investigate how well the335

model performs in a certain area where there is much shrimp catch activity. Then we336

investigate more generally how good the model predicts bycatch ratios when using parts337

of the observations from MSS as test sets.338

As in Aldrin et al. (2012), we predicted the bycatch ratio at 1st of December 2005 in339

the Hopen area. See Fig. 1 for an illustration of the Hopen area. At that time an340

inspector from MSS was investigating 21 trawl hauls in the Hopen area on a boat with a341

single trawl with 3600 meshes around the opening. Our predictions of bycatch are done342

by taking the fishing gear equipment into account, while Aldrin et al. (2012) did not343

consider such an effect. We first predicted the bycatch ratio at 1st of December 2005344

based only on observations previous to that date. Thereafter we updated the prediction345

while sequentially including 1,3,5,10,15 and 21 additional observations sorted in the order346
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they were taken in the period 3rd to 6th of December 2005. The predictions and credibility347

intervals of the bycatch ratio are given in Table 6, the predictions by the model currently348

in use is referred to as the simple model. Confidence intervals of the simple bycatch ratio349

estimates are calculated by using nonparametric bootstrapping (Efron and Tibshirani,350

1994).351

We used G = 203 in equation (8) when estimating the bycatch ratio in this area, and352

we observed that using a larger G changed the estimates negligibly. Furthermore, the353

restriction to only use observations closer than 600 km from the center of the area of354

interest resulted in that we used 4784 observations before 1st of December 2005.355

With the regulation method used today, predictions without any recent observations356

are not possible and MSS needs to take many new (expensive) observations to obtain357

reliable results. From Table 6 we see that both our model and the model introduced358

in Aldrin et al. (2012) are able to do reasonable predictions even with very few recent359

observations within the area of interest. Furthermore, our predictions are quite close to360

the predictions given in Aldrin et al. (2012). This is not surprising since we concluded361

to use a quite similar model. The new model is however able to detect a bycatch ratio362

that is significantly higher than 0.8 in more cases with few observations compared to the363

model in Aldrin et al. (2012).364

The results clearly indicate that the Hopen area should be closed in the beginning of365

December 2005. The next decision problem then is when to open again. Our model can,366

even without extra samples, predict bycatch ratios at any time. Fig. 6 illustrates the367

predicted bycatch ratios after December 2005 given only the observations up to Decem-368

ber 6. These results indicate that the area could be opened for shrimp fishing in April369

2006.370

We predicted the bycatch ratio in several other periods and locations, with promising371

results. We illustrate one such set of predictions for bycatch ratios. In 2005 and 2006372

there were 18 months with trawl haul observations in the Hopen area. Fig. 7 shows the373
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bycatch ratio predictions of the trawl hauls for each month in that period using only374

observations previous to the beginning of the month. From Fig. 7 we see that the model375

is able to give realistic predictions of the bycatch ratios compared to the observed bycatch376

ratios. Notice that the predicted bycatch ratio in December 2005 and November 2006377

clearly differed from the observed bycatch ratio. This was because of very low shrimp378

catches that resulted in a high bycatch ratio. The reason for a slightly difference between379

ratio prediction in June 2006 and the observed bycatch ratio is discussed in the discussion380

section.381

We also investigated how well the bycatch ratio estimation performed when using parts382

of the observations from MSS as test sets. We defined a test set by sequentially selecting383

every tenth trawl haul in the data. For these hauls, point predictions together with384

90% and 99% prediction intervals for bycatch ratios were calculated. By comparing the385

prediction intervals with the true observations we were able to investigate the coverage.386

From Table 7 we see that the prediction intervals have roughly the right coverage. The387

90% prediction intervals seemed to have the right coverage for bycatch and shrimp catch,388

but when looking at the extremes, the 99% prediction intervals seemed to have slightly389

less coverage. The largest difference is that the model too often failed to predict small390

shrimp catches, but in a regulation perspective this is not a very important error since391

low shrimp catches lead to small commercial shrimp catch activity.392

Discussion393

The objective of this paper was to construct statistical rigid models for shrimp catch394

and bycatch that can be used to regulate the shrimp fishery with respect to bycatch.395

This discussion is divided in four parts: The first part is about the covariates and the396

covariance structures. The second part is about alternative observation models. The397

third part is elaborating comparisons with earlier research (Aldrin et al., 2012). The398

fourth and final part is about how the methodology introduced in this paper can be used399
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by the MSS and in other biological applications.400

Covariates and correlation401

Fig. 5 shows the spatial effects of the bycatch and the shrimp catch. The spatial structure402

for bycatch looks very intuitive since the cod spawn mainly in the north of Norway and403

the larvae drift passively in the upper layers with the currents into the Barents Sea. In404

