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Abstract

Economic modeling in the presence of endogeneity is subject to model uncertainty
at both the instrument and covariate level. We propose a Two-Stage Bayesian Model
Averaging (2SBMA) methodology that extends the Two-Stage Least Squares (2SLS)
estimator. By constructing a Two-Stage Unit Information Prior in the endogenous
variable model, we are able to efficiently combine established methods for address-
ing model uncertainty in regression models with the classic technique of 2SLS. To
assess the validity of instruments in the 2SBMA context, we develop Bayesian tests
of the identification restriction that are based on model averaged posterior predictive
p-values. A simulation shows that 2SBMA has the ability to recover structure in both
the instrument and covariate set, and substantially improves the sharpness of resulting
coefficient estimates. The Bayesian Sargan test is shown to have a power of 50 percent
in detecting a violation of the exogeneity assumption, while the method based on 2SLS
has negligible power. We apply our approach to the problem of development account-
ing, and find support not only for institutions, but also for geography and integration
as development determinants, once both model uncertainty and endogeneity have been
jointly addressed.
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1 Introduction

In modeling economic interactions, applied economists are often faced with a surfeit of the-

ories and a number of different variables that proxy a given theory. Raftery (1995) argued

that uncertainty surrounding particular theories should be addressed explicitly by the sta-

tistical approach. Uncertainty about a parameter can be underestimated when it is based

on a single model and there is uncertainty about which model or theory to use. Bayesian

model averaging (BMA) has been used extensively to account for model uncertainty in re-

gression models, including in cross-country growth regressions and development accounting.1

However, these methods are constrained to modeling assocations between covariates and the

dependent variable, ignoring issues of endogeneity and uncertainty surrounding instrument

specifications.

We propose a new methodology that combines the BMA approach to regression variable

uncertainty and the Two-Stage Least Squares (2SLS) procedure. Our new method, Two-

Stage BMA (2SBMA), enables the applied economist to address uncertainty in instrument

and covariate specifications in a natural manner while simultaneously yielding an estimator

that addresses endogeneity in the covariates.

To date, instrument uncertainty has been addressed only in standard robustness analy-

ses that juxtapose instruments associated with one particular theory/specification against

another. In a prominent example in the development accounting literature, Rodrik et al.

(2004), henceforth RST, motivate their work by a “horse race” among alternative theories

that propose candidate instruments and regressors.

Accounting for uncertainty about both covariates and instruments requires a method-

ology that is rooted in statistical theory. Durlauf et al. (2007) introduced an instrument

model selection procedure based on evaluating coefficient estimates according to t-statistics,

but warned of the tenuous nature of the underlying statistical theory. The most comprehen-

sive approach to addressing endogeneity in growth regressions has previously been proposed

by Durlauf et al. (2008), who built on Tsangarides (2004). The authors introduced a model

averaged version of 2SLS, but noted that their heuristic approach lacked statistical justifi-

cation.2 Strictly speaking, Durlauf et al. (2008) did not allow for instrument uncertainty,

but provided a model averaging approach to instrument candidate regressors in the second

stage only.

The 2SBMA approach extends the method of Durlauf et al. (2008) and provides a sta-

1See e.g., Fernandez et al. (2001), Sala-i-Martin et al. (2004), Ciccone and Jarocinski (2007), and Eicher
et al. (2010).

2A similar heuristic panel approach is introduced by Hineline (2007) to examine the growth/inflation
relationship. Morales-Benito (2009) provides statistical foundations for a panel BMA approach.
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tistical foundation for the procedure. An alternative to theory-specified instruments is the

atheoretic use of lagged dependent variables in a BMA-GMM approach (see Morales-Benito

(2009)). We explore the properties of 2SBMA as a valid two-stage estimator and show that

the procedure is a consistent methodology that reduces the well known many-instrument

bias present in 2SLS. A simulation study conducted below shows a 45% reduction in many

instrument bias, as well as a 46% reduction in mean squared error for estimating regression

coefficients.

Instrumental variable estimation requires assumptions that relate to the identification of

the implied structural model. Tests of the identification restrictions, such the Sargan (1958)

and Cragg and Donald (1993) tests, compare a test statistic to a reference distribution. The

test statistics are often asymptotically distributed according to the reference distribution,

which frequently has a number of degrees of freedom that is related to the size of the model

estimated. The nature of these statistics proves problematic in some economic applications,

such as the study of growth and development determinants, where the sample size is small

and the dimension is continually increasing.

The 2SBMA approach provides a direct interpretation of the efficacy of an instrumen-

tation strategy, by examining posterior inclusion probabilities. However, we also provide

measures to verify instrument conditions based on Bayesian model averaged posterior pre-

dictive p-values. We introduce these p-values as a simple extension of the work of Rubin

(1984), Raftery (1988) and Gelman et al. (1996), who motivated the use of posterior predic-

tive p-values for a single model. These p-values are then used to derive Bayesian versions of

the Sargan and Cragg and Donald tests to test the identification restrictions.

A simulation study quantifies the efficiency of 2SBMA as compared to 2SLS. We find

that the Bayesian over-identification test had a power of 50% at detecting this failure, while

the traditional Sargan test had a power of only 0.8%.

Finally, we apply 2SBMA to a prominent approach to development accounting that is

known to be subject to substantial instrument and determinant uncertainty.3 We use RST’s

own data and the variables motivated by their empirical approach to span the model space

for our 2SBMA approach. RST found strong evidence for the “primacy of institutions” over

all other alternative theories after conducting an elaborate “horse race” among all alternative

theories and their associated candidate regressors. The 2SBMA results suggest a qualifica-

3We use the term development accounting in the broad sense, referring to studies that seek to examine
the determinants of differences in levels of per capita income. Previous development accounting approaches
differ in their emphases, such as physical capital (King and Levine (1994)), human capital (Klenow et al.
(1997)), as well as TFP (Caselli (2005)). In our application we focus only on studies that sought to explain to
differences in per capita incomes based on integration, institutions, and geography since the above approaches
do not feature instrument uncertainty.
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tion of RST’s strong conclusions. We find that not only institutions, but also integration

and geography explain differences in per capita incomes across countries. At the instrument

level, we find that the colonial origins (proxied by Settler Mortality) may not be robust to

the inclusion of alternative instruments. This suggests that the 2SLS robustness results in

the previous literature may reflect the specific robustness specifications used. We find, how-

ever, that a number of alternative instruments (and their associated theories) also receive

support from the data, once instrument and determinant uncertainty have been addressed

simultaneously. These results are consistent with the findings of Durlauf et al. (2008) that

many growth theories/variables are not robust once model uncertainty is taken into account.

The article proceeds as follows. Section 2 outlines the statistical foundations of the

2SBMA approach. Section 3 introduces Bayesian tests of the identification restrictions and

Section 4 describes the efficiency of 2SBMA and the power of Bayesian tests in simulation

studies. Section 5 applies 2SBMA to a prominent approach to development accounting to

highlight the importance of both determinant and instrument uncertainty. Section 6 con-

cludes.

2 Statistical Foundations of 2SBMA

This section develops the theoretical foundations for two-stage Bayesian Model Averaging

(2SBMA). First, we sketch the properties of the 2SLS estimator that we extend. Then we

formulate the endogeneity problem to express first and second stage likelihoods in a model

averaging context. After developing a two-stage prior that allows for an efficient approxima-

tion of the model probabilities, we then derive the complete 2SBMA methodology.

2.1 Marginal and Conditional Likelihoods for Two-Stage Appli-

cations

A standard approach to addressing endogeneity is to apply 2SLS and impose identification

restrictions. We consider the model,

Y = (W X)β + η, (1)

W = (Z X)θ + ε, (2)
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where Y is the n × 1 dependent variable, X is an n× pX set of covariates, W is the set of

endogenous variables and Z is the n× pZ set of instruments. The notation (A B) denotes a

matrix placing A and B together, provided they have the same number of rows. To simplify

exposition we assume that W is n× 1. Assuming that(
η
ε

)
∼ N

((
0
0

)
,

(
σ2
η σηε

σηε σ2
ε

)
= Σ

)
,

the classical endogenous variable situation arises when σηε 6= 0, causing W to violate the

standard regression assumption of independence of the error term, η.

