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1 Introduction

Complex weather systems and vigorous circulation in the troposphere makes predicting
the weather more than one week in advance a difficult topic, and this problem is espe-
cially severe during the winter. The stratosphere is however far more stable, and might
have some effect on surface weather patterns: Strong variations in the straospheric circu-
lation can descend into the troposphere and cause La Niña and El Niño-like climate pat-
terns over the North Atlantic and Scandinavia (see e.g. Baldwin and Dunkerton (2001)).

During winters strong stratospheric westerly winds, called the stratospheric polar vor-
tex, circulate around cold air over the Arctic. The polar vortices strengthen and weaken
from year to year, and in some years the winds in the polar vortex temporarily weakens
sufficiently to that effect that the vortex reverse to flow from east to west; the flow of
Arctic air becomes more disorganized, and masses of cold air sinks from the stratosphere
into the troposphere, causing rapid and sharp temperature drops. The breakdown of the
polar vortex is an extreme event known as a sudden stratospheric warming (SSW), and the
converse, sufficiently strong polar vortices, is an extreme event known as a strong polar
vortex (SPV).

Previous studies have indicated significant forecast skill of the timing of sudden strato-
spheric warmings to around two weeks ahead, but Scaife et al. (2016) indicates that there
exits a predictability of SSWs and SPVs beyond the deterministic range. Identifying how
and to what degree stratospheric events affect surface temperatures, this could then be
used to improve medium and long-range temperature forecasts.

This note starts by reproducing the results of Scaife et al. (2016) section 2, before we
extend this analysis to include a more rigorous inquiry into the predictive skill of stra-
tospheric polar vortex forecasts from The Met Office (UKMO) and The European Centre for
Medium-Range Weather Forecasts (ECMWF). We then go on to study how extreme strato-
spheric events affect Scandinavian surface temperatures in December–March by creating
a non-parametric impulse function, before we attempt to improve medium and long-
range surface temperature forecasts by taking into account long-range forecasts of the
stratospheric polar vortex from UKMO and ECMWF.
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2 Data

2.1 Ensemble forecast systems
Ensemble forecasts of stratospheric westerly winds were aquired from The Met Office
(UKMO), the United Kingdom’s national weather service, and The European Centre for
Medium-Range Weather Forecasts (ECMWF), where the UKMO forecast had 7 ensemble
members and the ECMWF forecast had 24 ensemble members.

2.2 Observational data
Zonal mean U wind and temperature observational data from ...

2.3 Preparation of data
The forecast data from UKMO and ECMWF are stored in different GRIB-files and have to
be processed before they can be analysed. All wanted zonal wind data for 60◦ longitudes
and all latitudes are extracted, while all unwanted data is removed. Only forecasts from
1st November 00:00 to 2nd March 00:00 for each winter from 1993/94 to 2015/16 are
saved, with one new forecast every 12th hour for each ensemble member. The zonal wind
forecasts in the stratosphere is averaged over all latitudes for each forecast at a given lead
time. For each forecast system this gives a 4209×K matrix, for K ensemble members.

High-resolution shapefiles of Norway, Sweden, Denmark and Finland’s administrative
county and municipal divisions were downloaded from the Database of Global Adminis-
trative Areas (gadm.org), and the shapefiles were followingly simplified (mapshaper.org)
and exported to geoJSON-files which were used to extract temperature measurements
over mainland Scandivania from a .nc-file containing daily temperature measurements
in every 1/4 longitude and latitude. For each lead time, the temperature was averaged
over all reported observations within the administrative division.
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3 Theory

3.1 Scoring rules
We denote a mean zonal wind observation by y ∈ Ω, where Ω = R. Similarily, for ob-
servations of SSW and SPV events, y is a random boolean observation with Ω = {0, 1}.
A probabilistic prediction for y is given by a distribution function with support on Ω

denoted by F ∈ F for some appropriate class of distributions F .

Probabilistic forecast accuray is normally assesed using scoring rules, which assign a nu-
merical score to each forecast–observation pair, where a lower penalty indicates better
predictive preformance. Specifically, a scoring rule is a mapping

S : F × Ωd → R ∪ {∞}. (1)

A scoring rule is proper relative to class F if

EGS(G, Y ) ≤ EGS(F, Y ) (2)

for all probability distributions F,G ∈ F . That is, the expected score for a random obser-
vation Y is optimized if the true distribution of Y is issued as a forecast.

3.2 Brier scores
The Brier score is a proper scoring rule which assesses the predictive probability of treshold
exceedance. The Brier score is usually written in the form

BS(F, y|u) = (pu − 1{y ≥ u})2 (3)

for a treshold u with pu = 1− F (u).