August/September the juvenile cod are distributed at most places at the warm side of405

the Polar Front with typically largest concentration in the central Barents Sea (Jakobsen406

and Ozhigin, 2011, page 230).407

Fig. 4a and 4b illustrate the seasonal effects for the bycatch. The increase in Septem-408

ber/October is caused by the 0-group entering a demersal phase. The model predicts409

that a cod changes to a demersal phase later in the north (Hopen) compared to the410

south (Lyngen). This is reasonable since the cod grows slower in the cold water far411

north (Jørgensen, 1992).412

From Fig. 4c we also see that the model predicts higher shrimp catches in late spring413

compared to the winter. This is probably due to the shrimps vertical migration pattern414

which is dependent on light conditions (Hopkins et al., 1993). By estimating the seasonal415

effect of shrimp catch at different areas (not shown), we noticed that the shape of the416

seasonal effect is the same but the magnitude seems to depend on the location. We tried417

to account for this interaction between space and seasonal effect, similar to what we did418

for bycatch, but there was no support in the data for including this into the model.419

We tried to utilize the spatial locations of the estimates of the 0-group as a possible spatial420

predictor for bycatch by using estimates of the number of cod per square nautical mile in421

areas around the bycatch observations, but data did not support to include this into the422

model. We therefore concluded only to use the estimated total number of 0-group of cod423

present in the Barents Sea. These estimates can be found in Jakobsen and Ozhigin (2011,424
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page 565) and are calculated by the same 0-group data as used in this work. We believe425

that there are two main reasons for not being able to utilize the spatial locations of the426

estimates of the 0-group. One reason is that the cod can drift a long distance with the427

currents before it changes to a demersal life phase later that year. The other reason is that428

the amount of cod per nautical mile estimated as in Eriksen et al. (2009) at each location429

has a very large, and difficult to quantify, variance. Therefore few observations might give430

little information, while spatial aggregation of the 0-group gives more reliable covariates.431

To better encounter that the 0-group changes from year to year, we have in addition tried432

to include a Gaussian field with a correlation structure given as in Cameletti et al. (2013),433

see equation (6), with time discretized as yearly intervals lasting from 1st of September to434

31th of August. By visually inspecting the yearly spatial-temporal contributions we have435

seen no clear correspondence with the yearly spatially distribution of the 0-group given436

in Jakobsen and Ozhigin (2011, 564). Adding such a correlation structure was neither437

supported by data based on our validation methods.438

Because of our noninformative priors, and the confounding between the yearly effect and439

the 0-group, the Bayes factor equally favored bycatch models with and without the 0-440

group (when the yearly effect was included). However, including the 0-group covariate441

resulted in a large decrease (from 0.44 to 0.2) in the variability of the year effect, resulting442

in higher predictive power from a management perceptive. Because of this we included443

this covariate as well.444

The amount of shrimp catch was clearly important for the bycatch, even when scaled445

by distance. This might be because the shrimp and cod feed on the same prey and446

thereby might be concentrated at the same locations. The night effect was clearly an447

important covariate for both the bycatch and the shrimp catch. This might be explained448

by the shrimps being known to feed on pelagic prey species especially at night and hence449

stay semi pelagic above the trawl gear during night (Jakobsen and Ozhigin, 2011, page450

176).451

We both included a pure spatial field and a spatio-temporal random field in the models.452
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The spatial Gaussian field is intended to capture that some places are expected to have453

small or large catches due to biological or geophysical features. Inclusion of a pure spatial454

field resulted in a spatio-temporal field with a much smaller spatial and temporal range455

than a model without a spatial field. Our model is aimed for predicting sudden changes456

in the bycatch, and thereby be able to help the MSS to open or close areas. Therefore457

we need a correlation structure that can detect sudden changes. We believe we managed458

this in a satisfactory manner. A reason for this is that when including a pure spatial459

Gaussian field we are able to include a spatio-temporal structure that can only focus460

on the local changes in time and space. As opposed to previous research (Cosandey-461

Godin et al., 2014), we concluded to use the continuous correlation structure (5) for the462

spatio-temporal field in order to take into account the structure in the observations.463

Observation models464

In addition to the log-Gaussian distribution for the observations in the bycatch model,465

we also considered Poisson, Negative Binomial and zero-inflated Negative Binomial dis-466

tribution. We considered a zero-inflated distribution in R-INLA (http://www.r-inla.org)467

which allows the zero-probability to decrease when the expectation increases because we468

believe this is reasonable in our application. Of the alternative distributions, the Negative469

