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1 Introduction

The objective of this paper is to study the properties of kriging predictors when using derivative
information such as slope and curvature.

The best linear unbiased predictors for random fields (random functions) are the so called
kriging predictors. In the particular case of a Gaussian random field these are also optimal in the
maximum likelihood sense. Kriging predictors were first described by the French mathematician
George Matheron (Cressie, 1990) for use in mining applications. By now, kriging has become a
standard technique described in several textbooks such as Journel and Huijbregts (1978), Ripley
(1981), Ripley (1988), Cressie (1993), and Christakos (1992). The main applications of kriging are
still within earth sciences such as mining, petroleum exploration, hydrology, and meteorology, see
e.g. Soares (1993) or Baafi and Schofield (1997). Thus, the random fields considered are usually
defined on Rd where d = 2, 3 or 4 in spatial-temporal settings. Recently, kriging techniques in
a high dimensional parameter space has found its way into the exploration and utilisation of
experimental designs (Sacks et al., 1989a,b).

Derivative data have hardly been considered in applications of kriging. An important rea-
son is that genuine derivative data are rare, but also of importance is that few are aware of the
possibility of using gradient and curvature data. Thus, its collection and utilisation are seldom
promoted. There are a few exceptions found in the literature. Gradient data has been used within
the petroleum exploration industry for mapping geological structures. Shiyi (1983) use gradient
data for mapping a geological subsurface and Renard and Ruffo (1993) use gradient data obtained
from a dip meter to improve the prediction of a seismic reflecting subsurface. Chauvet et al. (1976)
use observations of atmospheric pressure and wind velocity—which to a certain approximation
are proportional but perpendicular to the pressure gradient—to predict the pressure field. When
performing computer experiments derivatives from sensitivity studies are occasionally present.
Morris et al. (1993) exploit this by predicting a response surface in R8 using ordinary kriging.
They report that using gradient information reduces empirical errors by a factor 4–10 depending
on the experimental design. Mardia and Little (1994) and Mardia and Kent (1996) discuss kriging
and splines with derivative and curvature information applied to deformations with landmark,
tangent, and curvature constraints for medical imaging. None of these authors study the influ-
ence of derivative data on the prediction error.

Derivatives of any order are considered below, but special emphasis is given to first order
derivatives (gradients). The conclusion is that derivative data carry valuable information and
reduce prediction errors dramatically. The price of including the derivative data is that a larger
linear equation system must be solved. The size of this system is proportional to the number of
observations and should not be prohibitively large in applications where derivative data prove
important, that is, in under-sampled spaces or in situations where data collection is expensive.

The number of covariance functions between derivatives becomes large. However, exploiting
symmetries such as isotropy simplifies calculations of the necessary covariance functions consid-
erably.

When considering gradient data the existence of the gradient field is tacitly assumed. Continu-
ity and differentiability of a Gaussian random field is determined by the behaviour of the covari-
ance functions for small separations (assuming a regular expectation). Two types of continuity
(and differentiability) are usually considered; sample function continuity and mean square conti-
nuity (Adler, 1981). The first is a property related to the shape of the covariance functions whereas
mean square continuity is ensured if the covariance function is continuous at the diagonal. For
separable (Doob, 1953) Gaussian random fields the distinction becomes almost absent. Adler
(1981, pp. 59ff) gives conditions ensuring sample path continuity for Gaussian random fields.
These conditions are almost impossible to violate without adding a white noise component—
which is mean square discontinuous. This carry over to differentiability; the crucial condition be-
comes mean square differentiability ensured by covariance functions having continuous deriva-
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tives in each coordinate. For isotropic covariance functions this amounts to requiring that the co-
variance function is two times differentiable at the origin. This imposes restrictions on the choice
of covariance functions. Some of the most widely used covariance functions—the spherical and
the exponential—do not comply to these requirements. On the contrary, the widely used Gaus-
sian covariance function possesses an infinite number of derivatives. This implies that sample
functions are analytical with probability one. This could be a reasonable assumption when inter-
polating the response surface between points obtained from computer experiments. For natural
phenomena however, something between non-differentiable and infinite differentiable sample
functions should be more appropriate. Some alternatives will be given.

1.1 Organisation
The next section establishes the method of kriging for predicting Gaussian random fields and is
proceeded by a short discussion of spatial symmetries and tensors. In Section 4 gradient fields
and the properties of the associated covariance functions and tensors are treated. Especially the
implications of isotropy is treated in detail. Some examples illustrating the use of gradient data
in R1 and R2 are given. These include behaviour near an observation and the use of seismic and
bore-hole data from a North Sea petroleum reservoir to predict the depth to a geologic subsurface.
In Section 8 higher order derivatives are considered and an example in R1 including the 9th order
derivative is given. This is followed by some discussion in Section 9.

Spatial symmetries such as stationarity and in particular isotropy simplify the various covari-
ance functions significantly. The theoretical results are developed in Section A. Finally some
alternative covariance functions for differentiable Gaussian random fields are given in Section B.

2 Kriging

2.1 Simple kriging
Consider a (real valued) Gaussian random field X(t) where t = [t1, . . . , td] ∈ Rd, and assume that

E
{
X(t)

}
= 0 and cov

{
X(t), X(s)

}
= C(t, s),

where C(t, s) is a known covariance function. Furthermore, assume that X(t) has been observed
at n distinct locations: t1, . . . , tn. The objective of kriging is to predict the value of X(t) at an
arbitrary location t, given the observations XT =

[
X(t1), . . . , X(tn)

]
. The optimal predictor, in

the minimum variance sense and the maximum likelihood sense, is the conditional expectation
of X(t) given the observations X :

X∗(t) = E
{
X(t)|X

}
.

The squared prediction error is the conditional variance:

σ2
X∗(t) = E

{
X∗(t)−X(t)

}2
= var

{
X(t)|X

}
.

Denote by K the covariance matrix of the observations and let the vector k(t) be the covariances
between X(t) and the observation vector:

Kij = cov
{
X(ti), X(tj)

}
= C(ti, tj); i, j = 1, . . . , n

ki(t) = cov
{
X(t), X(ti)

}
= C(t, ti); i = 1, . . . , n.

Using well known formulae for conditional expectation and variance of a multivariate Gaussian
distribution give

X∗(t) = kT (t)K−1X(1)

σ2
X∗(t) = C(t, t)− kT (t)K−1k(t).(2)

This predictor is commonly called the simple kriging predictor.
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2.2 Cokriging
Within this framework, it is straightforward to amend the observation vector X with observa-
tions from some additional Gaussian random field, say Y (t), provided the covariance function
cov
{
Y (t), Y (s)

}
and the cross-covariance function cov

{
X(t), Y (s)

}
are known. The covariance

matrix, K, and covariance vector, k, must be expanded to accommodate the new covariances. It is
also clear that this extension can be pursued further to consider observations from a collection of
correlated Gaussian random fields. Predicting a random field given additional observations from
correlated random fields are usually referred to as cokriging.

In the following we will study a collection of random fields related in a particular manner;
they are defined as the partial derivatives of a Gaussian random field X . Differential operators
are linear so the derivatives are Gaussian random fields themselves. Moreover, all covariance
functions and cross-covariance functions of the derivatives are obtained by differentiating C(t, s).
This means that given observations of X(t) itself and observations of the derivatives (any order)
of X(t), it is possible to obtain predictions of X(t) and prediction errors using Eq. 1 and Eq. 2
conditioned on all available data.