3.3 CRPS
The continuous ranked probability score (CRPS) is of particular interest in that it simultan-
eously assesses both calibration and sharpness, and thus all three types of goodness dis-
cussed by Murphy (1993). The CRPS applies to probability distributions with a finite
mean and is defined by

CRPS(F̂ , t) = E
F̂
|X − t| − 1

2
E
F̂
E
F̂
|X −X ′|, (4)

where F̂ is a forecast distribution with a finite first moment and X,X ′ ∼ F̂ denote two
independent random variables. For an ensemble x = {x1, . . . , xK}, the CRPS equals

CRPS(x, t) =
1

K

K∑
k=1

|xk − t| −
1

2K2

K∑
k=1

K∑
l=1

|xk − xl|. (5)
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3.4 MSE
A similar and simpler scoring rule assessing the marginal accuracy is the mean squared
error (MSE),

MSE(F̂ , t) = (µ̂− t)2, (6)

where µ̂ is the mean of F̂ .

3.5 Uncertainty and significance of skill scores
The estimation of the mean score may be associated with a large uncertainty, and a boot-
strapping procedure over the individual scores may be utilised in order to assess the
uncertainty in the mean score (Friederichs and Thorarinsdottir, 2012). Assume we have
n score values S(F1, y1), . . . , S(Fn, yn). By repeatedly resampling vectors of length nwith
replacement and estimating the mean of each sample, we obtain an estimate of the vari-
ability in the mean score.

Similarily, to test the significance of score differences between two competing methods,
we can apply a permutation test relying on resampling (Good, 2013; Möller et al., 2013).
Two competing predictive distributions F̂1 and F̂2 are compared under a scoring rule
S(F, ·) using the statistic

s :=
1

n

n∑
i=1

(
S(F̂1, yi)− S(F̂2, yi)

)
. (7)

The permutation test is then based on resampling copies of s with the labels of F̂1 and F̂2

swapped for a random number of summands.

3.6 Kaplan-Meier estimator
The Kaplan-Meier estimator for the survival function S(t) = P (T > t), the probability
that the time of an event is later than some specified time t, is

Ŝ(t) =
∏
i:ti≤t

(
1− di

ni

)
, (8)

for time ti when di events occured, and ni is the number of individuals at risk just before
ti. The variance of the Kaplan-Meier estimator is estimated by Greenwood’s formula,

V̂ar(Ŝ(t)) = Ŝ(t)2
∑
i:ti≤t

di
ni(ni − di)

. (9)

The difference between two survival curves estimated by Kaplan-Meier, denoted by i =

{1, 2} with events occuring and number of individuals known to have survived up to
time j being dij and nij , may be tested by a logrank test with test statistic
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Z =

∑J
j=1(dij − Eij)√∑J

j=1 Vij

d−→ N(0, 1) (10)

where at least one event occurs at each time step j = 1, . . . , J , and Eij = djnij/nj and
Vij = Eij(1− nij/nj)((nj − dj)/(nj − 1)) for nj = n1j + n2j and dj = d1j + d2j .
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4 Results and discussion

4.1 Reproducing Scaife et al. (2016) section 2
To quantify the predictive skill of SSW and SPV events, Scaife et al. (2016) compute what
they call the perfect predictability of the UKMO ensemble forecast, which attempts to estim-
ate the predictability of events using only the forecast data alone1. We firstly reproduce
these results using three more years of data and an extra forecast system2.

Similar to Scaife et al. (2016) we define a SSW to occur when the zonal mean U wind
(the daily zonal Artic winds at 10 hPa, 60 °N and averaged over all longitudes) decreases
below zero, while SPV events are defined to occur if the zonal mean U wind increases
above 48 ms−1.

For b = 1, . . . , B bootstrap samples and y = 1, . . . , Y years, a proxy observation P
(b)
y is

drawn randomly from the K ensemble members, P (b)
y ∈ {Ey1, . . . , EyK}. The increased

risk of a SSW (or equivalently a SPV) event in the years when an event occurred in the
proxy observations, is given by the difference between the two probabilities P (SSW ∈
Ek|SSW ∈ P ) and P (SSW ∈ Ek|SSW /∈ P ). For an out-of-sample computation the first
probability is estimated by, using Bayes’ rule,

P (SSW ∈ Ek|SSW ∈ P ) =
P (SSW ∈ Ek, SSW ∈ P )

P (SSW ∈ P )

=

1
BY (K−1)

∑B
b=1

∑Y
y=1

∑
k:Eky 6=P

(b)
y
I(SSW ∈ Eyk, SSW ∈ P

(b)
y )

1
BY

∑B
b=1

∑Y
y=1 I(SSW ∈ P (b)

y )
.

(11)

For an in-sample computation the third sum in the numerator is over all k, and the nu-
merator is divided by K instead of K − 1.

