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Preface

This review presents some properties of Gaussian random field models. The
results given are largely taken from the literature and should be correct. The
proofs however, are occasionally modified to compile with the general style and
notation. So there are surely misprint and errors the reader must be indulgent
to. The reader is assumed to be familiar with general concepts such as expecta-
tion and covariance and some knowledge of the formalism of probability theory
is recommended.

This work is supported by a research fellowship from The Research Council
of Norway.

Petter Abrahamsen
January 199/

Preface to the Second Edition

This edition is similar to the preceding one except for two major changes: Sec-
tion 2.2 on derivatives has been reduced and Section 4.4 containing some exam-
ples of sample paths has been added. Also a few examples of spectral densities
for correlation functions have been added in Section 3.2.2.

The notation has been slightly adjusted and several errors and misprints have
been corrected. I am in particular grateful to Alfhild Lien Eide and Anne-Lise
Hektoen who have pointed out several errors.

Petter Abrahamsen
April 1997
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“When the going gets weird....
....the weird turns pro!”

Hunter S. Thompson
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No. 917 Gaussian Random Fields and Correlation Functions 1

Introduction

There are several books and many articles on random fields and correlation
functions. The main results however, are often complicated to extract without
a major effort. This note is an attempt to collect results important for practical
applications as well as results of more theoretical importance. The style is
formal with most results stated as theorems. Long or complicated proofs are
omitted, but references to the literature are supplied.

Most properties of random fields are related to finite dimensional distribu-
tions, that is, the probability distributions of the random field at an arbitrary
(finite) set of positions. An exception is geometrical properties requiring char-
acteristics of the probability space.

The study of Gaussian random fields is in many respects a study of co-
variance functions or correlation functions. The class of covariance functions
coincidence with the class of positive definite functions. Thus, the concept of
positive definiteness is of monumental importance and will be considered in de-
tail. A general result usually referred to as Bochner’s theorem states that any
positive definite function has a simple spectral representation. A consequence of
Bochner’s theorem is the Wiener-Khintchine theorem which gives the spectral
representation of correlation functions. This representation gives explicit meth-
ods for construction and validation of permissible correlation and covariance
functions.

The first chapter starts by defining what is meant by a random field and in
particular a Gaussian random field. Symmetry properties such as stationarity
and isotropy are discussed and their implications for covariance and correlation
functions are presented. The next chapter on geometrical properties is somewhat
technical but the results are simple and of importance to the understanding
of how random fields behave. Some examples are given to shed light on the
more formal results such as conditions for continuity of random fields. The
third chapter on correlation functions gives many results on how to obtain valid
correlation functions. General methods for construction are given, and simple
restrictions limiting the class of correlation functions are provided. The last
chapter gives some examples of correlation functions found in the literature.

So what is left out? A lot! Everything about statistical inference is omitted.
Also the topic of simulation of random fields so important in practical applica-
tions is hardly mentioned. Moreover, discussions of variograms and generalized
covariances are completely excluded. This would require an examination of in-
trinsic random fields and generalized random fields, considered beyond the scope
of this presentation.

The main influence on the contents is from Yaglom (19864) and Matérn
(1960). Many results are borrowed from them. The main influence on the
chapter on geometrical properties is Adler (1981). Most of the fundamental
results on positive definite functions are from Schoenberg (19384, 1938b). The
reference list is by no means complete but contains at least some of the more
significant contributions. For additional references see e.g. Yaglom (1986b),
Vanmarcke (1983), and Adler (1981).
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No. 917 Gaussian Random Fields and Correlation Functions 3

1 Random Fields

A formal definition of a random field reads:

Definition 1.1 (Random field) Let a probability space, (2, F, P)*, and a pa-
rameter set, T', be given. A random field is then a finite or real valued function
X (t,w) which, for every fixed t € T' is a measurable function of w € Q.

The synonyms random function and stochastic process are used by some
authors.