Replacing derivatives by closely spaced pairs of observations would for all practical purposes
give identical predictions so using derivative data is essentially covered by the standard tech-
niques. A practical problem however, is that the kriging matrix will be almost singular so numer-
ical problems could occur.

2.3 Universal kriging
In many applications it is unrealistic to assume a vanishing expectation. It is straight forward to
augment X(t) with a linear trend and consider the model

(3) Y (t) = fT (t)β +X(t).

Here X(t) is a Gaussian random field with expectation zero, β are p unknown parameters, and
f(t) is a vector of p known functions. These could be a collection of polynomials on Rd or
some other functions reasonable for the particular problem at hand. The special case p = 1

and f1(t) = 1 is called ordinary kriging. Assuming Y (t) is observed at n distinct locations,
Y T =

[
Y (t1), . . . , Y (tn)

]
, the optimal predictor is the universal kriging predictor (Ripley, 1981,

pp. 47–50):
Y ∗(t) = fT (t) β̂ + kT (t)K−1

(
Y − Fβ̂

)
,

where β̂ =
(
FTK−1F

)−1
FTK−1Y is the generalized least squares estimate, and the matrix F is

formed by rows fT (ti). The universal kriging predictor is seen to be the sum of the linear trend,
fT (t) β̂, and the simple kriging predictor for the fitted residuals: X̂ = Y −Fβ̂. The corresponding
squared prediction error is

σ2
Y ∗(t) = C(t, t)− kT (t)K−1k(t) +

∥∥f(t)− kT (t)K−1F
∥∥2
Ŝ
,

where the norm is the Mahalanobis distance:

Ŝ = var
{
β̂
}

=
(
FTK−1F

)−1
.

Similar to the simple kriging predictor, it is possible to amend the observation vector Y with
observations from correlated random fields such as derivatives of Y (t). Then, the F matrix will
contain additional rows formed from derivatives of fT (t). Thus, results obtained in the subse-
quent are applicable for both simple and universal kriging.

3 Scalars, vectors, and tensors

In the following space-vector is used rather than vector to stress that it is a vector in Rd not only
a collection of d unrelated numbers. Any space-vector, v, is an entity in itself regardless of the
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particular numerical representation in a specific Cartesian coordinate system. A space-vector is
invariant to transformations of the coordinate system; the components will change when rotating
or reflecting the coordinate system but the space-vector itself is unchanged. Thus, the components
of a space-vector, v, obey specific transformations when transforming the coordinate system, i.e.,
v′ = Av where A is an orthogonal transform of the coordinates: t′ = At. The corresponding
transformation of the unit vectors defining the Cartesian coordinate system is e′ = A−1e. Note
that for orthogonal transforms AT = A−1. Tensors are a generalisation of a space-vector.

Definition (Cartesian tensor). A (Cartesian) tensor of rank r is a set of dr values Vi1···ir which
transform according to

V ′i1···ir =
∑
j1···jr

Vj1···jr ai1j1 · · · airjr

where aij form an orthogonal transformation matrix A.

Just as for space-vectors, tensors are entities in itself regardless of its coordinate representation.
In a particular Cartesian coordinate system a tensor of rank two in Rd is represented by a d × d-
dimensional matrix with components Vij . The components of a tensor of rank two transform as
V ′ = AV AT . Note that space-vectors are tensors of rank one according to the definition .

A scalar is a tensor of rank zero. Scalars are represented by a single numerical value and is
invariant to coordinate transformations. A scalar can be obtained from tensors by contracting
space-vectors and tensors. An example is the Euclidian norm: ‖v‖2 = vT v = vTATAv = v′

T
v′ =

‖v′‖2.
In the following tensors defined on Rd will be considered.

Definition (Tensor field). A tensor field of rank r is a tensor of rank r on Rd: Vi1···ir = Vi1···ir (t),
where t ∈ Rd and t is a tensor of rank one.

Our main interest will be covariance functions of scalar, vector, and tensor fields. A few im-
portant results ensure that the covariance functions in the next sections behave like tensor fields.

Theorem 1 (Tensor properties).

i) Tensors form a linear space so that linear combinations of tensors of rank r is a tensor of rank r.

ii) Differentiation of a tensor field of rank r with respect to Cartesian coordinates results in a tensor field
of rank r + 1.

iii) The outer product of two tensors of rank r and s is a new tensor of rank r + s.

Proofs are found in Butkov (1968, Chapter 16).

3.1 Symmetries
A tensor of rank r has dr components. This is a large number even for modest ranks. By imposing
symmetries the number of independent components are reduced to a manageable number.

Definition (Symmetric tensor). A symmetric tensor of rank r is invariant to permutations of the
r indices i1, . . . , ir.

A symmetric tensor has
(
d+r−1
r

)
independent components (Feller, 1968, p. 38), which can be

considerably less than the number of components. Table 2 in Section 8 contains some examples.
We will see that covariance tensors of stationary gradient fields are symmetric.

Let τ ∈ Rd and let the Euclidian distance of τ be τ = (τ21 + · · · + τ2d )1/2. An isotropic scalar
function C : Rd → R is by definition dependent on τ through the Euclidian norm τ alone, i.e.
C(τ) = C(τ). Thus, isotropic scalar functions are invariant to orthogonal transformations of the
coordinates.
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Definition (Isotropic tensor field). Isotropic tensor fields are isotropic functions of a tensor of
rank one under orthogonal transformations, that is, V ′i1···ir (t) = Vi1···ir (t′), where t is a tensor of
rank one (space-vector).

Isotropy impose even stronger restrictions on tensor fields. The following result is a corollary
to Conjecture 1 in the Appendix which states the general form of an isotropic and symmetric
tensor field. The conjecture is proved for all covariance tensors encountered in the following
paragraphes.

Corollary. An isotropic and symmetric tensor field of rank r has d r+1
2 number of independent components.

The ceiling function dr is the nearest integer above or equal r, i.e. d5 = 5 and d5.5 = 6. Thus,
isotropy dramatically reduce the number of independent components. This is of great importance
in practical applications. For instance, a covariance tensor between second order derivatives has
rank four and a total of 81 components in R3. Imposing isotropy means that only three indepen-
dent components exist.

4 Gradient fields

Consider a Gaussian random field X(t) on Rd possessing differentiable sample functions. The
associated gradient field, Ẋ(t), is defined by its components in a Cartesian coordinate system:

Ẋi(t) =
∂X(t)

∂ti
; i = 1, . . . , d.

According to Theorem 1(ii) the gradients form a tensor of rank one which is a space-vector. As-
suming E

{
X(t)

}
= m(t), then

ṁi(t) = E
{
Ẋi(t)

}
=
∂m(t)

∂ti
; i = 1, . . . , d,

which according to Theorem 1(i) is a space-vector since the expectation is a linear operator. Fur-
ther, assume that the covariance function, C(t, s) = cov

{
X(t), X(s)

}
, is simultaneously differen-

tiable in t and s, that is, X(t) is mean square differentiable. Then, the cross-covariance function
between X(t) and a component of Ẋ(t) is defined by the components

Ċi(t, s) = cov
{
X(t), Ẋi(s)

}
=

∂

∂si
C(t, s); i = 1, . . . , d.

This is also a space-vector according Theorem 1(ii). The covariance functions between compo-
nents of Ẋ(t) are

C̈ij(t, s) = cov
{
Ẋi(t), Ẋj(s)

}
=

∂2

∂ti∂sj
C(t, s); i, j = 1, . . . , d.