The estimated probabilities for both out-of- and in-sample perfect predictability for ECMWF,
UKMO and the combined UKMO/ECMWF ensemble forecast are presented in table 1.
We observe that the out-of-sample UKMO probabilities likens those reported by Scaife
et al. (2016), who observed a 12 % rise in the forecast probability of an event on average
from 47 % in winters in which no event occured to 59 % in winters in which an event
occured. Since Scaife’s perfect probabilities in part are clumsy ways to communicate the
same information as Brier scores, the forecast systems’ Brier scores are for completeness
too included table 1. These Brier scores are however not comparable between ensemble
forecasts, since they are based on different sets of proxy outcomes.

1. This peculiar approach is rooted in a ”metrological paradigm”, which treats (numerical) weather forecast
not as a statistical problem, but assumes away all shortcomings of the model and treats the forecast as an
initial value problem. Scaife et al. (2016) is consequently not that interested in testing whether or not the
ensemble forecasts have actual predictive skill, but if different realisations from the same numerical model,
with similar initial values, are correlated.
2. Furthermore, Scaife et al. (2016) analysed an ensamble forecast from UKMO with 24 ensemble members,
whereas our ensemble forecast from UKMO only contains 7 ensemble members.
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Table 1. Estimates of out-of-sample and in-sample perfect predictability in the ECMWF, UKMO
and combined ECMWF/UKMO ensemble forecast systems, as well as non-comparable proxy
Brier scores added for completeness.

ECMWF UKMO Combined
Out-of In Out-of In Out-of In

P (SSW ∈ Ek|SSW ∈ P ) 0.71 0.72 0.61 0.67 0.65 0.67
P (SSW ∈ Ek|SSW 6∈ P ) 0.66 0.64 0.49 0.42 0.62 0.57
P (SPV ∈ Ek|SPV ∈ P ) 0.60 0.61 0.64 0.69 0.63 0.65
P (SPV ∈ Ek|SPV 6∈ P ) 0.52 0.50 0.51 0.44 0.52 0.48
P (SPV ∈ Ek|SSW ∈ P ) 0.55 0.55 0.57 0.57 0.58 0.57
P (SPV ∈ Ek|SSW 6∈ P ) 0.59 0.59 0.60 0.60 0.58 0.59
BSSSW 0.212 0.195 0.251 0.184 0.233 0.201
BSSPV 0.236 0.218 0.246 0.181 0.246 0.212

Table 2. Estimates of predictability in the UKMO, ECMWF and combined UKMO/ECMWF fore-
casts conditioned on observations. Bootstrap estimates of standard deviations of the probabilities
in parentheses.

UKMO ECMWF Combined
P (SSW ∈ Ek|SSW ∈ Y ) 0.65 (0.06) 0.69 (0.04) 0.68 (0.04)
P (SSW ∈ Ek|SSW 6∈ Y ) 0.46 (0.07) 0.69 (0.04) 0.57 (0.06)
P (SPV ∈ Ek|SPV ∈ Y ) 0.54 (0.07) 0.59 (0.05) 0.59 (0.05)
P (SPV ∈ Ek|SPV 6∈ Y ) 0.55 (0.08) 0.51 (0.05) 0.53 (0.07)
P (SPV ∈ Ek|SSW ∈ Y ) 0.52 (0.08) 0.55 (0.06) 0.56 (0.06)
P (SSW ∈ Ek|SSW 6∈ Y ) 0.56 (0.07) 0.55 (0.05) 0.56 (0.06)

4.2 Scaife et al. (2016) section 2 with actual predictive assessment
We next perform the same analysis as in section 4.1, but now the probabilities of an event
occuring in an ensemble member are conditioned on actual observations and not proxy
observations. To compare with the true observations, we only consider the forecasts for
12:00 each day. The climatological frequency of SSW and SPV events in the UKMO,
ECMWF and the combined forecast are 0.54 and 0.55, 0.69 and 0.55, and 0.62 and 0.56, re-
spectively, while the actual climatological frequency of SSW and SPV events in the same
period of time is 0.48 and 0.52. The estimated probabilities are given in table 2.

Compared to table 1, we now observe that conditioning on actual events instead of proxy
observations has diminished all apparent skill in predicting SSWs (and likely too SPVs)
in the ECMWF ensemble forecast. UKMO has no skill in predicting SPVs, but appears to
retain some skill in predicting SSWs since, for µ := P (SSW ∈ Ek|SSW ∈ Y )−P (SSW ∈
Ek|SSW 6∈ Y ), the one-tailed hypothesis test

H0 : µ = 0 vs. H1 : µ > 0 (12)

performed by a permutation test, has p-value 0.033.

Similarily, figure 1 displays the ensemble forecast probabilities for the occurance of at
least one SSW event for each year in the UKMO and ECMWF ensemble forecasts, with a
colouring indicating whether or not an actual event did occur in the given year. We ob-
serve that ECMWF lacks a spread in their forecast probabilities, and again that ECMWF
appears to have no significant skill in predicting the occurance of SSWs.
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Figure 1. The ensemble forecast probability of a SSW event for each year in the UKMO and
ECMWF ensemble forecasts, where a red colour means that no SSW event did occur in the given
year, while a blue colour indicates that a SSW event did occur in the given year.