The n-dimensional Euclidean space, T' = R", with n > 1 will be considered in
the following. The dependency on the underlying probability space will usually
be suppressed throughout the text:

X, =X(t,w); teR"

For a fixed w € Q, the function X (t,w) is a non-random function of t. This
deterministic function is usually called a sample path (sample function) or a
realization and is denoted by a lower case letter . The parameter t is called
the coordinate or position by standard terminology. In this context the formal
definition simply means:

A random field Xy on R™ (i.e. t € R") is a function whose values
are random variables for any t € R™.

The dimension of the coordinate is usually in the range from one to four, but any
n > ( is possible. A one-dimensional random field is usually called a stochastic
process. The term ‘random field’ is usually used to stress that the dimension of
the coordinate is higher than one. Random fields in two and three dimensions
are encountered in a wide range of sciences and especially in the earth sciences
such as hydrology, agriculture, and geology. Random fields where t is a position
in space-time are studied in turbulence theory and in meteorology.

Consider the almost intuitive result that functions of random fields are also
random fields:

Theorem 1.1 For measurable functions f: R* — RI, and for a collection of
i random fields {X},..., X{}, then £(X{,...,X]}) is a collection of j random
fields.

This is a standard result from probability theory; measurable functions, f,
of measurable functions, X{,..., X}, are again measurable functions. See for
instance Logve (1978, pp. 103-111) or Billingsley (1986, pp. 182-184). Measur-
able functions include continuous functions, sums, products, and maxima. Thus
the following corollary follows immediately.

Corollary 1.1.1 For random fields on R :
(i) If X¢ and Yy are random fields and a,b € R', then aXy + bY; is a random
field.
(ii) If X¢ and Yy are random fields, then X Y; is a random field.

*A probability space consists of the sample space 2 of sample points w, a o-algebra F
dividing 2 into subsets, and a probability measure P asigning probabilities to all members of
F. Each w corresponds to a possible outcome of an ‘experiment’ and 2 containes all possible
outcomes. The elements of F corresponds to events. These events must form a o-algebra for
the assignment of probabilities to be consistent and meaningful.
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4 Petter Abrahamsen No. 917

1.1 Finite-Dimensional Distributions

This section concerns the construction of valid probabilistic models for random
fields. The properties of the parameter set, T', will not be considered until later.
So t can in principal belong to almost any space T', e.g. t € R” ® {1,2, 3} such
that

X = Xz = (X1(8), X2(F), X3(F));  teR".

Thus the conditions required for existence are valid for random fields on far
more general spaces than R™.

A random field is normally described by its finite-dimensional (cumulative)
distributions:

(].].) Ftl,...,tk (.fL'l, . ,.Z'k) = PI’Ob{th S L1,y - .,th S .Z'k}

The cumulative distribution functions are by definition right-continuous and
nondecreasing™. Note also that

Ft1,...,tk (.’L’l, cee, —00, .. .,xk) = 0, Ftl,---,tk (OO, feey OO) =1.

Two consistency requirements on the finite-dimensional distributions must
be satisfied. Consider a permutation 7 of the index set {1,...,k}. Since the
events [X¢, < z1,...,X¢, < g] and [X¢ , < Zr1,...,Xt,, < Zqp] are identical
the symmetry condition

(12) Fthm,tk (-771; s >mk) = Ft‘ll'l:"'at‘lrk (mﬂh s 7$7rk)

must hold. A similar argument implies that the compatibility condition

(1.3) Ftl,...,tk,_l (3;17 st 73;]6—1) = Ftl,...,tk_1,tk (3;17 st :L.k_l, w)

must be satisfied. Distribution functions Fy, . ¢, originating from a random
field according to (1.1) must necessarily satisfy conditions (1.2) and (1.3). The
problem is therefore the converse: If there exist distribution functions Fi, .. ¢,
which satisfy conditions (1.2) and (1.3), does there exist a random field hav-
ing these finite dimensional distributions? The answer is yes according to the
following famous theorem:

Kolmogorov’s Existence Theorem If a system of finite-dimensional distri-
butions, Fy, . .4, , satisfies the symmetry condition (1.2) and the compatibility
condition (1.3), then there exists on some probability space (2, F, P) a random
field [X¢: t € T| having Fy, ..., as its finite-dimensional distributions.