Fundamental to the 2SBMA methodology is the specification of two-stage marginal and

conditional likelihoods. Letting U = (W X) and V = (Z X), we adopt the notation of

Kleibergen and Zivot (2003), and rewrite Equations 1 and 2 as

Y = Ũ(θ)β + ν, (1’)

W = V θ + ε, (2’)

where Ũ(θ) = (V θ X) is the replacement of W in U with its fitted value, and the OLS

estimate regressing W on V is given by Û = Ũ(θ̂) where θ̂ = (V ′V )−1V ′W . Since ν = βε+η,

we have

Var

(
ν
ε

)
=

(
ω11 ω12

ω21 ω22

)
=

(
1 0
β 1

)′
Σ

(
1 0
β 1

)
.

Kleibergen and Zivot (2003) reparameterize (1’) and (2’) using φ = ω−122 ω21 to yield

Y = Ũ(θ)β + ξ + εφ, (1’’)

W = V θ + ε, (2’’)

where var(ξ) = ω11·2 = ω11 − ω2
12ω22.

In the presence of endogeneity, it is well known that the determination of W leads to

inconsistent estimates of the entire coefficient vector, β, under standard Ordinary Least

Squares (OLS). The 2SLS estimator,

β̂2SLS =
(
Û ′Û

)−1
Û ′Y,

may resolve the inconsistency problem when instruments, Z, exist that are independent

of Y , given W and the vector of covariates, X. The model is identified only when these

conditional independence assumptions are valid, resulting in a consistent estimator. The

2SLS estimate of β is well known to be biased, and the extent of this bias increases with

the number of terms that are added in the first stage with coefficients equal, or close to,

zero. Under such conditions, 2SLS estimates may not reduce the bias of the OLS results
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(Davidson and MacKinnon, 2004). It is therefore of practical interest to develop a 2SBMA

methodology that quantifies the degree to which each proposed covariate and instrument

enters into the equations above.

The reparameterization of (1’’) and (2’’) proves useful to derive the two-stage marginal

and conditional likelihoods.

Theorem 1. The two-stage marginal and conditional likelihoods are given by

L(θ|W,V, ω22) = ω
−n/2
22 exp

(
−1

2

(W − V θ)′(W − V θ)
ω22

)
(3)

L(β|φ, ω11·2, Y, θ̂) = ω
−n/2
11·2 exp

(
−1

2

(Y − Ûβ + ε̂φ)′(Y − Ûβ + ε̂φ)

ω11·2

)
, (4)

where ε̂ = W − V θ̂. The marginal likelihood is maximized at θ̂ = (V ′V )−1V ′W , while the

conditional likelihood is maximized at β̂2SLS.

Proof See Appendix.

2.2 Constrained Two-Stage Likelihoods

When juxtaposing competing theories using 2SBMA, some coefficients in either θ or β are

constrained to be zero. As a consequence, these members of either X or Z need not be

included in estimation of the associated parameter. This section derives the constrained

marginal and conditional likelihoods for this case.

Let M be a collection of individual first stage models, {M1, . . . ,MI}. Associated with

each first stage model Mi is a submatrix V (i) of the matrix V . When the variables Zl and

Xm are in Mi, then these columns are retained in V (i), while those not in Mi are excluded.

For Mi, the least squares estimate is θ̂(i) =
(
V (i)′V (i)

)−1
V (i)′W .

Similarly, let L be a set of individual second stage models, {L1, . . . , LJ}. Each model

Lj again corresponds to a submatrix U (j) of the matrix U . For W ∈ Lj, Ũ (j)(θ(i)) denotes

the replacement of W in U (j) with the fitted value V (i)θ(i), and when W /∈ Lj, we write

Ũ (j)(θ(i)) = U (j). To ease notation, we write Û (i,j) for Ũ (j)(θ̂(i)).

Analogous to the representation in Equations 1’’ and 2’’, the sampling model under Mi

and Lj takes the form

Y = Ũ (j)(θ(i))β(j) + ξ(i,j) + ε(i)φ(i,j), (5)

W = V (i)θ(i) + ε(i), (6)
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where var(ε(i)) = ω
(i)
22 , var(ξ(i,j)) = ω

(i,j)
11·2 . The constrained 2SLS estimator based on models

Mi and Lj is then calculated as

β̂(i,j) =
(
Û (i,j)′Û (i,j)

)−1
Û (i,j)′Y. (7)

Theorem 2 highlights how the marginal and conditional likelihoods are affected when a

variable contained in U (j) is excluded from from V (i).

Theorem 2. Under models Mi and Lj the expressions in Equations (5) and (6) yield the

following marginal and conditional likelihoods:

L
(
θ|W,V, ω(i)

22

)
=
(
ω
(i)
22

)−n/2
exp

(
−1

2

(W − V (i)θ(i))′(W − V (i)θ(i))

ω
(i)
22

)
, (8)

L
(
β|φ(i,j), ω

(i,j)
11·2 , Y, θ̂

(i)
)

=
(
ω
(i,j)
11·2

)−n/2
exp

(
−1

2

(Y − Û (j)β(j) + ε̂(i)φ(i,j))′(Y − Û (j)β(j) + ε̂(i)φ(i,j))

ω
(i,j)
11·2

)
,

(9)

where ε̂(i) = W −V (i)θ̂(i). Equation (8) is maximized at θ̂(i), while Equation (9) is maximized

at

β̂(i,j) + φ(i,j)Π̂(i,j), (10)

where Π̂(i,j) = (Û (j)′Û (j))−1Û (j)′ ε̂(i).

Proof See appendix.

Theorem 2 implies that the mode of the conditional likelihood for β equals β̂(i,j) plus

the term φ(i,j)Π̂(i,j). To interpret this difference we note that Π̂(i,j) represents the regression

coefficients of Û (j) on the first stage residuals. Hence for the case where all covariates in Lj

are contained in Mi, Π̂(i,j) = 0 and Equation (10) becomes β̂(i,j). For the case where variable

Xl is in Lj but excluded from Mi, and where Xl has little explanatory power for W given

the remaining elements of Mi, Π̂(i,j) is, by definition, negligible. The 2SBMA assumptions

outlined below that govern the model pair (Mi, Lj) constrain Π̂(i,j) to zero.

The 2SBMA methodology is based on calculating the quantities in Equation (7). As

opposed to Limited Information Maximum Likelihood (LIML), the focus of our estimator

is on maximizing the marginal, then the conditional likelihoods, yielding estimators of the

form β̂(i,j), while LIML maximizes the joint likelihood of the parameters. This causes our

methodology to be more similar to 2SLS than LIML. Indeed, note that when Mi and Lj are

the full models for the first and second stage, respectively, β̂(i,j) = β̂2SLS. Furthermore, if

Xl is the only variable excluded from Mi and Lj, β̂
(i,j) is simply the 2SLS estimate with this
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covariate excluded. Similarly, if Zm is the only quantity excluded from Mi, and Lj is the full

model, β̂(i,j) is the 2SLS estimate with instrument Zm excluded.

The formulation above also allows for two occurrences not considered in standard 2SLS.

First, we may have variable Xl ∈ Mi, but Xl /∈ Lj. This is equivalent to stating that a

variable originally considered to be a covariate is now considered conditionally independent

of Y , given the remaining variables in Lj. However, the variable still has some explanatory

power for W , which causes it to be included in Mi. Second, we may include variable Xl ∈ Lj,
but exclude it from Mi. This case is not considered in standard 2SLS analysis, as it is well

known to result in bias if the effect of Xl on W is substantial, as outlined by the term Π̂(i,j)

in Theorem 2 above. In 2SBMA we do allow for these occurrences, since a large Π̂(i,j) would

imply a failure in the model selection methodology during the first stage.

2.3 The Two-Stage Unit Information Prior

2SBMA requires a two-stage prior distribution over the parameters of the model. In the

context of Bayesian Instrumental Variable estimation, Dreze (1976) suggested the improper

prior

pr(β, θ,Σ) ∝ |Σ|−1/2 ,

for Equations (1) and (2). This two-stage prior is in part motivated by the standard improper

prior pr(β, σ) ∝ 1/σ placed on Bayesian regression problems.