4.3 Accuracy of probabilistic predictions of events
The accuracy of probabilistic predictions of events is estimated by the Brier score, where
the probability of at least one event occuring in a forecast system is estimated by the fre-
quency of ensemble members containing at least one event. The mean Brier scores, aver-
aged over all years, for climatology, UKMO, ECMWF and the combined UKMO/ECMWF
forecast are given in table 3.

In order to assess whether the mean Brier scores are significantly different from each
other, (two-tailed) permutation tests may be applied. These tests, however, show that
the mean Brier scores of UKMO, ECMWF and Combined are not significantly different
from climatology, see table 3. These results furthermore appear to hold for shorter time
intervals.

In the competition between the different ensemble forecasts, UKMO is found to be dif-
ferent from ECMWF in predicting SSWs with p-value 0.048, and UKMO is found to be
different from Combined in predicting SSWs with p-value 0.040 and in predicting SPVs
with p-value 0.084.

Table 3. Mean Brier scores, averaged over all years, for climatology, UKMO, ECMWF and the
combined UKMO/ECMWF ensemble forecast. p-values from hypothesis tests of equality versus
non-equality of each Brier score to climatology’s Brier score, stands in parenthesis behind each
skill score.

BSSSW BSSPV

Climatology 0.27 0.27
UKMO 0.22 (0.260) 0.32 (0.464)
ECMWF 0.31 (0.514) 0.24 (0.282)
Combined 0.28 (0.980) 0.26 (0.748)
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Figure 2. Kaplan-Meier estimators for the survival curves of UKMO, ECMWF and combined
UKMO/ECMWF in predicting the occurance of SSWs (left panel) and SPVs (right panel), com-
pared with the historical survival curve (climatology). The grey region is the estimated 90 % con-
fidence region of the climatology survival curve.

4.4 Event survival analysis
We wish to assess if our ensemble forecasters correctly represent the hazard that at least
one event has occured by a given day of the winter. Hence, for all years and ensemble
members, we count the number of days from 1st December until an event occurs, and
then we compute the survival curve of said event, which we estimate by the Kaplan-
Meier estimator. The variance of the Kaplan-Meier estimator is estimated by Greenwood’s
formula.

The estimated survival curves of UKMO, ECMWF, combined UKMO/ECMWF and cli-
matology in predicting SSWs and SPVs are presented in figure 2, and the p-values of
logrank tests between the different survival curves and the climatology survival curve
is presented in table 4. ECMWF appears to overshoot the hazard of a SSW at every lead
time, and its survival curve is (approximately) found to be different from that of cli-
matology under a 5 % significance level. Furthermore, the survival curve of UKMO in
predicting SSWs is found to be different than that of ECMWF with p-value 1.1e-3. If we
only look at the month of December, however, ECMWF is not significantly different from
climatology in predicting SSWs. In predicting SPVs both UKMO and ECMWF appears to
comply well with the historic survival curve.

Table 4. p-values from two-tailed logrank tests with null hypothesis that the Kaplan-Meier estim-
ated survival curves in figure 2 of the given forecaster, in predicting either SSWs or SPVs, is equal
to that of climatology.

SSW SPV
Climatology – –
UKMO 0.541 0.887
ECMWF 0.057 0.828
Combined 0.175 0.852

Long-range winter temperature forecasts 13



Dec Ja
n

Fe
b

M
ar

Dec Ja
n

Fe
b

M
ar

0.00

0.25

0.50

0.75

1.00
S

ur
vi

va
l r

at
e

Years with SSW

Years without SSW

Dec Ja
n

Fe
b

M
ar

Dec Ja
n

Fe
b

M
ar

0.00

0.25

0.50

0.75

1.00

S
ur

vi
va

l r
at

e

Years with SPV

Years without SPV

Figure 3. Kaplan-Meier estimators for the survival curves of UKMO (left panel) and ECMWF (right
panel) in years when a SSW/SPV did and did not take place. The grey region is the estimated
95 % confidence region of the survival curves.

In figure 3 we have estimated the survival curves for UKMO and ECMWF in years which
a SSW occured and in years which no such event occured. Again we observe that ECMWF
appears to have little skill in predicting whether or not an event will occur, and the two
curves are not significantly different; UKMO however reports significantly different –
with p-value 0.011 – survival curves for years with and without reported SSW events.

A similar analysis for SPVs is too presented in figure 3, where ECMWF perform stronger
than UKMO January–March, and the two ECMWF curves are found to be different with
p-value 0.072. UKMO appears to have no skill in differentiating the event risk for years
in which events did and did not occur.