The matrix C̈ij(t, s) is a rank two tensor called the covariance tensor of the gradient field. This
follows from Theorem 1(ii) but also from Theorem 1(iii) by noting that the covariance is the ex-
pectation of the outer product of the centred gradient fields.

4.1 Stationary random fields
Stationary scalar random fields have by definition a translation invariant distribution. This im-
plies a constant expectation so that ṁi(t) = 0, and a stationary covariance functionC(t, s) = C(τ),
where τ = t−s. Since derivatives commute, the covariance tensor must be symmetric for station-
ary random fields: C̈ij(τ) = C̈ji(τ), thereby reducing the number of independent components to(
d+1
2

)
= d(d+ 1)/2.

A subclass of stationary covariance functions are the separable ones defined such that C(τ) =∏
i Ci(τi) (Vanmarcke, 1983). This class could be reasonable when considering computer experi-

ments (Morris et al., 1993) where the coordinates, t1, . . . , td, have no canonical relationship.
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4.2 Isotropic random vector fields
The expected value of any isotropic random space-vector field must be zero since the zero vector
is the only rotation invariant space-vector. The covariances between the components of the gra-
dient field form an isotropic tensor field. Conjecture 1 in the Appendix gives the general form of
isotropic tensor fields. A convenient parameterization is (Yaglom, 1986, pp. 372ff); (Monin and
Yaglom, 1975, pp. 29ff):

(4) Cij(τ) =
{
CR(τ)− CT (τ)

}τiτj
τ2

+ CT (τ) δij ,

where δij is the Kronecker symbol. This means that the covariance tensor can be uniquely spec-
ified by two isotropic covariance functions CR(τ) and CT (τ). We call these the radial covariance
function and the transverse covariance function respectively. The radial and transverse covari-
ance functions have geometrical interpretations. The radial covariance function gives the covari-
ance between components of Ẋ(t) and Ẋ(s) parallel to the direction τ = t− s, e.g.

CR(τi) = cov
{
Ẋi(t), Ẋi(s)

}
; (τ = τi).

The transverse covariance function gives the covariance between components of Ẋ(t) and Ẋ(s)

perpendicular to the direction τ = t− s, e. g.

CT (τj) = cov
{
Ẋi(t), Ẋi(s)

}
; (τ = τj and i 6= j).

These equations show that CT (0) = CR(0) leading to Cij(0) = CT (0) δij .

4.3 Isotropic gradient fields
For a gradient field the curl vanishes and ∂Cij(τ)/∂τl = ∂Clj(τ)/∂τi. Then, Eq. 4 gives

(5) CR(τ) = CT (τ) + τ2
(

1

τ

d

dτ

)
CT (τ).

An immediate consequence of this is that
∫∞
0
CR(τ) dτ = 0 so that CR(τ) must change sign. It is

also possible to show that CT (τ) must be a valid isotropic covariance function in Rd+2 (Yaglom,
1986, p. 382).

It is convenient to express the partial derivatives by using derivatives of τ :

Ċi(τ) = −τi
(

1

τ

d

dτ

)
C(τ),(6)

C̈ij(τ) = −δij
(

1

τ

d

dτ

)
C(τ) + τiτj

(
1

τ

d

dτ

)2

C(τ).(7)

Comparing Eq. 7 to the general form Eq. 4 shows that

CR(τ) = −
(

1

τ

d

dτ

)
C(τ)− τ2

(
1

τ

d

dτ

)2

C(τ) = − d2

dτ2
C(τ)(8)

CT (τ) = −
(

1

τ

d

dτ

)
C(τ).(9)

Since CR(0) is finite, Eq. 8 show that the second order derivative of C(τ) must be finite at τ = 0.
Moreover, since CT (0) is finite, d

dτC(τ) ∼ τ for small τ . In particular, this means that d
dτC(τ)

vanish at τ = 0.
Comparing Eq. 9 to the cross-covariance function Eq. 6 shows that

Ċi(τ) = τi CT (τ).

Furthermore, combining Eq. 4 with Eq. 5 gives

C̈ij(τ) = τiτj

(
1

τ

d

dτ

)
CT (τ) + δij CT (τ).

The following statements are valid:
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i) The variance of the gradient components are proportional to the curvature of C(τ) at 0, i.e.,
var{Ẋi(t)} = CT (0) = CR(0).

ii) The isotropic random field, X(t), and its gradient field, Ẋ(t), are uncorrelated at τ = 0. This
is even true for stationary random fields (Vanmarcke, 1983, p. 112).

iii) The isotropic random field, X(t), and a component, say Ẋi(t), of its gradient field are uncor-
related along the line τi = 0.

iv) Two components of the gradient field, say Ẋi(t) and Ẋj(t), are uncorrelated along the lines
τi = 0 and τj = 0.

v) The components of the gradient field are stationary but not isotropic.

Some examples of differentiable isotropic covariance functions are given in Section B.

5 Prediction—local properties

In this section prediction conditioned on observations from a single location are considered. The
objective is to establish properties of the predictor near an observation.

5.1 Predictor for a single observation point
Consider an isotropic Gaussian random field X(t) on Rd with expectation zero and a known
covariance function C(τ). Assume that at a given location s the point value, X(s), and the com-
ponents of the gradient vector, Ẋi(s), are known. A prediction ofX(t) given the data vectorXT =

[X(s), Ẋ1(s), . . . , Ẋd(s)] is the expectation of the conditional distribution: X∗(t) = E
{
X(t)|X

}
.

Thus the predictor and prediction error are given by Eq. 1 and Eq. 2 respectively. The necessary
covariance vectors and covariance matrix are

(10) k(τ) =

[
C(τ)

τCT (τ)

]
and K =

[
C(0) 0Td
0d IdCT (0)

]
,

where 0d is a d-dimensional zero vector and Id is an d-dimensional identity matrix. All off-
diagonal elements of the covariance matrix vanish since cross-covariances are zero at τ = 0.

5.2 Some properties of the predictor
Inserting Eq. 10 in the predictor Eq. 1 gives

X∗(τ) =
C(τ)

C(0)
X(s)− CT (τ)

CT (0)
τT Ẋ(s).

Note that the predictor splits into two independent parts since cov
{
X(0), Ẋi(0)

}
= 0. The first

part is from conditioning on the point value and the second part is from the conditioning on the
gradient. When introducing several data locations, this partition survives within each point value
and gradient set, but point values and gradient components from separate locations correlate.
Fig. 1 illustrates single data predictions for different choices of covariance functions. Each figure
contains three curves corresponding to conditioning on point value and gradient, point value
alone, or gradient alone. A few comments are appropriate:

- The predictor interpolate the point value and the gradient of the predictor equals the gradient
value.

- The predictor is independent of the variance.

- The contribution to the predictor from the gradient data is proportional to the cosine of the an-
gle, θ, between the separation vector, τ , and the gradient vector Ẋ(s), i.e. τT Ẋ(s) = cos θ τ‖Ẋ(s)‖.
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(a) Prediction and prediction error for ν = 1.1

(b) Prediction and prediction error for ν = 2

(c) Prediction and prediction error for ν =∞ (Gaussian).

Figure 1. The left column of figures show predictions conditioned on point value and derivative (solid lines),
point value alone (dashed line), and derivative alone (dotted line). Modified Bessel covariance functions
with different smoothness parameter ν have been used. (ν = ∞ corresponds to the Gaussian covariance
function.) They have unit variance and they are scaled such that C(1) = 0.05 for simple comparison. Point
value data are shown as a small circle whereas the derivative are drawn as a straight line. The corresponding
prediction errors are illustrated in the right column.
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Figure 2. Prediction errors for rational quadratic covariance functions with ν = 0.25 and 2. See Figure 1 for
further explanation.