Kleibergen and Zivot (2003) note that the Dreze prior may be poorly behaved as θ → 0.

Instead they suggest

pr(β, θ, φ, ω11·2, ω22) ∝ ω−111·2 |Ω|
−1/2 |θ′V ′V θ|1/2 , (11)

a prior that includes dependence on the first stage coefficients, θ. Kleibergen and Zivot

(2003) note that the posterior from this prior bears a number of similarities to the 2SLS

estimator. In particular, the conditional posterior of β when θ = θ̂ has mean and mode

equal to β̂2SLS.

While the Kleibergen and Zivot prior has a number of desirable properties, it is still

improper in several parameters. This may not have undue influence on standard Bayesian

posterior parameter estimation. Kass and Raftery (1995) note, however, that prior choices

can have a greater impact in the context of model comparison. Hence we seek to develop a

proper two-stage prior and choose to base our analysis on the Unit Information Prior (UIP),

which has been motivated in the context of BMA (Kass and Wasserman (1995), Raftery

(1995)). The UIP is a normal prior with a mean centered at the maximum likelihood

estimate and a variance equal to the inverse of the average information contained in one
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observation.

We construct a prior of the form

pr(β, θ, ω11·2, ω22, φ) = pr(β, ω11·2, φ|θ, ω22)pr(θ, ω22),

and specify a standard UIP on pr(θ, ω22), based on the likelihood in Equation (8). In the

second stage, we construct a prior that is conditional on the first stage, pr(β, ω11·2, φ|θ, ω22),

and specify a UIP for given values of (θ, ω22), based on the likelihood in Equation (9). By

Theorem 1, the resulting two-stage UIP centers β at β̂2SLS when θ is set to its mode, θ̂.

A prior over parameters of restricted models, (Mi, Lj), is specified in essentially the same

manner

pr
(
β(j), θ(i), ω

(i,j)
11·2 , ω

(i)
22 , φ

(i,j)
)

= pr
(
β(j), ω

(i,j)
11·2 , φ

(i,j)|θ(i), ω(i)
22

)
pr
(
θ(i), ω

(i)
22

)
,

where a UIP is again specified on pr(θ(i), ω
(i)
22 ). Then, conditional on a value of θ(i), we specify

a UIP on β(j).

By imposing the conditional independence assumption on the pair of models (Mi, Lj),

we can set Π̂(i,j) = 0. Therefore, when θ(i) = θ̂(i), the prior distribution for β(j) is centered

about β̂(i,j), and the two-stage UIP retains all properties of the Kleibergen and Zivot (2003)

prior. That is, the prior features a built-in dependence on θ, while its posterior mimics the

2SLS estimator.

2.4 Statistical Foundations of 2SBMA

2SBMA combines the 2SLS methodology discussed above with the standard BMA method-

ology reviewed below. 2SBMA processes the data much like a two-stage estimator while

addressing model uncertainty in both stages. The first stage is a simple application of BMA

to identify effective instruments. It is helpful to review the properties of BMA that are

implied in stage 1.

Let ∆ be a quantity of interest. In BMA, the posterior distribution of ∆ given the data,

D, is given by the weighted average of the predictive distribution under each model, weighted

by the corresponding posterior probabilities,

pr(∆|D) =
I∑
i=1

pr(∆|Mi, D)pr(Mi|D),

where pr(∆|Mi, D) is the predictive distribution given model Mi and pr(Mi|D) is the poste-

rior model probability of model Mi. The posterior model probability πi, for each first stage
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model Mi is given by

πi = pr(Mi|D)

∝ pr(D|Mi)pr(Mi),

where

pr(D|Mi) =

∫
pr(D|θ(i),Mi)pr(θ

(i)|Mi)dθ
(i)

is the integrated likelihood of model Mi with parameters θ(i). The prior densities for param-

eters and models are pr(θ(i)|Mi) and pr(Mi), respectively.

Under BMA, the posterior mean of θ is the sum of the posterior means of each model in

the collection M, weighted by their posterior probabilities

θ̂BMA =
I∑
i=1

πiθ̂
(i).

Similarly, the posterior variance is

I∑
i=1

πiσ̂
2
i +

I∑
i=1

πi

(
θ̂(i) − θ̂BMA

)2
.

The posterior variance highlights how BMA methodology accounts for model uncertainty.

The first term is the weighted variance for each model, σ̂2
i = V ar(θ̂(i)|Mi, D), averaged

over all relevant models, and the second term indicates how stable the estimates are across

models. The more the estimates differ between models, the greater is the posterior variance.

The posterior distribution for a parameter is a mixture of a regular posterior distribution

and a point mass at zero, which represents the probability that the parameter equals zero.

The sum of the posterior probabilities of the models that contain the variable is called the

inclusion probability. For instance, for instrument Zk we may write,

µBMA(θZk
) = pr(θ̂Zk

6= 0|D) =
∑
i∈Mk

πi,

whereMk is a collection of indices for which i ∈Mk implies model Mi does not restrict the

parameter θZk
to zero. Standard rules of thumb for interpreting µBMA have been provided by

Kass and Raftery (1995), modifying an earlier proposal of Jeffreys (1961). They suggested

the following effect thresholds: <50%: evidence against the effect, 50-75%: weak evidence

for the effect, 75-95%: positive evidence, 95-99%: strong evidence, and >99%: very strong

evidence4.

4From a decision theory perspective, one can imagine cases where a policy-maker might be interested in
a variable even when its posterior inclusion probability is below 50% ; see Brock and Durlauf (2001) and
Brock et al. (2003)
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In the case of 2SLS estimation in the presence of model uncertainty, the BMA framework

must be extended to account for model uncertainty at both stages. For models Mi and Lj,

we are now interested in

pr(Mi, Lj|D) = pr(Lj|Mi, D)pr(Mi|D). (12)

The decomposition in Equation (12) indicates the dependence that the probability of model

Lj has on the particular choice of model Mi, as each model Mi yields a slightly different

distribution for the fitted value of W . Furthermore, for a given value of θ(i), the quantity

pr(Lj|θ(i),Mi, D) is itself a regression problem with a particular UIP.

Denoting by νi,j the probability of model Lj given model Mi yields the 2SBMA estimator

β̂2SBMA =
I∑
i=1

J∑
j=1

πiνi,jβ̂
(i,j). (13)

Equation (13) shows that the 2SBMA estimate is formed as the average of each constrained

2SLS estimate that results from the combination of model Mi in the first stage, and model

Lj in the second stage, weighted by both the first and second stage model probabilities. To

calculate the posterior variance of β̂2SBMA we have the following result.

Theorem 3. Let β̂(i,·) =
∑J

j=1 νi,jβ̂
(i,j) be the model averaged estimate of β for a given first

stage model Mi. Then the variance of the estimate β̂2SBMA is

σ2
2SBMA(β) =

I∑
i=1

πiV ar(β|Mi) +
I∑
i=1

πi

(
β̂(i,·) − β̂2SBMA

)2
, (14)

where

V ar(β|Mi) =
J∑
j=1

νi,jV ar(β|Mi, Lj) +
J∑
j=1

νi,j

(
β̂(i,j) − β̂(i,·)

)2
,

is the BMA variance associated with second stage estimates for a fixed first stage model.

Proof See Appendix.

Theorem 3 shows that the variance of 2SBMA estimates can be decomposed into two

parts that yield interpretations similar to standard BMA variances. The first term is the

average of BMA variances associated with the models in the first stage, and the second term

represents the variation of a given first stage model’s BMA estimates relative to the overall

2SBMA estimate.

The posterior distribution of β̂2SBMA is again a mixture of a regular posterior distribution

and a point mass at zero, which represents the probability that the parameter equals zero.
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The sum of these posterior probabilities that contain the variable is then the inclusion

probability at the second stage. For instance, for the variable Xl we have

µ2SBMA(βXl
) = pr(β̂2SBMA

Xl
6= 0|D) =

I∑
i=1

∑
j∈Ll

πiνi,j,

where Ll is the subset of L for which the coefficient βXl
is not constrained to zero. We

continue to follow the standard rules of thumb for interpreting effect thresholds in the second

stage, as suggested by Jeffreys (1961).