Binomial distribution gave the best fit to the data. When comparing the Negative Bino-470

mial distribution with the log-Gaussian distribution, the log-Gaussian distribution gave471

more accurate predictions (when comparing the sum of absolute errors of the number of472

cod taken as bycatch). The histogram of Bayesian p-values (Gelman et al., 2003) looked473

more uniform when using a log-Gaussian distribution. The pseudo-Bayes factor also gave474

preference to the log-Gaussian distribution. Because of this we chose the log-Gaussian475

distribution. In Cosandey-Godin et al. (2014) the authors used a latent Gaussian model476

with zero-inflated negative binomial distribution to estimate bycatch of Greenland shark477

in the Greenland Halibut fishery. In their application the bycatch values were low (mostly478

zero). In our application, with many large bycatch-numbers, the log-Gaussian distribu-479
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tion is more appropriate.480

There are cases of extremely large observations of bycatch in the summer when the481

model predicts little bycatch. This is probably because marine resources often are highly482

patchy (Seber, 1986) and the trawler has trawled through a large school of juvenile cod.483

One example of this we see in July 2006 (Fig. 7) were one haul contained 616 juvenile484

cod per distance (compared to (2, 92) cod per distance in the other hauls). Such a485

large bycatch in one trawl is not normal in the summer and gave, with our model, a486

Bayesian p-value (Gelman et al., 2003, page 162) approximately equal to 0.0005. This487

one trawl haul then resulted in the Bayesian p-value of the total bycatch ratio that month488

(consisting of 9 trawl hauls) became approximately 0.02. We tried to use a t-distribution489

for the observations within the bycatch model to partly encounter for this scenario, but490

then the degree of freedom was estimated to be 18, and thereby there was little difference491

compared to the Gaussian distribution.492

Comparison with Aldrin et al. (2012)493

The model introduced in this research is an extension of the model introduced in Aldrin494

et al. (2012). In that paper the authors introduced an additive regression model for495

shrimp catch and bycatch and first estimated the regression parameters with the least496

square method. Then they estimated the hyperparameters in the correlation structure497

given the regression parameters with a maximum likelihood method (they only used498

three parameters in the correlation structure since they did not use the very important499

yearly effect on bycatch and used a spline method for the spatial effect). To estimate500

the correlation structure in reasonable time, Aldrin et al. (2012) further divided the501

observations into 24 segments in time and space and assumed independence between502

segments. In our approach we find the posterior distribution for all the parameters503

simultaneously and thereby make the method more rigid. We are able to do this because504

the R-INLA package effectively calculates the posterior distributions.505
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Aldrin et al. (2012) stated that considering the Negative Binomial distribution would be506

interesting in further work. R-INLA allows to easily consider different distributions for507

the observations. In the R-code we only need to change a few lines to let the R-INLA508

package run with another distribution (http://www.r-inla.org).509

A problem encountered and efficiently dealt with in Aldrin et al. (2012) was that the510

variance of the residuals depended on the expectation. We did not encounter this problem511

within our model. This may be because we scaled the response by the distance trawled,512

and thereby accommodate for external factors that might explain the heterogeneity that513

was present in the Aldrin et al. (2012) model.514

Practical implications of the model515

The MSS has limited resources and needs to optimize the choice of locations to collect516

observations for predicting the bycatch ratio. The model introduced in Aldrin et al. (2012)517

and further extended in this research can help MSS to optimize the use of observations518

and thereby the collection of data within their resource limits. Our method predicted519

the bycatch ratio to be high enough to close the Hopen area for shrimp fishing in early520

December 2005. Without the need for further observations, our method also predicted521

that the area could be opened in April 2006 (see Fig. 6), thereby saving the cost of522

collecting expensive new observations.523

The model introduced can also be used to predict the historical total bycatch in shrimp524

fishery. Historical total bycatch prediction has previously often been performed by scaling525

up the observed bycatch ratio in areas with the commercial shrimp catch (Ye, 2002,526

Ye et al., 2000, Davies et al., 2009, Amandè et al., 2010). We expect that the model527

introduced in this research will give more reliable estimates of the total bycatch, including528

uncertainty. There is ongoing work to predict the historical bycatch of cod, redfish and529

haddock in the Barents Sea shrimp fishery by using the model introduced here.530
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Appendix540

Night effect541

The night effect has been observed by fishermen to be particularly strong in the time of the year542

when there is neither midnight sun nor polar nights. To accommodate for the night effect we543

thereby distinguished between two periods in the year named the transient period and the sta-544

tionary period. The stationary period was defined as the period where there was either midnight545

sun or polar night, and the transient period was defined as the complement of the stationary546

period. We then introduced two indicator variables, one defines the transient/stationary period,547

and another defines day/night. To define the stationary period (and thereby also the transient548

period) we defined five reference points in the Barents Sea and adjunct waters were we know the549

stationary period (http://www.yr.no). The five reference points are: Rossøya (80.8°N), Hopen550