Two proofs are found in Billingsley (1986, pp. 513ff). This means that if it is
possible to specify finite-dimensional distributions Fi, .. ¢, satisfying conditions
(1.2) and (1.3) for any set of coordinates {ti,...,tx}, then a corresponding
random field exist. The construction of such probability distributions are in
general complicated, but certain special cases become simple.

The role of the underlying probability space, (Q2,F, P), is usually irrelevant
since the properties of the finite-dimensional distributions, Fi, ... +,., determines
almost all properties of practical interest. An important exception is the conti-
nuity and differentiability of realizations, x+, of a random field. See Example 2.1
for an almost trivial example.

*As k-dimensional distributions are considered, the ordinary definitions of ‘right-
continuous’ and ‘nondecreasing’ must be generalized. The generalization is intuitive but the
exact definition is somewhat cumbersome. Billingsley (1986, pp. 176—-178) contains the details.
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No. 917 Gaussian Random Fields and Correlation Functions 5

1.2 Expectation and Covariance

The ezxpectation of a random field is by definition
m(t) = E{X;} = / X¢(w) dP(w).
Q

This integral can be expressed by using the finite dimensional distribution Fi(x)
as Stieltjes integrals in R' (Billingsley 1986, p. 280):

(1.4) mit) = / 2 dFy(z).
R1
The (auto-)covariance function is correspondingly expressed as a Stieltjes inte-
gral in R?:
(1.5) C(t,s) = Cov{ Xy, Xs} = E{X( X} — m(t) m(s)
=[] sy @Ficay) = meyms)
R2
whereas the variance is
o?(t) = C(t,t).
The (auto-)correlation function of a random field is by definition

C(t,s)
1.6 t,s) =C Xe, X = ——.
( ) p( JS) Orr{ t, } a(t) O'(S)
In the following the existence of the covariance function is assumed.

For continuous distribution functions the probability density function is ob-
tained from the partial derivatives (excuse the sloppy notation) as

_ (9kFt1’._’tk (.’1717 - .,mk)

pt1,...,tk(w17"'7wk) 6:1;1 6$k

Then Stieltjes integrals can be written as ordinary Lebesgue (or Riemann) in-
tegrals:

// g(ib'l,...,;L'k)dkFtl’___,tk(.'L'l,...,.’L'k)
B
:// g(wl,...,:ck)ptl,,,,,tk(azl,...,mk)dml---d;l:k, BEBk,
B

where B¥ are the Borel sets* in R¥. So for continuous distribution functions, the
expectation and covariance function are readily expressed by using the proba-
bility densities:

m(t) = / 2 pe(e) da,

R1
ctts) = [ aupaa) dody—m(©m(e).

*The Borel sets B¥ include any subset of R¥ ever encountered in practical applications. So
B € B* simply means B C R* and that the Lebesgue integral can be properly defined.
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6 Petter Abrahamsen No. 917

Integrals of the form (1.4) and (1.5) are called Stieltjes integrals (Billingsley
1986, p. 230). The significance of the Stieltjes integral is partly that it incor-
porates a density and partly that it allows discontinuities in Fy, . ,. If the
number of these are countable, the Stieltjes integral can be decomposed into
an ordinary (Lebesgue) integral and a (countable) sum of contributions from
the discontinuities. Thus, the Stieltjes integral is a notational construction that
includes ‘ordinary’ integrals, sums, and combinations of these.

1.3 Positive Definiteness

The concept of positive definiteness is fundamental. For Gaussian random fields
in particular, the positive definiteness of the covariance function is a sufficient
and necessary condition for establishing consistent finite-dimensional distribu-
tions.

Definition 1.2 Let k be a positive integer, and let t; € T and ¢; € R! for
i=1,...,k. Then the function C on T ® T is said to be positive (semi-)definite
on T if

k kK
(17) > eie; Cltinty) >0

i=1 j=1
for any choice of k, {t1,...,t;}, and {c1 ..., ¢}

Consider an arbitrary collection {X4,,...,Xs,} of random variables from
a random field with covariance function C. Then, for arbitrary real numbers

{c1,.-- ¢k}

k k
VaI‘{Clth + -+ Ckth} = Z ZCiCj C(tz’,tj) > 0.

i=1 j=1

This coincidence with the definition of positive definiteness so that the following
lemma must be true.