A desirable feature of the 2SBMA estimator is that asymptotically it will resemble the

2SLS estimator. This is due to the fact that any proposed instrument or covariate that has

a zero coefficient in either the first of second stage will be dropped in the limit by the model

selection procedure. This yields the following result.

Theorem 4. The 2SBMA estimate is consistent under identification in the full model.

β̂2SBMA →p β when β̂2SLS →p β.

Proof See Appendix. This result mainly implies that one does not sacrifice consistency

when employing 2SBMA rather than 2SLS.

We further note that coefficients derived from instrumental variables regressions become

increasingly biased as the number of instruments increases (see, e.g., Hall (2005)). The bias

is aggravated when the proposed instruments have little explanatory power for the endoge-

nous variable (Bound et al. (1995)). While it is difficult to assess in general, the 2SBMA

methodology has the potential to limit this bias, by dropping unnecessary terms. The sim-

ulation study in Section 4 shows an instance in which this occurs.

3 Bayesian Tests of Identification Restrictions

Various tests have been developed to examine the instruments’ conditional independence (on

Y ) and explanatory power (for W ). Below we develop Bayesian equivalents of the Sargan

(1958) test of over-identification and the Cragg and Donald (1993) test of under-identification

that Stock and Yogo (2005) used to propose a weak instruments test. We then show how

model averaged versions of these tests can be used in the 2SBMA framework to verify model

assumptions, and we discuss the properties of such techniques.

To develop Bayesian versions of the Sargan test and the Cragg and Donald test we rely

on the notion of posterior predictive p-values. Rubin (1984) argued that posterior predictive
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p-values are useful tools in applied Bayesian statistics to verify model assumptions. Given

a hypothesis, H, about the model, the posterior predictive p-value given data is calculated

as pr(H|D). It quantifies the degree to which the hypothesis is supported by the posterior

distribution of the model parameters given the data D.

In the case of 2SBMA, when the hypothesis relates to the model identification, we consider

the following decomposition for model averaged posterior p-values

pr(H|D) =
I∑
i=1

J∑
j=1

πiνi,jpr(H|Mi, Lj, D). (15)

The decomposition in Equation (15) outlines the motivation for model averaged posterior

p-values. Since the hypotheses of primary interest are related to the identification of the

2SBMA estimate, it is natural to ask whether each sub-model which is used to form the

2SBMA estimate is appropriately identified. Naturally, different specifications yield varying

degrees of confidence in each specification’s identification.

It is then appropriate to weight posterior predictive p-values for each model by the extent

to which each model contributes to the 2SBMA estimate. Suppose a given model receives

the majority of the posterior model probability but tests indicate the specification is underi-

dentified. Even if all other models used to form the 2SBMA estimate are identified, the fact

that posterior means are largely formed from the underidentified model must be accounted

for in the model averaging context. This logic motivates the decomposition in Equation (15),

which gives rise to the model-averaged posterior predictive p-value.

3.1 A Bayesian Test of the Over-Identification Restrictions

By selecting first-stage models based on the integrated likelihood, we are explicitly choosing

combinations of instruments based on model fit. Hall et al. (1996) note that any procedure

that chooses the first stage based on goodness of fit measures may risk including endogenous

variables. Therefore, it is important to develop a diagnostic that helps assess whether the

model selection procedure has produced such an over-identification failure.

We base our test of over-identification on the Sargan (1958) test. Let η̂(i,j) be the residuals

from the combination of models Mi and Lj, and let pi,j be the total number of X and Z

included in this combination. The Sargan p-value S∗ is calculated as S∗ = pr(nR2
∗∗ >

χ2
pX+pZ−1) where R2

∗∗ is the R2 associated with the regression of η̂2SLS on all X and Z

variables.

Just as in the classical Sargan test, we consider the regression of η̂(i,j) on the subset of

the variables X and Z that belong to either Mi or Lj, and determine R2
ij, which is the R2
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associated with this regression. Letting S(i,j) = p(χ2
pi,j−1 > nR2

ij), we define the Bayesian

Sargan p-value to be

S2SBMA =
I∑
i=1

J∑
j=1

πiνi,jS
(i,j).

S2SBMA is therefore the average of the Sargan p-values derived from the specific models Mi

and Lj, weighted by their respective posterior probabilities.

The benefit of the Bayesian 2SBMA Sargan test is that the parsimony of 2SBMA effec-

tively mitigates the reduction in power that the traditional Sargan test experiences as the

dimensions of the X or Z variables grow. This increase in power can be big, as shown in the

simulation study below.

3.2 Bayesian Tests of Under-Identification and Weak Instruments

While it is crucial to verify that proposed instruments do not violate the conditional inde-

pendence assumption, it is also important to test that they have explanatory power for the

endogenous W . When W is univariate, this may be done by considering an F test based on

the first stage. However, when pW > 1, Cragg and Donald (1993) derived an equivalent test

for this. Here we derive a Bayesian analog of this test.

Consider fixed first and second stage models, Mi and Lj respectively. Let Zij be the

instruments used in this combination, namely all those variables in Z used in Mi and

those variables X used in Mi but excluded from Lj. Let Xj be those X contained in

Lj, and let Vij be the matrix of all X and Z variables included in either Mi or Lj. Define

PVij ≡ Vij(V
′
ijVij)

−1V ′ij andMVij ≡ In−PVij where In is the n×n identity matrix, and similarly

define PXj
≡ Xj(X

′
jXj)

−1X ′j and MXj
= In − PXj

, and finally define Gij ≡ Σ̂
−1/2
ij ΘijΣ̂

−1/2
ij

where Σ̂ij = W ′MVijW and Θij = (MXj
W )′MXj

Zij((MXj
Zij)

′MXj
Zij)

−1(MXj
Zij)

′MXj
W .

The Cragg and Donald statistic under model Mi and Lj can then be derived as the mini-

mum eigenvalue of Gij, gij = min eigenGij.

In practice, the statistic gij is used in two ways. Asymptotically, under the null hypoth-

esis of under-identification, ngij ∼ χ2
pZij
−1, and this reference distribution is used to derive

a posterior predictive p-value. Here we propose a Bayesian model-averaged version of this

posterior p-value by considering

CD =
I∑
i=1

J∑
j=1

πiνi,jpr(χ
2
pZij
−1 > ngij).

A second use of gij was suggested by Stock and Yogo (2005), but their test statistic

provides only critical values, not the necessary p-values that can be averaged when models
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have different numbers of instruments. The Bayesian approach can also be used to assess an

apparent weakness of an instrument. The approach is simple and direct: it simply requires

an examination of the instruments’ inclusion probabilities.

4 Simulation Study

We conduct a simulation study to quantify the estimation properties of 2SBMA and the

behavior of the Bayesian tests of the identification restrictions.

In the following we consider a framework in which there are ten variables in Z, 15 in X

and W is univariate. Our construction of the variables in X and Z is similar to the simulation

study in Fernandez et al. (2001), which was based in turn on Raftery et al. (1997).

For constructing X we let (X1 . . . X10) be an n× 10 matrix of independent draws from

a N(0, 1) distribution. We set

(X11 . . . X15) = (X1 . . . X5)(.3 .5 .7 .9 1.1)′(1 . . . 1) + E, (16)

where E is an n× 5 matrix of draws from the N(0, 1) distribution. Note that Equation (16)

induces a correlation between the first five regressors and the last five regressors. It takes

the form of small to moderate correlations between the first five variables in X and the last

five where the the theoretical correlation coefficients increase from 0.153 to 0.561.

The matrix Z is sampled in a similar manner. (Z1 . . . Z5) is an n×5 matrix of standard

normal variates and we then set

(Z6 . . . Z10) = (Z1 . . . Z5)(.3 .5 .7 .9 1.1)′(1 . . . 1) + F,

where F is an n× 5 matrix of independent draws from the N(0, 1) distribution. Finally, we

construct the model

Y = W + 1.8X1 + 1.5X2 +X11 − 1.5X12 + 2η, (17)

W = 1.1X1 − .5X3 + .75X12 + .75Z1 − 2Z8 + 3ε. (18)

Thus, we consider a situation in which four covariates along with W have explanatory

power for Y . Furthermore, two variables in Z serve as instruments and two of the variables

in X have explanatory power on both Y and W . Finally, one variable in X would be more

properly classified as an instrument, as it has explanatory power on W but not on Y .