4.5 Predictive skill of zonal mean U wind forecasts
The predictive skill of mean zonal wind forecasts is assessed by mean squared error and
continuous ranked probability score. MSEs and CRPS’ for daily, weekly and monthly
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Figure 4. Predictive skill of zonal wind forecasts by climatology, UKMO, ECMWF and the combined
UKMO/ECMWF ensemble forecast, for daily, weekly and monthly resolutions, measured in MSE
(top row) and CRPS (bottom row), averaged over all winters.

resolutions at each lead time, averaged over all observed years, for climatology, UKMO,
ECMWF and the combined UKMO/ECMWF ensemble forecast are presented in figure
4. The MSE and CRPS averaged over all lead times and years at different resolutions for
each forecast system, is presented in table 5 and 6.

In order to assess the significance of the differences between the mean MSEs and the
mean CRPS’, the hypothesis test

H0 : MSE
i
r = MSE

Climatology
r vs. H1 : MSE

i
r 6= MSE

Climatology
r , (13)

for i = {UKMO,EMCWF,Combined} and resolutions r = {daily,weekly,monthly},
may be performed using a permutation test. The results of the given hypothesis test is
reported in parenthesis behind each skill score in table 5 and 6, and reports that UKMO
is significantly different from climatology over the winter at a 1 % significance level.

From figure 4 we, however, observe that UKMO and ECMWF consistently beat clima-
tology during the first two–three weeks of December; a permutation test assessing the
difference in skill scores MSEt and CRPSt, at each lead time t, between UKMO and cli-
matology for daily, weekly and monthly resolutions is presented in figure 5. Performing
the aforementioned hypothesis test in equation (13), with MSE and CRPS skill scores av-
eraged over the first three weeks of December for a daily lead time resolution, UKMO,
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Table 5. The predictive skill of zonal wind forecasts by climatology, UKMO, ECMWF and com-
bined UKMO/ECMWF ensemble forecast, assessed by mean squared error for daily, weekly and
monthly lead time resolution, averaged over all years and lead times. p-values from the (two-tailed)
hypothesis test in equation (13) is reported in parenthesis behind each skill score.

MSEdaily MSEweekly MSEmonthly

Climatology 293.67 274.97 199.87
UKMO 306.53 (0.010) 285.16 (0.379) 200.70 (0.375)
ECMWF 298.19 (0.268) 278.81 (0.699) 195.84 (0.996)
Combined 301.18 (0.000) 280.68 (0.0704) 197.66 (0.383)

Table 6. The predictive skill of zonal wind forecasts by climatology, UKMO, ECMWF and combined
UKMO/ECMWF ensemble forecast, assessed by continuous ranked probability score for daily,
weekly and monthly lead time resolution, averaged over all years and lead times. p-values from
the (two-tailed) hypothesis test in equation (13) is reported in parenthesis behind each skill score.

CRPSdaily CRPSweekly CRPSmonthly

Climatology 9.91 9.56 8.32
UKMO 10.27 (0.001) 9.84 (0.385) 8.39 (0.510)
ECMWF 9.78 (0.112) 9.44 (0.496) 7.99 (0.374)
Combined 9.93 (0.060) 9.55 (0.701) 8.16 (0.757)

ECMWF and the combined UKMO/ECMWF ensemble forecast are all significantly dif-
ferent from climatology at a 1 % significance level.
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Figure 5. Permutation tests assessing the significance of the difference between the UKMO and
climatology forecasts at each lead time, for daily, weekly and monthly resolutions. The top row
tests the difference in MSE skill scores, while the bottom row tests the difference in CRPS skill
scores. Shaded areas give 50 %, 80 % and 95 % consonance intervals. The red line is the
observed difference between the forecasts.
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4.6 Impulse function of SSW and SPV events
Having observed the daily mean temperature in each Norwegian, Swedish, Danish and
Finnish county from winter 1993–94 to winter 2015–16, we wish to assess the impact a
SSW or a SPV event has on the surface temperature n days after the event took place. We
thus want to compute the mean temperature anomaly with respect to climatology n days
after an event was observed (”the impulse function of SSWs”),

Ir,n =
1

|(y, d) ∈ SSW |
∑

(y,d)∈SSW

(tr,y,d+n − tr,y,d+n), ∀n, r (14)

where (y, d) ∈ SSW denotes days containing a SSW, tr,y,d+n is the mean temperature in
region r at year y and day d+ n, and tr,y,d+n is the climatology for temperature in region
r at year y and day d+ n, given by

tr0,y0,d0 =
1

Y − 1

∑
y 6=y0

tr0,y,d0 , (15)

for a total number of Y years. The impulse functions of SSWs and SPVs in Norwegian,
Swedish, Danish anf Finnish counties are presented in figure 6 and 7.