Lemma The class of covariance functions on T must belong to the class of
positive definite functions on T.

This is a strong restriction on the class of possible covariance functions and
it is in general hard to verify.

Theorem 1.2 The class of covariance functions coincidence with the class of
positive definite functions.

Proof. The Lemma says that the class of covariance functions necessarily be-
longs to the class of positive definite functions. What remains, is to prove the
(almost trivial) opposite: That any positive definite function is a covariance
function for some random field. [The arguments below follow Gnedenko (1962,
pp- 371-372).]

Consider a Gaussian random field (defined in Section 1.4 below) defined
such that E{X;} = 0 and Cov{X¢, Xs} = C(t,s) where C is a positive def-
inite function. All finite dimensional distributions are readily deduced from
these properties. Moreover the positive definiteness of C' ensures the positive
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No. 917 Gaussian Random Fields and Correlation Functions 7

(semi-)definiteness of all covariance matrices, 3, appearing in the exponent of
the finite dimensional multivariate normal probability densities. Thus the finite
dimensional distributions exist and they satisfy the symmetry and compatibility
conditions (see Section 1.4.1). So according to Kolmogorov’s existence theorem
the corresponding Gaussian random field exists. O

Corollary 1.2.1 The class of correlation functions coincidence with the class
of positive definite functions where C(t,t) = 1.

Proof. p(t,t) =1 by definition. Since p(t,s) = C(t,s)/(co(t) o(s)) is

Z cicj p(ti, t;) Z (ci/o(t:)) (cj/o(t5))C (i, t5) Z cich Clts,t5) > 0

3,j=1 3,j=1 i,j=1
for arbitrary {c; ..., c} provided o(t) > 0. O

The restriction o(t) # 0 is necessary for the correlation function to be properly
defined. But this restriction is not necessary for the existence of C(t,s); if
p(t,s) is positive definite then C(t,s) = o(t) o(s) p(t,s) is positive definite even
though o(t) = 0 in certain regions since

k
Z cic; Cti,t5) = D (cio(t:) (cjo(t;)) p(ti, t;) Z cic; p(ti, t5) > 0.
i,j=1 i,j=1 i,j=1

The significance of positive definiteness will become clear when considering
the construction of valid covariance and correlation functions. In particular the
spectral representations give explicit ways of constructing such functions and
even methods for validating positive definiteness. Many fundamental results on
positive definite functions are given by Schoenberg (19384, 1938b).

1.4 Gaussian Random Fields

Gaussian random fields play an important role for several reasons: The spec-
ification of their finite-dimensional distributions is simple, they are reasonable
models for many natural phenomenon, estimation and inference are simple, and
the model is specified by expectations and covariances.

Definition 1.3 A Gaussian random field is a random field where all the finite-
dimensional distributions, Fi, .. t,, are multivariate normal distributions for
any choice of k and {tq,...,tg}.

Since multivariate normal distributions are completely specified by expecta-
tions and covariances, it suffices to specify m(t) and C(t,s) in such a way that
conditions (1.2) and (1.3) holds. The expectation can be arbitrarily chosen, but
the covariance function must be positive definite to ensure the existence of all
finite-dimensional distributions.

In the following sections the discussion is focused on the expectation and in
particular on the covariance function of a random field. Since these determine
all stochastic properties of a Gaussian random field, the rest of this paper is in
many respects a study of Gaussian random fields.

Be aware that the functions m(t) and C(t,s) do not uniquely specify a
random field. For instance Yaglom (1986a, p. 88) discuss the Poisson pulse
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8 Petter Abrahamsen No. 917

process in one dimension. It is possible to specify a Gaussian random field with
identical expectation and covariance function but the two random fields behave
totally different.

1.4.1 Existence

The multinormal probability densities involved are
~1/2 1 fael
(1.8)  pty,..te(Z1,. .., 2k) = |27 exp —E(x—m) Y (x—m)y,

where x! = (21,...,2;), m’ = (m(t),...,m(t;)) are the expectations, and
Y;; = C(t;,t;) are the elements of the covariance matrix.