(76.5°N), Bjørnøya (74.5°N), Nordkapp (71.2°N) and Tromsø (69.6°N). We then approximated551

the stationary period in a location to be the same as in the closest reference point in latitude552

direction. Furthermore, we define that the trawl was done at night if the trawler started after 9553

pm or ended in the period between midnight and 9 am.554
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Correlation555

We now illustrate the similarities stated between the spatio-temporal interaction correlation556

structures (5) and (6). Let k > 0 be an integer. We have from (6) that:557

cov
(
ξ(s1, r), ξ(s2, r + k)

)
= cov

(
ξ(s1, r), aξ(s2, r + k − 1) + ωr+k(s2)

)
= acov

(
ξ(s1, r), ξ(s2, r + k − 1)

)
= akcov

(
ξ(s1, r), ξ(s2, r)

)
= σ2ω exp

(
ln
(
C(||s1 − s2||)

)
+ k ln(a)

)
, (9)

where C(·) is the Matern correlation function with ν = 1, σ2ω is the marginal variance of the558

corresponding Matern covariance function and ||s1 − s2|| is the distance between s1 and s2 in559

kilometers. The similarities stated between (5) and (6) are now easily seen.560

Priors561

The noninformative priors for the hyperparameters used in this research are given in Table 8.562

The gamma distribution used has the parametrization:563

π(x|α, β) =
βα

Γ(α)
τα−1 exp(−βx). (10)

INLA by default uses an improper prior for the intersect regression coefficient and a N(0, 1000)564

prior for the other regression coefficients.565
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Table 1: Data used, numbers in parentheses are 90% coverage intervals.

Data Description
Target catch Shrimp catch varies between 2.4 kilogram and 17.7 tons (20,3190)
Bycatch The number of cod varies between 0 and 35775 cod (0,1008)
Time Information about time of catch down to minutes scale
Location Information of catch location (single point) given in longitude and latitude
Distance trawled The distance trawled in nautical miles (2.5, 15)
Number of trawls The number of trawls varies between one, two or three.
Circumference The number of meshes around the opening of each trawl (1400, 3000)
Temperature Bottom sea temperature (0.17, 9.3)
Depth Ocean depth at catch location (227, 410)
0-group Abundance predictions of 0-group cod per square nautical mile (0, 465408)

Table 2: Covariates in the model

Covariates Type Description
Seasonal effect Continuous Fourier series (3)
0-group Continuous Logarithm of 0-group abundance of cod
Temperature Continuous Bottom sea temperature
Depth Continuous Ocean depth at catch location
Time Continuous Linear covariate of time
Z(s, t) Continuous Logarithm of shrimp catch per nautical mile
Area of trawl Continuous The square of the circumference
Number of trawls Categorical The number of trawls used
Night effect Categorical See appendix

Table 3: Estimates and 95% credibility intervals of the significant regression coefficients.

Shrimp catch Bycatch of cod
Covariate Mean 95% C.I. Covariate Mean 95% C.I.

µ 3.01 (2.49,3.51) µ 0.52 ( -0.54, 1.35)
night effect -0.41 (-0.52,-0.31) night effect -0.26 (-0.40,-0.12)
area (standardized) 0.10 (0.065,0.15) depth (standardized) -0.17 (-0.20,-0.14)
depth (standardized) 0.085 (0.060,0.11) double trawl 0.28 ( 0.16, 0.39)
double trawl 0.59 (0.51,0.67) Z 0.24 ( 0.21, 0.27)
triple trawl 1.16 (0.93,1.39) 0-group 0.37 ( 0.17, 0.57)
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Table 4: DIC, CVD, ML and MSE values for the shrimp models and bycatch models.
S, T and S-T represent spatial , yearly and spatio-temporal effects, respectively. For the
spatio-temporal effect, model (5) with q = 1 is used, if not otherwise specified. The models
with bold text correspond to the selected models.

Random effects DIC CVD ML MSE

Shrimp model
No random effects 21162 -38164 -38326 1.06
S 18627 -36915 -37206 0.752
S-T 14026 -35231 -36007 0.506
S and S-T 13504 -35145 -35881 0.493
S, S-T and T 13509 -35145 -35881 0.493
S and S-T with q = 2 14637 -35285 -35986 0.505
S and S-T with eq. (6) 15328 -35460 -36088 0.522

Bycatch model
No random effects 55086 -27543 -27689 1.91
S 53651 -26822 -27054 1.57
S-T 48036 -24239 -25142 0.779
S and S-T 48018 -24194 -25076 0.767
S, S-T and T 47955 -24187 -25076 0.765
S, S-T with q = 2 and T 48320 -24277 -25165 0.785
S, S-T with eq. (6) and T 49105 -24571 -25331 0.846

Table 5: Estimates and 95% credibility intervals of the hyperparameters.