Herein we observe that a SSW is related to a negative temperature anomaly which reaches
its maximum after about 10 days and lasts about 30 days after a event in Norway, Sweden
and Denmark, while the temperature effect is less pronouced in Finland. Similarily, a SPV
is related to a positive temperature anomaly which reaches its maximum after about 10
days and lasts about 20–30 days after the event. In Norway, e.g., the mean temperat-
ure anomalies are closely correlated between all counties, but the temperature effect is
strongest in Østlandet and weakest along the coast and in Nord-Norge.

4.7 Improving surface temperature forecasts by event climatology
Building on section 4.6, we wish to assess if the impulse function of SSWs and SPVs can
be used to improve surface temperature forecasts in Scandinavian counties (Norwegian
fylke, Swedish län, Finnish maakunta and Danish region) following the observation of an
event. That is, immediately following an observation of a SSW or a SPV event, we attempt
to forecast the next 30 days based on an event climatology equal to the impulse function of
said event.

Figure 8 and 9 shows the MSE in Oslo and Finnmark at lead times one to thirty days fol-
lowing the observation of a SPV event. In both counties the event climatology appears to
outperform the standard temperature climatology during the first two–three weeks after
an event was observed. We can also observe that the form of the MSE curves varies geo-
graphically: South of Trøndelag, counties behave similarily to Oslo, where they struggle
the most at predicting surface temperature the first days following a SPV; in Nord-Norge
the curves however likens that of Finnmark, where the climatologies perform fairly well
immediatly following a SPV, before their predictive skill detoriates during the next two–
three weeks.
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Figure 6. Impulse function of SSWs in (from top left to bottom right) Norway, Sweden, Denmark
and Finland, showing the mean temperature anomaly with respect to climatology n days after an
event was observed. Each line corresponds to a county in the respective country.
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Figure 7. Impulse function of SPVs in (from top left to bottom right) Norway, Sweden, Denmark
and Finland, showing the mean temperature anomaly with respect to climatology n days after an
event was observed. Each line corresponds to a county in the respective country.
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The mean daily MSE reduction, averaged over the first 14 and 21 days following a SPV
event, in all Scandinavian counties is presented in figure 10 and 11. The MSE reduction
is largest in the southern part of Norway and Sweden, as well as in Denmark, and the
largest gains are in counties along the Oslo fjord. In Finland and the northern part of
Sweden the impulse function of SPVs appears to have little to no skill in temperature
prediction.

Following a SSW event, however, the story becomes more divisive. Figure 12 and 13 show
the MSE in Oslo and Finnmark at lead times one to thirty days following an observation
of a SSW event. The mean daily MSE reduction, averaged over the first 14 and 28 days
following a SSW event, in all Scandinavian counties presented in figure 14 and 15, tells the
same story: Counties bordering to Skagerrak and Kattegat enjoy a large MSE reduction,
while Finland, North-Sweden and Norway’s western and northern coast display no skill.
And again counties arond the Oslo fjord enjoy the largest MSE reduction of about 10–12 %
during the first four weeks following an observed SSW event.

4.7.1 Optimal event classification
While the SSW climatology appears to be inept in all Norwegian regions but Østlandet,
recall, however, that a SSW event is somewhat randomly defined to occur when the zonal
wind is less than u = 0 ms−1 – while said limit might have some precedence, it is too a
limit choosen because of its roundness and simplicity. For a zonal wind y, such that an
event occurs when (y ≤ u), can we find a better (optimal) limit ũ in the regions where the
SSW climatology performed poorly?

Regarding the definition of optimiality, there are two apparent choices: Find ũ such that
the average MSE gain is maximized over the first l days following all events (y ≤ ũ), or
find ũ such that the the average MSE gain is maximized over all days in all winters. For
simplicity we focus on the first approach and set l = 21 days.

See figure 16 for this approach applied to Finnmark, where the average ũ was found to
be ¯̃u = 17.09 ms−1. Over the first three weeks following a SSW-like event, event climato-
logy now performs 0.83 % better than climatology on average, while it before was 5.11 %
worse. This event climatology still retains a modest skill compared to that of Østlandet,
but this custom SSW-like event is more frequently occuring than SSWs, and it is con-
sequently a skill that might be used during more winters.
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Figure 8. Mean squared prediction error in Oslo for climatology (purple) and SPV climatology
based on the impulse function of SPVs (yellow), for lead times of one to thirty days ahead after
a SPV event was observed. The right panel shows the result of a permutation test on the sig-
nificance of the difference between event climatology and temperature climatology at each lead
time.
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Figure 9. Mean squared prediction error in Finnmark for climatology (purple) and SPV climatology
based on the impulse function of SPVs (yellow), for lead times of one to thirty days ahead after
a SPV event was observed. The right panel shows the result of a permutation test on the sig-
nificance of the difference between event climatology and temperature climatology at each lead
time.
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MSE reduction