We introduce endogeneity by drawing ε from a N(0, 1) distribution and setting η = ε+ ξ,

with ξ drawn from a N(0, 1) distribution as well. We then consider two scenarios. The first
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Figure 1: Finite Sample Bias under 2SBMA, 2SLS and OLS. Distribution of the estimate of the
coefficient βW across replications using 2SBMA, 2SLS and OLS, when βW = 1. The average bias
of β̂W across 500 replications was .019, .035 and .310 for 2SBMA, 2SLS and OLS respectively. The
average mean squared error for estimating the entire vector β was .213, .395 and .840 for 2SBMA,
2SLS and OLS respectively.
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scenario is one in which the IV model is correctly specified, i.e. the Z covariates have no

effect on Y . In the second scenario we consider a misspecified model in which η = Z1 + ε+ ξ,

so that the instrument condition fails. In each scenario we simulate datasets of 100 obser-

vations and consider 500 replicates. The simulation study is structured to roughly resemble

the data set we will be examining below.

Figure 1 shows the distribution of the estimate of βW across replications using 2SBMA,

2SLS and OLS. We see that the OLS estimates are centered about a value of 1.3. Indeed,

in this case the OLS estimate will asymptotically approach this value. Both 2SBMA and

2SLS rectify this bias and are more closely centered about the true value of 1. However, the

average bias and average mean squared error of 2SBMA are about 45% lower than those of

2SLS, so 2SBMA performs much better than OLS or 2SLS.

The first panel in Figure 2 shows the distribution of the p-values returned from the

Bayesian Sargan test as well as the traditional Sargan test. We see that the p-values from

the Bayesian Sargan test are much higher. However, these scores are still sufficiently low

that the exogeneity assumption is unlikely to be incorrectly rejected.

The second panel in Figure 2 shows the resulting Bayesian Sargan and classical Sargan

p-values for the case of a misspecified exogeneity assumption. In the case of valid instru-
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Figure 2: Distribution of p-values returned by the Bayesian Sargan test and the Sargan test across
replications when the IV assumptions hold (left) and when they do not (right). In all cases, a
nominal level of 5% was used, implying that the assumption of valid instruments would be rejected
when the p-value was above .95, shown by the dotted line in each plot. In the case of valid
instruments, the size of both tests was 0 (no false rejections). However, in the case of invalid
instruments the power of the Bayesian Sargan test was 50% (half the cases were correctly rejected),
whereas it was 0.8% using the traditional Sargan test (4 cases out of 500 were correctly rejected).
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ments, the size of both tests was 0. However, in the case of invalid instruments the power

of the Bayesian Sargan test was 50%, whereas it was 0.8% using the traditional Sargan test,

based on α = .05. We see that the Bayesian Sargan test is more precise in discerning the

failure of the exogeneity assumption and is far more likely to reject the hypothesis that the

IV assumptions are valid than the classical Sargan test. For the case of valid instruments,

both the classical and Bayesian Cragg-Donald tests correctly rejected the null hypothesis of

no identification for all repetitions.

The previous figures show that 2SBMA returns appropriate coefficient estimates and

yields dramatically improved power at detecting assumption violations over traditional meth-

ods. Table 1 shows that the technique also uncovers the pattern of interaction in both stages

of the estimation. When the model is correctly specified, Table 1 shows the median inclu-

sion probability for each variable across the 500 replications in both stages as well as the

interquartile range of the inclusion probabilities. We see that in the first stage the two vari-

ables in Z as well as the three variables in X are given high inclusion probabilities, while the

remaining variables are generally excluded. This remains true in the second stage as well,

where W and the four covariates in X that have explanatory power are given large inclusion
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probabilities and all others are given negligible inclusion probabilities.

5 Instrument and Determinant Uncertainty in Devel-

opment Accounting

We now apply 2SBMA to one of the most prominent approaches to institutions in the

development accounting literature.5

Rodrik et al. (2004) (RST) conducted an explicit “horse race” of theories that pertain

not only to development determinants (geography, integration and institutions), but also to

a wide range of theories that suggest alternative instruments. With less than 100 observa-

tions, the RST sample is a standard size of datasets in development accounting. The model

uncertainty RST highlight among development determinants and instruments is a defining

feature of the literature.

RST explored over 25 different robustness specifications with alternative candidate re-

gressors that are suggested by a comprehensive set of theories that span the literature. Their

results are so uniform and decisive across all specifications that their claim to have resolved

model uncertainty is well captured by their title: “Institutions rule: the primacy of institu-

tions over geography and integration in economic development.” At best RST find geography

may have weak direct effects while Integration is found to be “always insignificant, and of-

ten enters the income equation with the ‘wrong’ sign.” Their results are, however, in stark

contrast to previous evidence of Trade/Integration, and Geography effects on development

(e.g., Hall and Jones (1999), Sachs (2003)); but these papers were discounted because they

did not provide RST’s level of robustness analysis.

Using RST’s own data set, we reexamine their robustness specifications using 2SBMA to

5Our computations use the bicreg function from the BMA R package (Raftery et al. (2005)), since the
Bayesian Information Criteria (BIC) closely approximates the posterior model probability under the UIP
(Kass and Wasserman (1995), Raftery (1995)). Since the two-stage UIP is proper in all parameters, and
being a nested set of UIPs, it allows for BIC approximations of the integrated likelihood in both the first and
second stages. For a given value of θ(i), the quantity pr(Lj |θ(i),Mi, D) is given by a regression model with a
particular UIP and therefore well approximated by the BIC. In addition we can approximate pr(Lj |Mi, D)

with pr(Lj |θ̂(i), D) and calculate BIC relative to this θ̂(i). The conditional independence assumptions of

(Mi, Lj) enable us to set Π̂(i,j) = 0. Thus in our BIC approximation the likelihood pr(β|Lj , θ̂
(i), D) is

maximized at β̂(i,j) defined in Equation (7). Note that BIC can be calculated from the associated R2 of the

regression. By calculating the model probability νi,j conditional on the fitted value V (i)θ̂(i) of W , we note
that the resulting R2 is equivalent to using the “Generalized R2” suggested by Pesaran and Smith (1994)
for scoring the second stage model Lj .

18



address the model and instrument uncertainty that is highlighted so forcefully in their paper.

The 2SBMA first and second stages are reported in Tables 2 and 3, respectively. In terms of

development determinants, RST assume that Geography is exogenous, so the upper panel

in Table 2 represents the first stage for the endogenous institutions proxy (Rule of Law) and

the lower panel in the same table is the first stage for the endogenous Integration variable.

Given the 2SBMA methodology, it would be enough to present only the 2SBMA results

that explore the entire model space spanned by RST’s development determinants and the

associated instruments. This specification is provided in Column 3. We first provide, how-

ever, two intermediate stages, where Column 1 represents RST’s “core specification” (RST’s

Table 2) and Column 2 is the first set of RST’s robustness exercises. The three-step approach

highlights the sensitivity of the core specification to the introduction of additional covariates

that are associated with different theories (in Column 2), as well as sensitivity to different

variables associated with the different theories (in Column 3).

Column 1 in Table 3 provides the second stage of RST’s preferred core specification

(RST’s Table 2). Both RST and 2SBMA find that only Rule of Law shows an effect and the

conditional posterior mean is nearly identical to RST’s 2SLS estimate. In this specification,

the 2SBMA result confirms RST’s central finding that “the preferred specification accounts

for about half of the variance in incomes across the sample, with institutional quality (in-

strumented by settler mortality) doing most of the work.” The generalized R2 for the best

2SBMA model is 0.53 versus 0.55 in RST’s 2SLS approach.

Column 1 in Table 2 reports the two 2SBMA first stages for RST’s core specification.

They broadly confirm the 2SLS results in RST although 2SBMA suggests slightly more

parsimonious models. 2SBMA suggests three strong instruments for Rule of Law (Settler

Mortality, Latitude, and the Fraction Speaking English), while RST found significant coef-

ficients for all five instruments across their various 2SLS exercises. This generates a slightly

higher R2 for RST’s preferred 2SLS specification (0.55) as compared to the best model in

2SBMA (0.49). For Integration, the 2SBMA first stage suggests only two strong instruments

(Implied Trade Shares and Settler Mortality) while 2SLS produces a statistically significant

coefficient for an additional instrument (Fraction Speaking English). Nevertheless the R2 of

the 2SBMA best model and of the 2SLS first stage are identical (0.58).