- The predictor approach the expectation (zero here) as τ increase.

- The dashed lines (conditioning on point value alone) shows the shape of the covariance function
C(τ).

- The gradient data has minor influence on the predictor for irregular random fields; the gradient
fields approach white noise fields as ν → 1.

5.3 Some properties of the prediction error
The squared prediction error for a single data becomes:

(11) σ2
X∗(τ) = C(0)− C2(τ)

C(0)
− τ2 C

2
T (τ)

CT (0)
.

Thus, the squared prediction error is spherically symmetric. The squared prediction error also
splits into two parts. Fig. 1 also illustrates the prediction error for different choices of covariance
functions. Each plot contains three curves corresponding to conditioning on point value and
gradient, point value alone, and gradient alone. Some remarks can be made:

- Using gradient information alone does not reduce the prediction error at τ = 0.

- Gradient information looses its value as the random field becomes more irregular.

- Gradient data has good long-range prediction capabilities. For smooth random fields, gradient
data even reduce the prediction error more than a point value data alone at large distances.

5.4 Short range behaviour of prediction error
The limiting form for small arguments of any continuous isotropic covariance function must be
of the form

C(τ) = C(0)− a τφ +O
(
τ2φ
)
; 0 < φ ≤ 2.

Equation Eq. 9 implies that φ > 1 for CT to exist. Further, Eq. 8 determines that φ = 2; φ > 2

would give CR(0) = 0 and φ < 2 would give CR(0) =∞. Thus, covariance functions for random
fields possessing gradient fields must have the limiting form

C(τ) = C(0)− CT (0)

2
τ2 +O

(
τ4
)
.
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Inserting this into Eq. 11 gives the limiting forms:

σ2
X∗(τ) = O

(
τ4
)

σ2
X∗(τ) = CT (0) τ2 +O

(
τ4
)

(unknown gradient)

σ2
X∗(τ) = C(0)− CT (0) τ2 +O

(
τ4
)

(unknown point value).

For non-differentiable covariance functions the limiting form is:

σ2
X∗(τ) = a τφ +O

(
τ2φ
)
; 0 < φ < 2.

The prediction error (when point data is used) has the following leading terms:

σX∗(τ) = O
(
τ2
)

σX∗(τ) = C
1/2
T (0) τ +O

(
τ2
)

(unknown gradient)

σX∗(τ) = a1/2 τφ/2 +O
(
τφ
)
; 0 < φ < 2.

This shows that the slope of an error bound at a data position is zero when including gradient
data, finite when using two times differentiable covariance functions, and infinite when using
other covariance functions. We conclude that using gradient data reduces the prediction error
dramatically near the observation.

6 A one dimensional example

In real applications a single data location is hardly interesting. So, consider n sets of point value
and gradient data organised as a vector:

XT =
[
X(t1), Ẋ1(t1), . . . , Ẋd(t

1), . . . , X(tn), Ẋ1(tn), . . . , Ẋd(t
n)
]
.

The conditional first and second order moments of X(t) given the data, X , are once more given
by the simple kriging predictor Eq. 1 and the associated squared prediction error Eq. 2.

Consider a one dimensional example. The objective is to predict a smooth function in the in-
terval [0, 2.5], given n = 3 observations of point values and derivatives sampled at t = 0.7, 0.8
and 1.9. The function chosen is a simulated realisation obtained by using the Gaussian covariance
function, Eq. B.3, with a = 3 giving C(1) ≈ 0.05. This covariance function is used for prediction
as well. Figure 3(a) shows the predictor and the associated prediction error. For comparison
Figure 3(b) shows the corresponding results when ignoring the derivatives. The superiority of
predictions using gradients are striking. Also worth noticing is the effect of the two close obser-
vations at t = 0.7 and 0.8. The difference between a narrow pair of observations and a single
observation is clearly seen on the prediction error. When gradients are used the influence of this
pair resembles a single observation of point value, derivative, and second order derivative.

6.1 Observation errors in gradient measurements
It is reasonable to suspect that the precision of gradient data could be argued. Independent ob-
servation errors are included by adding the variance of the errors to the diagonal the covariance
matrix, K. Figure 3(c) shows predictions and the associated prediction errors when assuming
independent measurement errors in the gradient observations. The error (standard deviation) is
chosen equal to 10 % of var{Ẋ}1/2. The point value observations are assumed to be exact. As
expected, the errors are something between Figure 3(a) (exact gradient data) and Figure 3(b) (no
gradient data).
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(a) Prediction and prediction error using point value and derivative data.

(b) Prediction and prediction error using only point value data.

(c) Prediction and prediction error using point value and noisy derivative data.

Figure 3. The left figures show predictions as solid lines and the dashed lines are the true function. Ob-
servation points are marked as small circles. The right column of figures show the corresponding prediction
errors as solid lines whereas the dashed lines are the difference between the prediction and the true function
(absolute value). In (a) both point values and derivatives are used, in (b) only the point values are used, and
in (c) noise has been added to the derivative data.
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7 Seismic depth conversion — a two dimensional
case study

A contoured map of the seismic travel times to the top subsurface of a dome shaped North Sea
petroleum reservoir is shown in Figure 4(b). The map is 4.2 by 4.2 kilometers and stored in 75
by 75 meter grid cells. The objective is to obtain a map of the depth to the subsurface given
the travel times, a process commonly called ‘depth conversion’ (Abrahamsen, 1993; Hwang and
McCorkindale, 1994; Jeffery et al., 1996). The relation between depth, z, and travel time, T is
given by the simple kinematic relation z(t) = v(t)T (t), where v is the average velocity. Velocities
generally increase with depth (travel time) and a simple model including this effect is v(t) =

β0+β1
{
T (t)−1.17

}
,where βi are unknown coefficients. The second regressor is T (t)−1.17 where

1.17 is subtracted to reduce collinearity. The residual between the depth model and the actual
subsurface is assumed to be a Gaussian random field with vanishing expectation. A rational
quadratic covariance model, Eq. B.4, has been chosen with parameters ν = 2, σ = 23 m, and
range parameter a such that C(2000 m)/C(0) = 0.05. The particular choice of covariance function
is based on experience from similar North Sea data and should be realistic.

Figure 4(a) shows a simulated realisation of the depth to the subsurface. It was obtained by
using trend parameters β0 = 2000 m/s and β1 = 1000 m/s2 and simulating the residual according
to the specified covariance function. Four chosen well locations within the area are marked by
dots. Arrows indicate direction and magnitude of dip (gradients) at these locations. See Renard
and Ruffo (1993) for details on how dip-meter measurements can be used to obtain gradient data.
Comparing Figure 4(a) to the travel times in Figure 4(b) shows a rougher surface and a more
pronounced dome shape due to the positive value of β1.

Since the depth model is linear in the β’s universal kriging discussed in § 2.3 apply. Figure 4(c)
shows a map of depth predictions using depth and dip data while Figure 4(c) shows depth predic-
tions using only depth data. There are significant differences between the two depth predictions.
Figure 5 shows the residuals, that is, the the difference between the predictions and the ‘true
depth’ in Figure 4(a). A possible quantitative measure of the difference is to consider the square
root of the sum of squares of the two residual grids. Theses values are added above the two maps
in Figure 5 and shows that in this case including dip data improves prediction significantly. Note
however that this is based on one simulated realisation and a particular choice of well locations.