−9  % −7.2  % −5.4  % −3.6  % −1.8  % 0  %

Figure 10. Reduction in daily mean squared prediction error, averaged over the first 14 days after
a SPV event was observed, relative to climatology in each Norwegian/Swedish/Finnish county,
when 1 to 14 days ahead was forecasted based on the impulse function of SPVs following the
observation of a SPV event.
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MSE reduction

−9 % −7.2 % −5.4 % −3.6 % −1.8 % 0 %

Figure 11. Reduction in daily mean squared prediction error, averaged over the first 21 days after
a SPV event was observed, relative to climatology in each Norwegian/Swedish/Finnish county
county, when 1 to 21 days ahead was forecasted based on the impulse function of SPVs following
the observation of a SPV event.
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Figure 12. Mean squared prediction error in Oslo for climatology (purple) and SSW climatology
based on the impulse function of SSWs (yellow), for lead times of one to thirty days ahead after
a SSW event was observed. The right panel shows the result of a permutation test on the sig-
nificance of the difference between event climatology and temperature climatology at each lead
time.

35

40

45

50

55

0 10 20 30
Lead time

M
S

E

Forecast

climatology

impulse function

−0.10

−0.05

0.00

0.05

0.10

0 10 20 30
Lead time

M
S

E
 d

iff
er

en
ce Consonance intervals

50 %

80 %

95 %

Figure 13. Mean squared prediction error in Finnmark for climatology (purple) and SSW climato-
logy based on the impulse function of SSWs (yellow), for lead times of one to thirty days ahead
after a SSW event was observed. The right panel shows the result of a permutation test on the
significance of the difference between event climatology and temperature climatology at each lead
time.
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MSE reduction

−15  % −12  % −9  % −6  % −3  % 0  %

Figure 14. Reduction in daily mean squared prediction error, averaged over the first 14 days after
a SSW event was observed, relative to climatology in each Norwegian/Swedish/Finnish county
county, when 1 to 14 days ahead was forecasted based on the impulse function of SSWs following
the observation of a SSW event.
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MSE reduction

−15 % −12 % −9 % −6 % −3 % 0 %

Figure 15. Reduction in daily mean squared prediction error, averaged over the first 28 days after
a SSW event was observed, relative to climatology in each Norwegian/Swedish/Finnish county
county, when 1 to 28 days ahead was forecasted based on the impulse function of SSWs following
the observation of a SSW event.
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Figure 16. Mean squared prediction error in Finnmark county for climatology (purple) and SSW
climatology based on the impulse function of SSWs (yellow), for lead times of one to thirty days
ahead after a SSW-like event was observed. The right panel shows the result of a permutation
test on the significance of the difference between event climatology and temperature climatology
at each lead time.

4.8 Regression of temperature anomaly on u wind
Instead of merely focusing on the (somewhat arbitrarily defined) occurance of discrete
SSW and SPV events, we wish to assess the correlation between the zonal mean U wind
and winter surface temperatures in Norway.

We first fit a simple linear regression in each Norwegian county, where we regress the
temperature anomaly on day d0 + l, for lead time l, with respect to climatology on the
zonal mean U wind anomaly over the previous d days with respect to climatology. That
is, let the mean temperature in region r0 at year y0 and day of winter d0 be tr0,y0,d0 , and
let the mean uwind for the previous d days be ud,y0,d0 . Let climatology for temperature
be tr0,y0,d0 and define climatology for mean uwind for the previous d days by ud,y0,d0 =
1

Y−1
∑

y 6=y0
ud,y,d0 . We thus want to fit the model

tr0,y0,d0+l − tr0,y0,d0+l = β1(ud,y0,d0 − ud,y0,d0) + ε, (16)

where ε ∼ N (0, σ2), for all regions r0.

We have, however, observed that (predominantly) large U wind anomalies have an effect
on surface temperatures. Consequently we too want to fit a GLM with a Gaussian family
and a link function which flattens out the effect of small wind anomalies. That is, assume
Yi ∼ N with EYi = µi and VarYi = σ2, for i = 1, . . . , n. Let the systematic component be
ηi = xT

i β with link function µi = g−1(ηi) = (ηi/α)3, for α > 1. This gives a log-likelihood
function

l(β) = −n
2

log 2πσ2 − 1

2σ2

n∑
i=1

(yi − µi)2, (17)
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and a score function

s(β) :=
∂l(β)

∂β
=

3

σ2α3

n∑
i=1

(yi − µi)η2i xi. (18)

The expected Fisher information matrix is thus

F(β) := Cov(s(β)) =
9

σ2α6

n∑
i=1

xix
T
i η

4
i , (19)

and β̂ is found using a Fisher-scoring method, cf. β(t+1) = β(t) + F(β(t))−1s(β(t)). Equi-
valently we too wish to fit a polynomial regression

tr0,y0,d0+l − tr0,y0,d0+l = β1(ud,y0,d0 − ud,y0,d0)3 + ε. (20)

Fitting the three aforementioned models and estimating their error by LOOCV, their MSE
reductions with respect to the MSE of climatology, for different configurations of (d, l) in
Oslo and Troms, is presented in figure 17. Oslo temperatures appear to be mostly in-
fluenced by the larger, extreme wind anomalies, while temperatures in northernmost
counties such as Troms and Finnmark is best described by the simple linear regression.