RST find that core specifications with more than one instrument fail to pass the Sargan

test. This finding is confirmed by the Bayesian Sargan test in Column 1 of Table 3, which

presents a similar p-value to that found by RST. One interpretation is that the Sargan test

undermines alternative determinant and instrument strategies as suggested by RST. One

could also argue, however, that RST’s specification does not contain the appropriate set

of instruments. We examine this issue further below but note that already at this stage,
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under-identification (as measured by the Bayesian Cragg-Donald p-value) is easily rejected

by 2SBMA (not reported in RST). Weak instruments are not of concern in this data set.

The 2SLS results in RST’s core specification and the 2SBMA results in Column 1 are

nearly identical because the core specification includes minimal model uncertainty at the

determinant level and only a fraction of the standard instruments suggested by the devel-

opment literature. Column 2 adds regressors suggested by alternative theories that pertain

to Legal Origins and Religion, as well as regional dummies, while Column 3 represents the

most comprehensive set of regressors that adds standard covariates related to alternative

Geography theories (most notably Temperature, Malaria) as well as alternative Integration

measures (such as Sea Access). As we allow for additional theories and the associated regres-

sors, the 2SBMA results start to diverge from the results in RST’s individual 2SLS robustness

regressions. In other words, the disparities across results become more pronounced as model

uncertainty increases.

The 2SBMA results that use the most comprehensive set of instruments and development

determinants (Column 3 in Tables 2 and 3), cast doubt on the primacy of institutions result.

Instead 2SBMA finds that the “horse race” ends in a statistical three-way tie. Geography (as

measured by Tropics), Institutions and Integration are shown to be highly effective develop-

ment determinants. This result is particularly surprising in light of the fact that Geography

is only occasionally weakly significant in RST, and Integration is never significant and often

of the wrong sign. In 2SBMA all three effects are strong and estimated with the correct sign.

Once model uncertainty is comprehensively addressed at both the development determinant,

as well as the instrument level, the results thus support the contentions of Sachs (2003) and

Alcalá and Ciccone (2004), who report strong effects of Geography and Integration.

The divergence of 2SLS and 2SBMA results can already be observed in the first stages.6

Most importantly, the Implied Trade Share no longer receives support as a strong instru-

ment for Integration. It is most strongly instrumented by EuroFrac in combination with the

covariates PopGrowth, Oil, SeaAccess, Malaria94, EuroFrac, Tropics, Latitude, FrostArea,

and PolicyOpenness. In contrast to the findings of RST, religion variables also play an im-

portant part in the first stage regression. In particular, Catholic has nearly a 90 percent

inclusion probability in the first stage for Rule of Law and above 50 percent in the first stage

for Integration. Similarly, the power of Settler Mortality as an instrument for Institutions is

dominated by regressors such as EuroFrac and Temperature variables in both first stages.

Note that the increase in the model space of development determinants and instruments

going from the specification in Column 1 to Column 3 dramatically improves the fit of the

2SBMA first stage. For Column 3, the best models in both 2SBMA first stages report an

6RST report neither first stages nor tests of instrument restrictions beyond the core specification.
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R2 that is at least 40 percent greater than those found in the core specification.

A similar improvement in model fit can be observed in the second stage when considering

the generalized R2 (Pesaran and Smith, 1994) of the best model returned by 2SBMA. In fact,

none of the top 100 models’ generalized R2 falls below .82, which greatly exceeds any model

presented by RST (whose highest generalized R2 is .73). 2SBMA has therefore uncovered

combinations of instruments and development determinants that fit the data substantially

better. This is then the source of the difference in the 2SLS and 2SBMA results in both

the first and second stages. The Bayesian Sargan and Bayesian Cragg and Donald tests

clearly show, respectively, that over-identification is easily rejected with the improved set of

instruments and that under-identification remains of little concern.
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6 Conclusion

We have developed a methodology to address model uncertainty in the presence of endogene-

ity and explored its properties as a valid IV estimator. The method is based on Bayesian

Model Averaging (BMA), which has already been extensively used in economic applica-

tions, particularly in modeling economic growth and development. 2SBMA is shown to

be a consistent methodology that merges the BMA and 2SLS procedures in a natural and

straightforward manner.

Resolving endogeneity via IV estimation may take a number of forms, such as LIML es-

timators or GMM estimation. We have chosen to focus on extending the 2SLS estimator for

two reasons. Primarily, we feel that 2SLS is the IV technique most familiar to the applied

economist, and the 2SBMA method is a manner of automatically performing the assess-

ment of model uncertainty that frequently occurs “off-site” in economic modeling exercises.

Secondly, the 2SBMA estimator builds naturally on the BMA methodology for regression

variable uncertainty that is already well-established in the statistical and econometric liter-

atures.

Alternative approaches, for instance addressing model uncertainty in LIML models, would

have required reconsideration of many questions raised in model uncertainty and averaging

exercises. For instance, prior elicitation, model search, the potential for approximations of

the integrated likelihood, and posterior parameter estimation would have to be considered.

While such exercises are certainly worth pursuing, by basing our framework on 2SLS we were

able to refer to the resolution of these issues in regression variable uncertainty problems, an

association that would be impossible in a framework such as LIML.

In order to extend the 2SLS paradigm to a Bayesian context, we introduced a Two-Stage

UIP, which built on the development of the Bayesian two-stage prior of Kleibergen and

Zivot (2003). Lancaster (2004) outlines methods for Bayesian IV estimation that are not

designed to mimic 2SLS, but use proper priors over model parameters. Posterior parameter

distributions are then determined through Markov Chain Monte Carlo (MCMC) methods.

A potential alternative to the 2SBMA methodology would be to augment the model de-

scribed by Lancaster (2004) to incorporate model uncertainty. This could involve use of

the Reversible Jump MCMC algorithm (Green, 1995). We have avoided this approach, as

trans-dimensional Markov Chains are often difficult to implement in high dimensional spaces

and may have convergence issues. By using 2SBMA methodology, in contrast, we were able

to leverage existing widely-used software for regression variable uncertainty.

A key assumption in our development was that the errors were normally distributed.

Such an assumption is not necessary in order for standard 2SLS to function properly as a
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consistent estimator, but it was important in specifying our two-stage UIP and is similar to

most Bayesian developments of the endogenous variable model (Kleibergen and Zivot, 2003;

Lancaster, 2004; Rossi et al., 2006). Relaxing the normality assumption therefore constitutes

a important further step in the development of this methodology. One potential avenue for

performing this relaxation is to consider extending the Dirichlet process approach employed

by Conley et al. (2008).

In the context of GMM estimation, Andrews (1999) proposes a methodology for simulata-

neous model and moment selection. This methodology resembles that of the BIC calculation

in that it has two parts: one pertaining to the estimator from this model/moment combina-

tion, and a penalty term. However, in place of the maximized log-likelihood that is included

in BIC, Andrews (1999) uses the J-statistic first described by Hansen(1982), which is a gen-

eralization of the Sargan (1958) statistic for GMM models. Andrews (1999) then shows that

this model selection criterion is a consistent technique when the BIC penalty is used, but

is inconsistent using an AIC penalty. Andrews and Lu (2001) continue this development,

applying GMM estimation to dynamic panel data models using these criteria. Donald and

Newey (2001) propose an alternative methodology for selecting instruments in IV models

which they base on minimizing the mean-squared error implied by the IV estimates. They

show that this leads to diminished estimation bias similar to that displayed in the simulation

study above. The authors note that their technique for selecting instruments differs from

that proposed by Andrews (1999) in that their objective is to choose instruments from a

small set known to be valid, while the procedure of Andrews (1999) is best suited for finding

the largest set of valid instruments. Kapetanios (2006) extends this selection procedure by

devloping a search method based on genetic algorithms that finds the instrument set which

minimizes the mean-squared error quickly, even in the presence of a large instrument set.