To check this further predictions were made using data from 100 simulated realizations of
the ‘true depth’. The square root of the sum of squares of the resulting residual grids and are
presented as a scatter plot in Figure 6. It is seen that dip data improves depth predictions for
almost all of the 100 realizations.

The (theoretical) prediction errors for the universal kriging predictor is also shown in Fig-
ure 4(c,d). It is seen that the regions with prediction errors less than 20m are significantly larger
when including dip data.

7.1 Estimation of trend parameters
The prediction of the depth to the subsurface is improved and moreover the estimation of the
trend parameters, β, are also improved. Table 1 gives a comparison of the estimates using only
depth data and using additional dip data.

8 Higher order derivatives and tensor fields

Although higher order derivatives are rarely accessible, with the possible exception of second
order derivatives, the theory easily extends despite some unpleasant bookkeeping. Consider the
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(a) Simulated ‘True depth’: (b) Travel times (two-way msec.):

(c) Prediction and prediction error conditioned on depth and dip data:

(d) Prediction and prediction error conditioned on depth data:

Figure 4. Contour maps of ‘true depth’ (a), travel time data (b), and depth predictions (c,d) with correspond-
ing theoretical prediction error. The map area is 4.2 by 4.2 kilometers.
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(a) Average error: 17.5 m (b) Average error: 28.2 m

Figure 5. Contoured map of difference (absolute value) between predicted depth and ‘true depth’ for depth
predictions conditioned on depth and dip data (a), and depth data (b). The map area is 4.2 by 4.2 kilometers.

Figure 6. Scatter plot of the square root of the sum of squares of the residual grids for 100 different depth
maps. The big cross marks the mean plus minus the empirical standard errors of the scatter data.

general derivative of X(t) (assuming sufficient regularity conditions are satisfied)

(12) X(κ)(t) =
∂|κ|

∂tκ1
1 . . . ∂tκd

d

X(t),

where κ = (κ1, . . . , κd) are d non-negative integers and |κ| =
∑
i κi. A collection of derivative

fields X(κ)(t) where |κ| = K, form a tensor field of rank K. The gradient field is an example of a
first rank tensor field.

8.1 General covariance tensors
The general cross-covariances are

C(κ,λ)(t, s) = cov
{
X(κ)(t), X(λ)(s)

}
(13)

=
∂|κ|+|λ|

∂tκ1
1 · · · ∂t

κd

d ∂sλ1
1 · · · ∂s

λd

d

C(t, s).

Kriging Derivatives 17



Table 1. Estimated β values (mean) and corresponding estimation error (standard deviation) and correlation.

Depth and dip data Depth data

True Mean (SD) Corr. Mean (SD) Corr.

β0 (m/s) 2000 2005 (13) 0.55 2021 (16) 0.68
β1 (m/s2) 1000 830 (450) 1556 (592)

Table 2. Number of components and number of independent components for covariance tensors.

Rank (r = K + L)

0 1 2 3 4 5 6 7

Dimension Number of components (dr)

d = 2 1 2 4 8 16 32 64 128
d = 3 1 3 9 27 81 243 729 2187
d = 4 1 4 16 64 256 1024 4096 16384

Number of independent components

General: d = 2 1 2 4 6 9 12 16 20
(|K − L| ≤ 1) d = 3 1 3 9 18 36 60 100 150

d = 4 1 4 16 40 100 200 400 700

Stationary: d = 2 1 2 3 4 5 6 7 8
(symmetric) d = 3 1 3 6 10 15 21 28 36

d = 4 1 4 10 20 35 56 84 120

Isotropic: any d 1 1 2 2 3 3 4 4

Now consider a collection of derivatives, C(κ,λ), defined such that |κ| = K and |λ| = L. This
collection form a K + L rank tensor given by the components

(14) C
(K,L)
i···k j···l(t, s) =

∂K+L

∂ti · · · ∂tk ∂sj · · · ∂sl
C(t, s);

i, . . . , k, j, . . . , l ∈ {1, . . . , d}.

Two examples were studied in detail in the previous section; the second rank covariance ten-
sor, C̈ij(t, s) = C

(1,1)
ij (t, s), and the first rank (space-vector) cross-covariance function, Ċi(t, s) =

C
(1,0)
i (t, s).

The number of components in a general K + L rank covariance tensor is dK+L. The number
of independent components however, are considerably reduced by the fact that for two given
index sets, say {i, . . . , k} and {j, . . . , l}, any permutation of each of the sets yields the same result
since differential operators commute. See Table 2 for some examples. We see that the number of
independent components is a large number even for modest d, K, and L.

8.2 Spatial symmetries
Imposing stationarity, i.e. C(t, s) = C(τ), simplifies Eq. 13 to

C(κ,λ)(τ) = (−1)|λ|C(κ+λ)(τ) = (−1)|λ|
∂|κ|+|λ|

∂τκ1+λ1
1 · · · ∂τκd+λd

d

C(τ),
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and the tensor Eq. 14 takes the less general form

C
(K,L)
i···k j···l(τ) = (−1)L

∂K+L

∂τi · · · ∂τk ∂τj · · · ∂τl
C(τ);

i, . . . , k, j, . . . , l ∈ {1, . . . , d}.

The reduction of number of independent components is significant since all permutations of the
pooled index sets, say {i, . . . , k, j, . . . , l}, now yield identical results. Table 2 gives a few examples
comparing the number of independent components for different ranks. It is seen that the number
of independent components becomes large as the rank increases even for stationary covariance
functions.

For separable stationary covariance functions, C(τ) =
∏
i Ci(τi), the higher order derivatives

become more tractable:

C(κ,λ)(τ) = (−1)|λ|
d∏
i=1

C
(κi+λi)
i (τi) = (−1)|λ|

d∏
i=1

∂κi+λi

∂τκi+λi
i

Ci(τi),

and the tensor Eq. 14 takes the simpler form

C
(K,L)
i···k j···l(τ) = (−1)L

d∏
i=1

∂Ni

∂τNi
i

Ci(τi),

where Nq = δqi + · · · + δqk + δqj + · · · + δql ∈ [0,K + L]. This means that (K + L) derivatives of
increasing order for each Ci(τi) must be evaluated. For the example above (d = 3, K = L = 2) a
total of 12 derivatives must be evaluated. Assuming the Ci(τi)’s have identical form reduces this
number to 4. Note that this number does not necessarily coincide with the number of independent
components.

8.3 Isotropy
Isotropic covariance tensors have the general form

(15) C
(K,L)
i···k j···l(τ) = (−1)L

∂K+L

∂τi · · · ∂τk ∂τj · · · ∂τl
C(τ);

i, . . . , k, j, . . . , l ∈ {1, . . . , d}

The number of independent components are given by Conjecture 1. Table 2 gives a few examples
revealing a simple pattern. It is seen that isotropy dramatically reduces the number of indepen-
dent components, and moreover, the number of independent components are independent of d.
Theorem 3 give a recipe for expressing the partial derivatives in Eq. 15 by the first K + L deriva-
tives of C(τ) with respect to τ .