The maximum daily MSE reductions in Oslo and Troms is at a modest 1.5 % for op-
timal choices of (d, l). We could still, in theory, combine this analysis with the UKMO or
ECMWF zonal mean U wind forecasts in order to improve temperature forecasts in the
two–three first weeks of December where the U wind forecasts had a significant skill over
climatology.

Due to only having 1st November-initialised forecasts from 1st December available, we
attempt to predict Oslo temperatures during the third and fourth week of December us-
ing the polynomial regression in (20) with (d = 10, l = 3). This gives a 0.37 % daily MSE
reduction compared to climatology. The lack of improvement is unsurprising: The max-
imum MSE reduction of 1.5 % over climatology in figure 17 was achieved when using
true zonal mean U wind observations; using somewhat askew forecasts will necessarily
reduce said predictive power.

4.9 Improving long-range temperature forecasts by impulse functions and
Cox regression

Section 4.7 concerning state-dependent event climatology forecasts demonstrated that cli-
matological surface temperature forecasts could be vastly improved, in certain regions, in
the wake of SSW and SPV events. Consequently, using UKMO and ECMWF zonal mean
U wind forecasts, could impulse functions be used to improve temperature forecasts on
the time scale of one–two months ahead in time?

Using each ensemble member to compute the temperature anomaly at a given lead time,
and then taking the mean over all ensemble members, the MSE difference between the
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Figure 17. Percentage-wise MSE reduction with respect to climatology, for different configurations
of (d, l), for (from left) a simple linear regression, a GLM with a Gaussian family and a link function
which flattens out the effect of small wind anomalies, and a polynomial regression of degree three.
Top row: Oslo, bottom row: Troms.

impulse function-based forecast and climatology at each lead time is presented in figure
18, for zonal mean U wind forecasted by UKMO and ECMWF. Since neither forecaster
manages to accurately predict when an event will occur on the time scale of one–two
months ahead in time, the impulse function-based temperature forecasts perform slightly
worse than climatology.

UKMO and ECMWFs inability to accurately predict when an event will occur could may-
hap be remedied by fitting a Cox regression to the data, such that we at each lead time
could predict the hazard of an event occuring based on the forecasted zonal mean U
wind. One fitted model, a Cox regression with (uy0,d0 − uy0,d0)3 (the cube of mean zonal
U wind minus climatology) as a covariate, proved significant at the 1 % level. (We could
also attempt to fit a logistic regression to the data.) It is remains, however, to combine the
Cox regression with the impulse function-based forecasts.
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Figure 18. Permutation tests at each lead time of the difference between the MSE of impulse
function-based temperature forecasts and the MSE of climatology, where the impulse functions is
based on the forecasted zonal mean U wind from UKMO (top) and ECMWF (bottom).

Long-range winter temperature forecasts 31



5 Conclusion

When conditioning Scaife’s perfect probabilities on actual events instead of proxy obser-
vations, the UKMO ensemble forecast of the stratospheric polar vortex lost all its appar-
ent skill in predicting strong polar vortices on the time scale of months. While UKMO
had some skill in differentiating the probability of sudden stratospheric events occuring
between years in which such events did and did not occur, the Brier score of UKMO
was not found to be significantly different from that of climatology on the time scale of
months. ECMWF was not found to be significantly different from climatology in predict-
ing the occurance of stratospheric events.

Stratospheric events appear to cause significant La Niña and El Niño-like weather pat-
terns on the time scale of two–four weeks following an event, where the most pronounced
effects were in regions bordering to the Oslo fjord, Skagerrak, Kattegat and the lower
Baltic sea. Creating a non-paramatric temperature forecast based on this relationship
proved to greatly improve temperature forecasts in some regions, but due to both UKMO
and ECMWF displaying limited skill in predicting the occurance or the timing of occur-
ance of stratospheric events, it proved difficult to combine the non-parametric weather
patterns following a stratospheric event with forecasts of the stratospheric circulation.

Regressing temperature anomaly at some lead time on the zonal mean U wind averaged
over a previous period of time proved to explain some of the variation in winter surface
temperature, but this analysis too struggled to significantly improve long-range temper-
ature forecasts when using the long-range zonal mean U wind from UKMO and ECMWF.
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