Shrimp catch Bycatch of cod
Hyperparameter Mean 95% C.I. Hyperparametes Mean 95% C.I.

σ2
α 0.97 (0.51, 1.72) σ2

α 1.22 (0.53, 2.48)
κα 0.011 (0.0071, 0.016) κα 0.0064 (0.0037, 0.010)
σ2
ε 0.23 (0.22, 0.25) σ2

ε 0.53 (0.50, 0.55)
σ2
γ 0.62 (0.57 , 0.68) σ2

γ 1.00 (0.91, 1.10)
θt 71 (mode) unknown θt 40 (mode) unknown
θs 63 (mode) unknown θs 133 (mode) unknown

σ2
υ 0.20 (0.06, 0.47)

Table 6: Predicted bycatch ratios in the Hopen area 1st. of December 2005.

New obs. Simple model Aldrin et al. (2012) Our model
Pred. 90%C.I. Pred. 90%C.I. Pred. 90%C.I.

0 1.3 (0.1, 4.7) 1.9 (0.2, 5.5)
1 7.9 1.8 (0.3, 7.1) 2.8 (0.5, 7.5)
3 21.1 4.2 (0.9, 24.8) 4.9 (1.1, 12.8)
5 16.6 3.5 (0.6, 10.1) 4.5 (1.2, 10.3)
10 7.2 (3.6, 13.5) 4.6 (1.3, 9.5) 4.5 (1.7, 9.0)
15 5.4 (2.8, 9.5) 4.2 (1.8, 6.4) 4.7 (2.0, 9.0)
21 5.6 (3.4, 8.4) 4.4 (2.2, 7.5) 4.8 (2.1, 9.1)
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Table 7: Coverage of 90% and 99% prediction intervals for the shrimp catch, bycatch and
bycatch ratio. The coverage is defined as the percentage of times the prediction intervals
overlap with the real observations when removing and predicting every tenth trawl haul
observation.

Target Inside P.I. Under P.I. Over P.I.

Shrimp 90.6% 5.7% 3.7%
90% Bycatch 90.6% 4.6% 4.8%

Ratio 92.4% 3.7% 3.8%
Shrimp 97.6% 1.9% 0.5%

99% Bycatch 97.7% 1.1% 1.2%
Ratio 98.4% 1.0% 0.6%

Table 8: Prior distributions

Parameter Prior Parameter Prior

log(σ2
α) N(0,10) 1/σ2

υ gamma(1,0.00005)
log(κ) N(0,10) 1/σ2

γ gamma(1,0.00005)
1/σ2

Z gamma(1,0.00005) θt and θs ∝ 1
1/σ2

Y gamma(1,0.00005) log(1+a
1−a) N(0, 1

0.15
)
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Figure 1: Map of the Barents Sea with observations of shrimp trawls represented as red
dots. Blue triangles indicate observations that have been removed from the original data.
The polygon described by the black lines in the middle of the Barents Sea illustrates the
Hopen area where we estimate the bycatch ratio in the decision making section.
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Figure 2: Map of locations in the Barents Sea containing estimates of the 0-group of cod
in four different years.

Constrained refined Delaunay triangulation

Figure 3: The triangulation grid used for approximating the Matern covariance function
of the spatial effect of shrimp catch and bycatch of juvenile cod.
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Figure 4: The seasonal effect with 95% credibility intervals for (a) the bycatch in Lyngen
(south in the area investigated), (b) the bycatch in Hopen (north in the area investigated)
and (c) the shrimp catch.
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Figure 5: The spatial effect of (a) bycatch of juvenile cod and (b) the shrimp catch. Both
maps are given in UTM coordinates.
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Figure 6: Estimated bycatch ratio in the Hopen area after 1st of December 2005 based on
information collected before 6th of December 2005 . The solid black line shows the mean
and the dotted red lines 90% credibility intervals. The blue solid horizontal line gives the
upper limit of allowed bycatch ratio.
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Figure 7: Predictions with 90% prediction intervals of bycatch ratio (7) of the trawl hauls
taken each month in the Hopen area in 2005 and 2006. The blue solid horizontal line
shows the upper limit of allowed bycatch ratio. The red crosses are the observed bycatch
ratios.
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