As an example of the use of Theorem 3, consider a tensor field of rank two (second order
derivatives) and the corresponding rank three and four covariance tensors (see Section A.1 for
more details):

C
(1,2)
ijk (τ) =

(
τiδjk + τjδik + τkδij

)
CTT (τ) + τiτjτk

1

τ2

{
CRT (τ)− CTT (τ)

}
C

(2,2)
ijkl (τ) =

(
δijδkl + δikδjl + δilδjk

)
CTT (τ)

+
(
δijτkτl + δikτjτl + δilτjτk + δjkτiτl + δjlτiτk + δklτiτj

)
× 1

τ2

{
CRT (τ)− CTT (τ)

}
+ τiτjτkτl

1

τ4

{
CRR(τ)− 6CRT (τ) + 3CTT (τ)

}
,
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where the isotropic covariance functions similar to CR(τ) and CT (τ) are

CRR(τ) =
d4

dτ4
C(τ) CTT (τ) =

(
1

τ

d

dτ

)2

C(τ)

CRT (τ) =
d2

dτ2

(
1

τ

d

dτ

)
C(τ).

These have geometrical interpretations similar to CR(τ) and CT (τ):

CRR(τ) = cov
{
X

(2)
ii (t), X

(2)
ii (s)

}
; (τi = τ)

CTT (τ) =
1

3
cov
{
X

(2)
ii (t), X

(2)
ii (s)

}
; (τi = 0)

= cov
{
X

(2)
ii (t), X

(2)
kk (s)

}
; (τi = τk = 0 and i 6= k)

CRT (τ) = cov
{
X

(2)
ii (t), X

(2)
kk (s)

}
; (τi = τ , τk = 0, and i 6= k)

From these expressions it is seen that 3CRR(0) = CTT (0) = CRT (0) so that

C
(2,2)
ijkl (0) =

(
δijδkl + δikδjl + δilδjk

)
CTT (0).

Moreover, we see that C(τ) must be four times differentiable at 0 for CRR(0) to be well defined.

8.4 Prediction using higher order derivatives
To illustrate the use of higher order derivatives a simple one dimensional example is supplied.
Although useless for practical purposes some peculiar effects are interesting. Only one data loca-
tion is considered but the n first derivatives will be taken into account. Thus the data vector takes
the form XT =

[
X(0), X(1)(0), . . . , X(n)(0)

]
. The necessary covariances are:

Kij = cov
{
X(i)(0), X(j)(0)

}
= (−1)j

di+j

dti+j
C(t)|t=0; i, j = 0, . . . , n

ki(t) = cov
{
X(t), X(i)(0)

}
= (−1)i

di

dti
C(t); i = 0, . . . , n.

The Gaussian covariance function with unit variance, C(t) = exp(−t2), is considered. It is in-
finitely differentiable so that sample functions are analytical, that is, any order of sample path
derivatives exist. The covariances can be expressed as

Kij =

{
(−1)(i−j)/2(i+ j)!/(i/2 + j/2)! ; i+ j even

0; i+ j odd,
(16)

ki(t) = Hi(t) exp(−t2).(17)

where Hn is the nth Hermite polynomial (Abramowitz and Stegun, 1972, p. 934). Correlations
and standard deviations in Kij is given in Table 3.

The variances increase rapidly so that K becomes ill-conditioned for large n; numerical insta-
bility occurred for n > 9. Also it is seen that the negative correlations increase as the order of the
derivatives increase. This suggests that the information added by adding higher order derivatives
are successively reduced. Moreover it is seen that even and odd derivatives are uncorrelated and
that correlations within even or odd derivatives alternates between negative and positive values.

The predictor Eq. 1 withK and k given by Eq. 16 and Eq. 17 yields the conditional expectation.
Our goal of prediction will be to reproduce the function cosπt given the nine first derivatives and
the point value at t = 0:

XT = [1, 0,−π2, 0, π4, 0,−π6, 0, π8, 0].

Figure 7 shows predictions for an increasing number of included derivatives. The dashed line is
the target; the cosine function. The initial prediction, using the point value alone, gives a Gaussian
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Table 3. Standard deviations, σi = K
1/2
ii , along diagonal. Correlations, Kij/(σiσj), off diagonal.

j

i 0 1 2 3 4 5 6

0 1 0 –0.58 0 0.29 0 –0.15
1 1.4 0 –0.77 0 0.49 0
2 3.5 0 –0.85 0 0.59
3 11.0 0 –0.88 0
4 41.0 0 –0.99
5 173.9 0
6 815.6

shaped curve asymptotically approaching zero. As further derivatives are included the predic-
tions approach the first part of the cosine. Note that even numbered derivatives of the cosine
are zero at t = 0 so that conditioning on these has no effect on the predictor causing pair-wise
curves to coincide. For a small number of derivatives, say n, it is possible to identify the n leading
terms of the kriging predictor. These are, as one should expect, identical to the n leading terms
of the Taylor expansion for the cosine function. Thus we conjecture that the kriging predictor
approach the Taylor expansion as n is increased, the main difference being the damping given by
the exponential function for large t. This is somewhat contradictory to the observations that the
diagonal of K increase rapidly and that the correlations approach ±1. The increase in variances
are probably compensated by rapidly increasing values in k andX . The corresponding prediction
error given by Eq. 2 are also illustrated in Figure 7. It is seen that the errors are reduced as more
derivatives are considered. The reduction however, recede as more derivatives are added. This is
probably a sign of the increasingly high correlations in the K matrix.

9 Discussion

9.1 Combinations of gradient data and point value data
In the preceding sections gradient data and point value data at the same location was considered.
It is of course possible to have any combination of gradient data and point value data scattered
independently in space. It is also possible to condition on a subset of the components of the
gradient vector although this will remove the isotropic symmetry. In computer experiments—
where isotropy is hardly reasonable to assume—some derivatives could be cheap to obtain while
others are utterly expensive to calculate.

(a) Prediction (b) Prediction error

Figure 7. (a) shows an attempt to predict cosπt (dashed line) using an increasing number of derivatives.
Predictions are labelled by the number of derivatives used. Even and odd numbered curves coincide since
odd numbered derivatives are zero at t = 0. Prediction errors in (b).
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9.2 Non stationary models
The universal kriging model Eq. 3 include a linear trend so that the random field Y (t) is not
isotropic nor stationary. Note however that the covariance functions are not affected and remains
isotropic (or stationary). When considering Bayesian kriging (Abrahamsen, 1993; Kitanidis, 1986;
Omre, 1987) even the stationarity of the covariances are actually abandoned; the linear parame-
ters, β, are assumed to be random variables so that the covariance function of Y (t) becomes:

CY (t, s) = cov
{
Y (t), Y (s)

}
= f(t)TS0 f(s) + C(τ),

where S0 = var
{
β
}

is the prior covariances. So even though C is isotropic (or stationary), CY is
in general not. Derivatives can be introduced as in the universal kriging case by considering the
necessary derivatives of f(t).

The isotropy of the covariance functionC can also be somewhat relaxed. Consider the random
field X̃(t) = σ(t)X(t), where σ(t) > 0. The covariance function of X̃(t) is

C̃(t, s) = cov
{
X̃(t), X̃(s)

}
= σ(t)σ(s)CX(τ),

which is non-stationary. The correlation function however, will remain isotropic. This will remain
true for the correlation tensor of the gradient field as well. Thus all results for isotropic covariance
functions will be valid for the correlation functions; the correlation tensor must be rescaled to
possess unit variance. The kriging predictors described above are still valid although the entries
of the kriging matrices, K, and the covariance vectors, k, must be multiplied by appropriate
σ(t)σ(s)-combinations.