When there are many weak instruments asymptotic properties of IV and GMM estima-

tors may not behave properly (Stock and Wright, 2000; Chao and Swanson, 2005). This has

led to a number of techniques to handle many weak instruments (Chamberlain and Imbens,

2004; Flores-Lagunes, 2007; Okui, 2009). The 2SBMA methodology shares characteristics

of this methodology, but differs in its focus and use. The frameworks considered in the weak

instrument literature are typically motivated by datasets such as that considered by Angrist

and Krueger (1991), who study the effect of compulsory schooling on academic performance.

This dataset is quite large, with several hundred thousand observations. Furthermore, there

are over 500 proposed instruments in this model, none of which is felt to have strong explana-

tory power. The methods above perform well in analyzing the Angrist and Krueger (1991)

data, in that they mitigate the effect the extreme number of instruments has on estimation.

However, 2SBMA is developed with an alternative focus. We have created an estimation
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procedure that performs well in datasets of small sample sizes and with considerably fewer

proposed instruments than encountered in Angrist and Krueger (1991). This is due to our

focus on situations such as development accounting and the modeling of growth determi-

nants. Furthermore, as highlighted in the inclusion probabilities shown in Table 2, we are

considering a situation in which we believe there exist instruments with strong explanatory

power for the endogenous variable. Thus our primary goal is to characterize instrument and

covariate relevance through posterior inclusion probabilities.

The 2SBMA methodology also offers a means of model averaging over a large class of

models, while the methodology derived to handle many weak instruments typically focuses

on finding a single coefficient estimate. Recent work has developed similar model averaging

methodology in alternative classes of IV and GMM estimation problems (Chen et al., 2009;

Morales-Benito, 2009), typically in the context of panel data models. These developments

share many of the aspects of the 2SBMA estimator. However, because our focus is not on

panel data estimation, we are able to derive model probabilities in a more straightforward

manner than others. A particularly nice feature of 2SBMA is that it separates the problem

into two stages, which can then be addressed directly using standard techniques for regres-

sion variable uncertainty.

Instrumental variable estimation of any kind requires a number of assumptions that re-

late to the identification of the implied structural model. To examine the validity of these

assumptions in the context of 2SBMA, we propose Bayesian Sargan and Bayesian Cragg

and Donald tests of the over- and under-identification restrictions. These tests are based

on averaged posterior p-values within the 2SBMA framework. We show that the power of

these tests is substantially greater than those of standard 2SLS tests. In addition, within

the context of 2SBMA these tests are less affected by an increase in the number of potential

instruments.

We apply 2SBMA to a prominent development accounting approach (Rodrik et al.

(2004)), which was itself motivated by the vast model uncertainty associated with alterna-

tive theories of development and alternative instruments to control for potential endogeneity.

Instead of resolving the model uncertainty in a horse race of alternative regressions, we use

the formal 2SBMA approach. We find not only support for institutions, but also substantial

support for geographic and trade factors, once model uncertainty in the presence of endo-

geneity is addressed. The latter two effects had been relegated to second order effects by

RST.

The purpose of our paper is to introduce the statistical foundations of 2SBMA method-

ology and provide applications that highlight the importance of instrument and covariate

uncertainty in economics. In the context of the RST example, alternative approaches to de-
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velopment accounting include Mauro (1995), who first suggested ethnolinguistic fragmenta-

tion as a fundamental determinant of corruption, and Hall and Jones (1999), who introduced

Latitude and Language indicators as instruments to measure Western influence. Acemoglu

et al. (2001b; 2001a) suggested population density in 1500 and the type of colonial origin

(indicated by settler mortality) as effective instruments, respectively. La Porta et al. (2004)

presented yet another ”horse race” of theories, in their case juxtaposing judicial independence

and constitutional review. In RST the ”horse race” is between three possible determinants:

Institutions, Integration, and Geography. Geography-based theories of fundamental devel-

opment determinants have previously been proposed by Bloom and Sachs (1998), Easterly

and Levine (2003), and Sachs (2003).

Several modifications of the BMA paradigm have been proposed in the development de-

terminant literature. Brock et al. (2003) and Durlauf et al. (2008) discuss priors on the

model space that account for the fact that many variables may be collected to proxy one

particular theory, while fewer may be available to proxy an alternative theory. Ley and

Steel (2007) and Doppelhofer and Weeks (2009) develop metrics to quantify the degree to

which development determinants act “jointly” to affect growth. Determining how these ex-

tensions of the BMA paradigm may be taken into account in the 2SBMA framework would

help extend the application of 2SBMA to the particular problem of testing growth theory

robustness.

The 2SBMA method allows researchers to incorporate concepts of model uncertainty and

model averaging into the assessment of a diverse range of economic behavior where observa-

tions are subject to endogeneity. However, the current framework does not directly handle

such concepts as panel data, mixed effects, random coefficient models, and heteroskedastic-

ity. Future research into these areas will improve the applicability of the BMA framework

to economic analysis, in growth economics and beyond.
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Table 1: Median and interquartile range (IQR) of variable inclusion probabilities across 500 repeti-
tions. Variables shown in bold are those that are included in either the first or second stage. This
table shows that inclusion probabilities closely match the true structure of the system.

First Stage Second Stage
Variable Median IQR Median IQR
W – – 1 (1,1)
X1 1 (1,1) 0.761 (0.573,0.999)
X2 0.017 (0,0.064) 0.588 (0.222,0.962)
X3 0.561 (0.167,0.943) 0.065 (0.018,0.064)
X4 0.031 (0,0.081) 0.092 (0.023,0.096)
X5 0.031 (0,0.102) 0.09 (0.024,0.086)
X6 0.019 (0,0.082) 0.091 (0.015,0.094)
X7 0.014 (0,0.067) 0.086 (0.014,0.083)
X8 0.026 (0,0.084) 0.077 (0.018,0.07)
X9 0.018 (0,0.077) 0.077 (0.016,0.088)
X10 0.014 (0,0.074) 0.072 (0.014,0.065)
X11 0.021 (0,0.088) 0.473 (0.1,0.874)
X12 1 (1,1) 0.72 (0.492,0.987)
X13 0.016 (0,0.076) 0.094 (0.023,0.08)
X14 0.02 (0,0.096) 0.107 (0.027,0.109)
X15 0.022 (0,0.096) 0.112 (0.027,0.117)
Z1 0.908 (0.963,1) – –
Z2 0.074 (0,0.066) – –
Z3 0.079 (0,0.063) – –
Z4 0.077 (0,0.068) – –
Z5 0.082 (0,0.073) – –
Z6 0.079 (0,0.066) – –
Z7 0.083 (0,0.066) – –
Z8 1 (1,1) – –
Z9 0.075 (0,0.063) – –
Z10 0.1 (0,0.089) – –
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Table 2: First Stage Results for RST Example

I II III
RST Table 2 RST Table 2, 4 RST Table 2, 4, 5, 6

Core Specification I + LegalOrig, Relig, Region II + Alt. Integr./Geo Measures
Stage 1, Dependent Variable: Rule of Law

p 6= 0 Mean Sd p 6= 0 Mean Sd p 6= 0 Mean Sd
SettlerMortality 92.7 -0.21189 0.07113 25.5 -0.10696 0.07218 17.1 -0.02528 0.06317
EuroFrac 16.5 0.23 0.23093 99.9 1.66071 0.31244 100 1.03 0.2994
Catholic 14.9 -0.00478 0.00381 89.9 -0.01405 0.00576
MeanTemp 86.8 -0.05535 0.02794
PopGrowth 72.5 -0.1011 0.08351
SubSaharaAfrica 10.7 -0.34126 0.30796 55.5 -0.2287 0.2442
Muslim 13 -0.00434 0.00393 40.2 -0.00204 0.003
Latitude 89.7 0.02254 0.00792 99.1 0.02919 0.00732 20.5 0.00411 0.00938
LatinAmerica 99.9 -1.00161 0.27639 14.9 -0.1277 0.3428
Area 12.8 .02582 .07443
Oil 8.8 -0.03573 0.1377
FR Trade Shares 38.5 0.17551 0.09726 99 0.28821 0.08545 8 -0.01918 0.08153
Tropics 7.9 -0.02392 0.1062
EngFrac 98.6 1.07778 0.28172 12.2 0.37306 0.35301 7.5 0.04617 0.201
FrostArea 6.3 0.04695 0.2127
Protestant 10.7 -0.00702 0.00619 3.8 0.00026 0.00159
FrostDays 1.9 0.00043 0.00725
LegalOrigFr 46.7 -0.30591 0.15008 1.8 -0.00387 0.03538
SeaAccess 1.4 0.00211 0.02705
PolicyOpenness 1.1 0.00268 0.03683
EastAsia 91.4 0.72988 0.25051 0 0 0
Malaria94 0 0 0
LegalOrigSocialist 63.9 -0.77728 0.36386 na na na
BIC best model -41.53 -53.81 -51.42
R2 best model 0.49 0.66 0.75