9.3 Smoothness and precision of gradient data
The standard kriging predictors give perfect interpolation of data, and in the case of gradient data,
perfect compliance to the gradient. When considering gradient data it is expedient to question
whether this is reasonable. Also, it is occasionally unrealistic to assume that the random field
under study is differentiable despite the existence of gradient information. A few approaches
dealing with this problem are sketched below.

As Figure 1 shows, the influence of the gradient is very local for almost non-differentiable
covariance functions such as the modified Bessel functions with the ν parameter close to 1. Thus
using an erratic model reduces the impact of gradient data.

The measuring of gradients are more likely to be inaccurate than measurements of point val-
ues. It was shown in Section 6 that incorporating measuring errors is possible by adding appro-
priate variances to the corresponding diagonal variances of the kriging matrix.

An different approach considered by Renard and Ruffo (1993) is to consider gradient data as
spatial averages thus requiring the support to be considered. This requires (numerical) spatial
integration over some support volume of the covariance tensor as well as the cross-covariances.
This will cause the predictors to tend to the specified gradient values rather than obey them
perfectly. An additional nice feature is that the covariance function of X(t) does not need to be
differentiable even though the spatially averaged covariance functions are.

A final approach is to consider X(t) as a sum of one differentiable component and one more
erratic component and let the gradient data apply to the smooth component. This is closely re-
lated to the approach considered by Renard and Ruffo (1993). This approach is related to factorial
kriging.

10 Closing remarks

A framework for using gradient data has been established. It consists of expanding the kriging
matrix and cross-covariance vector to accommodate the new information. If gradient data are
available at all point value observations this amounts to expanding the kriging system by a factor
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d+ 1 where d is the dimension of the space under consideration. For surfaces this means that the
size is three fold. Thus the size of computation could be prohibitively large.

A few examples show the large reduction in prediction error obtained by adding gradient
information. This encourage the use of gradient data and hopefully justifies the additional need
for computational resources.

Isotropic symmetry simplifies the treatment of the covariance tensors by reducing the number
of independent components. The number of independent components are the same in all spatial
dimensions.
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A Isotropic covariance tensors

Definition (Isotropic tensor fields). For integers r ≥ 0, n ≥ 0 and an index set i1, . . . , ir ∈
{1, . . . , d}, define a tensor field of rank r, D(r)

i1···ir (τ ;n), by

D
(r)
i1···ir (τ ;n) =

{
1 if r = n = 0

0 if n > r or n = 0 and r > 0,

D
(r)
i1···ir (τ ;n) = τirD

(r−1)
i1···ir−1

(τ ;n− 1) +

r−1∑
s=1

δirisD
(r−2)
i1···̂ıs···ir−1

(τ ;n− 1) if 0 < n ≤ r.

Here, ı̂s means that the index is missing.

The definition implies that D(r)
i1···ir (τ ;n) = 0 unless 0 ≤ d r2 ≤ n ≤ r. The first non-trivial

examples are

D
(1)
i (τ ; 1) = τi

D
(2)
ij (τ ; 1) = δij D

(2)
ij (τ ; 2) = τiτj

D
(3)
ijk(τ ; 2) = τiδjk + τjδik + τkδij D

(3)
ijk(τ ; 3) = τiτjτk

D
(4)
ijkl(τ ; 2) = δijδkl + δikδjl + δilδjk

D
(4)
ijkl(τ ; 3) = δijτkτl + δikτjτl + δilτjτk + δjkτiτl + δjlτiτk + δklτiτj

D
(4)
ijkl(τ ; 4) = τiτjτkτl.

Note that D(r)
i1···ir (τ ;n) are symmetric and isotropic tensor fields. Moreover, it is possible to prove

the following Lemma by induction.

Lemma 2. The tensor fields D(r)
i1···ir (τ ;n) can be written as

D
(r)
i1···ir (τ ;n) =

∑
· · · τiδjk · · · ,

where summation is over all combinations of τi and δjk such that

- every index among i1, . . . , ir is represented once in every term,

- all terms have n factors.

Conjecture 1. Any symmetric and isotropic tensor field of rank r can be written as

Vi1···ir (τ) =

r∑
n=d r2

D
(r)
i1···ir (τ ;n)Cn(τ),

where Cn(τ) are scalar fields.

The conjecture is a consequence of Theorem 3 below for isotropic and symmetric tensor fields
of the form Eq. 15. To establish that D(r)

i1···ir (τ ;n) forms a basis for the linear space of isotropic
and symmetric tensors of rank r is beyond the scope of this paper. However, some arguments are
supplied:

Sketch of proof. The terms in D
(r)
i1···ir (τ ;n); n = d r2 , . . . , r are the only tensors of rank r that can

be formed from the rank one tensor τ and the isotropic unit tensor δij . This exhausts the possi-
bilities for isotropic tensors. The tensors D(r)

i1···ir (τ ;n); n = d r2 , . . . , r are the possible symmetric
combinations of these isotropic terms.
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Table A.1. The function F (k, n).

k

n 0 1 2 3 4

0 1 0 0 0 0
1 0 1 0 0 0
2 0 –1 1 0 0
3 0 3 –3 1 0
4 0 –15 15 –6 1

Additional constraints on the scalar fields, Cn(τ), must be imposed to ensure positive defi-
niteness of the tensors in Conjecture 1 to obtain covariance tensors. The following theorem gives
explicit formulae for isotropic covariance tensors for tensor fields of the form Eq. 15.

Definition. For integers n ≥ 0, k ≥ 0 define a function F (k, n) by

- F (0, 0) = 1,

- F (0, n) = F (k, 0) = 0 for k, n > 0,

- F (k, n) = (k − 2n+ 2)F (k, n− 1) + F (k − 1, n− 1).

The simplest examples are found in Table A.1.

Theorem 3. For an r times differentiable isotropic function C : Rd → R, we have

∂r

∂τi1 · · · ∂τir
C(τ) =

r∑
n=d r2

D
(r)
i1···ir (τ ;n)

n∑
k=0

F (k, n)

τ2n−k
∂k

∂τk
C(τ).

Proof. We use induction on r. If r = 0 the theorem is trivial. Assuming it is valid for r − 1 ≥ 0, it
remains to prove it for r. Differentiating the formula for r − 1:

∂r

∂τi1 · · · ∂τir
C(τ) =

∂

∂τir

 r−1∑
n=d r−1

2

D
(r−1)
i1···ir−1

(τ ;n)

n∑
k=0

F (k, n)

τ2n−k
∂k

∂τk
C(τ)


=

r−1∑
n=d r−1

2

(
∂

∂τir
D

(r−1)
i1···ir−1

(τ ;n)

) n∑
k=0

F (k, n)

τ2n−k
∂k

∂τk
C(τ)

+

r−1∑
n=d r−1

2

D
(r−1)
i1···ir−1

(τ ;n)
τir
τ

∂

∂τ

(
n∑
k=0

F (k, n)

τ2n−k
∂k

∂τk
C(τ)

)
(A.1)

The final term of Eq. A.1 can be rewritten using

∂

∂τ

(
n∑
k=0

F (k, n)

τ2n−k
∂k

∂τk
C(τ)

)
=

n∑
k=0

(k − 2n)F (k, n)

τ2n−k+1

∂k

∂τk
C(τ) +

n∑
k=0

F (k, n)

τ2n−k
∂k+1

∂τk+1
C(τ)

=

n+1∑
k=1

(k − 2n)F (k, n)

τ2n−k+1

∂k

∂τk
C(τ) +

n+1∑
k=1

F (k − 1, n)

τ2n−k+1

∂k

∂τk
C(τ)

=

n+1∑
k=1

(k − 2n)F (k, n) + F (k − 1, n)

τ2n−k+1

∂k

∂τk
C(τ)

=

n+1∑
k=1

F (k, n+ 1)

τ2n−k+1

∂k

∂τk
C(τ).
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So the second term of Eq. A.1 equals

r−1∑
n=d r−1

2

D
(r−1)
i1···ir−1

(τ ;n)
τir
τ

n+1∑
k=0

F (k, n+ 1)

τ2n−k+1

∂k

∂τk
C(τ)

=

r∑
n=d r−1

2 +1

τirD
(r−1)
i1···ir−1

(τ ;n− 1)

n∑
k=0

F (k, n)

τ2n−k
∂k

∂τk
C(τ).