Stage 1, Dependent Variable: Integration
p 6= 0 Mean Sd p 6= 0 Mean Sd p 6= 0 Mean Sd

FR Trade Shares 100 0.5985 0.0612 100 0.5769 0.0502 0.7 -0.086 0.1074
LegalOrigSocialist 20.1 -0.2561 0.2001 na na na
PopGrowth 100 -0.2735 0.0285
SeaAccess 94.8 -0.3023 0.106
Oil 94.4 0.3445 0.1284
Malaria94 91.8 -0.4383 0.1399
EuroFrac 14.4 -0.1053 0.1389 6.1 0.0563 0.1329 81.2 -0.5145 0.1826
Tropics 73.1 0.4392 0.1921
Latitude 23.5 -0.0065 0.005 4.9 0.0003 0.0039 72.7 -0.0164 0.007
FrostArea 65.3 0.497 0.2019
PolicyOpenness 59.1 0.3468 0.1391
Catholic 7.3 0.001 0.0014 52.5 -0.0036 0.0018
SettlerMortality 84.9 -0.1111 0.0408 9 -0.0349 0.0371 50.2 -0.1077 0.0579
EastAsia 100 0.8236 0.139 28.2 0.2917 0.1663
EngFrac 23.2 0.246 0.1865 83.6 0.382 0.1431 24.7 -0.6486 0.3051
FrostDays 17.1 0.0217 0.0125
LatinAmerica 6.3 -0.0448 0.1147 16.6 -0.4149 0.1899
MeanTemp 13.5 -0.0225 0.0118
SubSaharaAfrica 5.3 -0.033 0.0925 4 -0.1922 0.1627
LegalOrigFr 6 0.0464 0.1039 3.8 -0.095 0.0902
Protestant 11.9 0.0041 0.0035 0.7 0.0024 0.0029
Muslim 5.3 -0.0005 0.0012 0.2 -0.0007 0.0015
Area 0.2 0 0
BIC best model -61.22 -84.37 -54.57
R2 best model 0.58 0.71 0.81
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Table 3: Second Stage Results for RST Example

I II III
RST Table 2 RST Table 2, 4 RST Table 2, 4, 5, 6

Core Specification I + LegalOrig, Relig, Region II + Alt. Integr./Geo Measures
Stage 2

p 6= 0 Mean Sd p 6= 0 Mean Sd p 6= 0 Mean Sd
Rule of Law 100 1.2775 0.1772 100 0.9485 0.1323 96.4 0.7979 0.3155
Integration 20 0.1119 0.2578 7.4 0.0697 0.1451 84.7 0.9275 0.3803
Tropics 69 -0.7828 0.37
Area 57.1 .164 .171
SubSaharaAfrica 97 -0.7487 0.1998 50.7 -0.5319 0.3077
Catholic 36.2 0.0043 0.0028 50.6 0.01 0.0072
PolicyOpenness 49.4 0.6857 0.368
PopGrowth 46.7 0.2099 0.1473
Muslim 50.3 -0.0044 0.0025 43.8 -0.0043 0.0035
LatinAmerica 10.1 0.0984 0.2858 36.1 0.6529 0.3652
LegalOrigFr 29.5 0.2083 0.2065 34.6 0.29 0.1682
FrostArea 33.3 1.2204 0.8814
FrostDay 31.3 -0.0621 0.0383
MeanTemp 22.2 0.0323 0.0433
EastAsia 22.8 0.3345 0.3127 19.5 0.532 0.3898
Latitude 18.3 -0.0019 0.0143 10.8 -0.0058 0.0099 18.6 -0.0168 0.0162
Oil 18 0.323 0.2919
Malaria94 7.3 -0.243 0.4787
SeaAccess 5.6 -0.0698 0.3142
Protestant 8 -0.0027 0.006 1.9 -0.0016 0.0069
LegalOrigSocialist 41 -0.6144 0.4917 na na na
BIC best model -57.34 -92.34 -77.12
Generalized R2 best model 0.53 75.10 85.70
Bayes/Sargan p-value 0.0308 0.7581 0.8438
Bayes/Cragg-Donald p-value 0.0000 0.0000 0.0097
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Appendix

Proof of Theorem 1: In what follows, for a matrix A, let PA = A(A′A)−1A′ and MA =

I −PA. The likelihood equations follow directly from the marginal distribution of ε and the

conditional distribution of ξ given ε. Furthermore, the fact that θ̂ maximizes Equation 8

follows directly from standard results for the MLE of a regression equation.

Now, consider β. Note that if Û is in the column space of V , which occurs in this case,

then Û = PVU . By moving to log likelihoods, and differentiating with respect to the vector

β we see that

β = (Û ′Û)−1Û ′Y + φ(Û ′Û)−1Û ′ε̂ (A-1)

but note that

Û ′ε̂ = U ′PV MV V = 0

Since PV MV = 0, thus Equation A-1 becomes β = β̂2SLS.

Proof of Theorem 2: This follows directly from the proof of Theorem 1. However, we

note that it is possible that Û (j) may not be written as PV (i)U (j) for arbitrary Mi and Lj,

which causes the additional φ(i,j)Π(i,j) to be present.

Proof of Theorem 3: Note that using the standard BMA results, the variance of β̂2SBMA

can be written as

σ2
2SBMA(β) =

I∑
i=1

J∑
j=1

πiνi,jV ar(β̂
(i,j)) +

I∑
i=1

J∑
j=1

πiνi,j(β̂
(i,j) − β̂2SBMA)2. (A-2)

Rewriting this we have,

σ2
2SBMA(β) =

I∑
i=1

πi

{
J∑
j=1

νi,j

[
V ar(β̂(i,j)) + (β̂(i,j) − β̂2SBMA)2

]}
, (A-3)

=
I∑
i=1

πi

{
J∑
j=1

νi,j

[
V ar(β̂(i,j)) + (β̂(i,j) − β̂(i,·) + β̂(i,·) − β̂2SBMA)2

]}
, (A-4)

=
I∑
i=1

πi

{
J∑
j=1

νi,j

[
V ar(β̂(i,j)) + (β̂(i,j) − β̂(i,·))2 + (β̂(i,·) − β̂2SBMA)2

]}
, (A-5)

which results since,
J∑
j=1

νi,j(β̂
(i,j) − β̂(i,·))(β̂(i,·) − β̂2SBMA) = 0.
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Reordering the terms we then obtain

σ2
2BMA(β) =

I∑
i=1

πiV ar(β|Mi) +
I∑
i=1

πi(β̂
(i,·) − β̂2SBMA)2,

as desired.

Proof of Theorem 4: For convenience, suppose that M1 ∈ M is the true model for the

first stage. By true model, we do not mean the underlying model that gave rise to W , but

the correct subset of V for which the associated elements in θ are not zero. Then,

π1 →p 1 and πj →p 0, j 6= 1 as n→∞.

by the consistency of the model selection procedure. Furthermore, suppose that L1 ∈ L is

the true second stage model. Then,

ν1,1 →p 1 and ν1,j →p 0, j 6= 1 as n→∞.

Therefore,

β̂2SBMA →p β̂
(1,1).

Finally consider β̂2SLS. We know that β̂2SLS →p β by the consistency of the technique.

Furthermore, since the first and second stage estimates of 2SLS are individually consistent

we have β̂2SLS →p β̂
(1,1) provided M1 and L1 are the true first and second stage models.

Thus, β̂(1,1) →p β, showing the technique is consistent.
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