Looking at the whole expression in Eq. A.1, it is seen that both terms may be summed from
n = d r−12 to n = r, giving

(A.2)
∂r

∂τi1 · · · ∂τir
C(τ) =

r∑
n=d r−1

2

(
∂

∂τir
D

(r−1)
i1···ir−1

(τ ;n)

+ τirD
(r−1)
i1···ir+1

(τ ;n− 1)

) n∑
k=0

F (k, n)

τ2n−k
∂k

∂τk
C(τ).

The following equation is easily verified from Lemma 2:

∂

∂τir
D

(r−1)
i1···ir−1

(τ ;n) =

r−1∑
s=1

δirisD
(r−2)
i1···̂ıs···ir−1

(τ ;n).

Finally, using Definition A and observing that the summation in Eq. A.2 may start at n = d r2
completes the proof.

A.1 Examples
A few examples illustrate the use of Theorem 3. First order derivative (r = 1):

∂

∂τi
C(τ) = D

(1)
i (1)

F (1, 1)

τ

d

dτ
C(τ) = −τiCT (τ).

Second order derivative (r = 2):

∂2

∂τi∂τj
C(τ) = D

(2)
ij (τ ; 1)

F (1, 1)

τ

d

dτ
C(τ)

+D
(2)
ij (τ ; 2)

(
F (1, 2)

τ3
d

dτ
C(τ) +

F (2, 2)

τ2
d2

dτ2
C(τ)

)
= −δijCT (τ)− τiτj

τ2

{
CR(τ)− CT (τ)

}
.

We recognise the covariance tensor Eq. 7 except from the opposite sign.
Third order derivative (r = 3):

∂3

∂τi∂τj∂τk
C(τ) = D

(3)
ijk(τ ; 2)

(
F (1, 2)

τ3
d

dτ
C(τ) +

F (2, 2)

τ2
d2

dτ2
C(τ)

)
+D

(3)
ijk(τ ; 3)

(
F (1, 3)

τ5
d

dτ
C(τ) +

F (2, 3)

τ4
d2

dτ2
C(τ)

+
F (3, 3)

τ3
d3

dτ3
C(τ)

)
= D

(3)
ijk(τ ; 2)CTT (τ) +D

(3)
ijk(τ ; 3)

1

τ2

{
CRT (τ)− CTT (τ)

}
.
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Fourth order derivative (r = 4):

∂4

∂τi∂τj∂τk∂τl
C(τ) = D

(4)
ijkl(τ ; 2)

(
F (1, 2)

τ3
d

dτ
C(τ) +

F (2, 2)

τ2
d2

dτ2
C(τ)

)
+D

(4)
ijkl(τ ; 3)

(
F (1, 3)

τ5
d

dτ
C(τ) +

F (2, 3)

τ4
d2

dτ2
C(τ)

+
F (3, 3)

τ3
d3

dτ3
C(τ)

)
+D

(4)
ijkl(τ ; 4)

(
F (1, 4)

τ7
d

dτ
C(τ) +

F (2, 4)

τ6
d2

dτ2
C(τ)

+
F (3, 4)

τ5
d3

dτ3
C(τ) +

F (4, 4)

τ4
d4

dτ4
C(τ)

)
= D

(4)
ijkl(τ ; 2)CTT (τ) +D

(4)
ijkl(τ ; 3)

1

τ2

{
CRT (τ)− CTT (τ)

}
+D

(4)
ijkl(τ ; 4)

1

τ4

{
CRR(τ)− 6CRT (τ) + 3CTT (τ)

}
.

B Differentiable covariance functions

The isotropic covariance functions mentioned below all apply in any dimension. Proofs of this is
given in the supplied references.

B.1 Gaussian or second order exponential covariance function
The second order exponential covariance function is defined as (Yaglom, 1986, p. 364)

(B.3) C(τ) = σ2 e−aτ
2

; a > 0.

(Choosing a = 3/R2 where R is the correlation length is common.) The longitudinal and lateral
covariance functions are:

CT (τ) = σ2 2a e−aτ
2

CR(τ) = CT (τ)
(

1− τ22a
)
.

so the cross-covariances and covariance tensor are:

Ċi(τ) = −τi σ2 2a e−aτ
2

C̈ij(τ) =
(
δij − 2a τiτj

)
σ2 2a e−aτ

2

.

B.2 Rational quadratic covariance functions
The covariance function is given by (Matérn 1986, p. 17 and Cressie 1993, p. 61)

(B.4) C(τ ; a, ν) = σ2
(

1 + a τ2
)−ν

; a, ν > 0.

Choosing a = Sν/R2 where Sν = 201/ν − 1 gives correlation 0.05 at τ = R. The longitudinal and
lateral covariance functions are

CT (τ) = σ2 2aν
(

1 + aτ2
)−(ν+1)

CR(τ) = CT (τ)

(
1− 2aτ2(ν + 1)

1 + aτ2

)
,
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so the covariance tensor and cross-covariances are

Ċi(τ) = τi σ
2 2aν

(
1 + aτ2

)−(ν+1)

C̈ij(τ) =

(
δij − τiτj

2a(ν + 1)

1 + aτ2

)
σ2 2aν

(
1 + aτ2

)−(ν+1)

.

B.3 Modified Bessel covariance functions
The covariance function is defined as ()Matérn 1986, p. 17 and Yaglom 1986, pp 362–363)

C(τ ; a, ν) = σ2 1

Γ(ν)2ν−1
(aτ)νKν(aτ), a, ν > 0,

where it is convenient to let a = Sν/R and choose an appropriate ν-dependent scaling Sν . The
longitudinal and lateral covariance functions are

CT (τ) =
σ2a2

Γ(ν)2ν−1
(aτ)ν−1Kν−1(aτ)

CR(τ) =
σ2a2

Γ(ν)2ν−1

{
(aτ)ν−1Kν−1(aτ)− (aτ)νKν−2(aτ)

}
.

The covariance tensor and cross-covariances are

Ċi(τ) =
σ2a2

Γ(ν)2ν−1
τi (aτ)ν−1Kν−1(aτ)

C̈ij(τ) =
σ2a2

Γ(ν)2ν−1

{
(aτ)ν−1Kν−1(aτ)δij − a2 τi τj (aτ)ν−2Kν−2(aτ)

}
.

The limiting behaviour for small z is

K0(z) ∼ − ln z

Kν(z) ∼ Γ(ν)2ν−1z−ν (ν > 0).

Also note that Kν(z) = K−ν(z). The covariances CT and CR must be finite at τ = 0 so ν > 1 for
this to be fulfilled.
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