The symmetry condition (1.2) requires that a simultaneous permutation of
the sequence of {t1,...,t;} and {x1,..., 2} makes no difference, i.e.

71 Tk
(1.9) / / Doyt (X1, -, ) dog -+ - dag
—0o0 — o0
Trl Trk
- / / pt‘}rl...t'rrk(xﬂ-IJ'"7'Z.7rk)d$7r1 "'dwﬂ'k‘
—0o0 — 00

Too see this consider a permutation matrix P defined such that (71,...,7k)! =
P(1,...,k)t. The permutation of x becomes: x' = Px = P(zy,...,2;)" =
(Tr1y-.-,%xk)t. The corresponding permutation of {ti,...,tx} amounts to:
m' = Pm and £’ = PEP?. Since P! = P! (unitary) it follows that |P| = +1
which implies that |X'| = |X|, i.e. determinants are unchanged by permutations.
Moreover &' ' = Pt '2~'P-1 = =~ Using this gives

(1.10) (x' —m')!'S' "' (x' —m') = (Px — Pm)'PE~'P!(Px — Pm)
= (x—m)'P'PT 'P'P(x — m)

=(x—m)'X"}(x —m).

Thus the quadratic form in the exponent of (1.8), Q(x) = (x—m)!E ™! (x—m),
is also unchanged by simultaneous permutation of x and {t1,...,t;}. Since
both |X| and Q(x) are invariant under permutations:

ptl,...,tk(l'la e ,wk) = pt,,l,,,t,,c(x,rl, ... ,m,rk).

Hence, the symmetry condition (1.9) is satisfied.

The compatibility condition (1.3) requires that the (k—1)-dimensional multi-
normal ‘marginal’ density is obtained from the k-dimensional multinormal den-
sity:

o0
Dyt (T1y e ey Thm1) = / Dyt i (T - -, Tho1, Tg) ATy
—0o0
This is a standard result for multinormal distributions.

So according to Kolmogorov’s existence theorem the Gaussian random field
is properly defined provided the py, .. ¢, (Z1,--.,2r)’s involved are well defined.
The only restriction is therefore that C(t,t) is positive definite. Thus the major
challenge is to specify a valid covariance function.
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No. 917 Gaussian Random Fields and Correlation Functions 9

Note that positive semi-definite covariance matrices X are possible. For
singular covariance matrices a slight change of the multinormal probability den-
sities based on the characteristic function is necessary. See Mardia, Kent &
Bibby (1979, pp. 41-44) for details. As the properties needed above are un-
changed, Kolmogorov’s existence theorem still applies.

1.5 Symmetries

In this section the class of possible covariance functions is restricted to simplify
verification of positive definiteness. A symmetry (in the weak sense) is defined
by invariance of p or C' (and m) under some transformation; e.g. stationary
correlation functions are invariant under translations and isotropic correlation
functions are invariant under translations and rotations.

To define a symmetry the parameter space T’ must possess certain properties.
For instance stationarity requires that 7" must be closed under addition and
subtraction, and isotropy requires a properly defined distance function in 7. So
from heron the parameter space must be restricted to have certain properties.

1.5.1 Stationarity

Assume that T is a linear space (vector space) such that t,s € T implies that
t +s € T. The obvious example is R™.

Definition 1.4 (Stationarity in the strict sense) A random field is a sta-
tionary random field in the strict sense if all its finite-dimensional distributions
are invariant under arbitrary translations, i.e.

(].].].) Ft1+s,~~~,tk+s(x1;---7-7515:) :Fth,,,,tk(a:l,...,a:k), for all s € T.

Definition 1.5 (Stationarity in the wide sense) A random field is a sta-
tionary random field in the wide sense if

(1.12) m(t) =m and C(t,s) = C(1),

where 7 = t—s is the separation vector. The corresponding covariance/correlation
function is called a stationary covariance/correlation function.

Stationarity in the strict sense implies stationarity in the wide sense, whereas
the opposite is not necessarily true. The two conditions are equivalent for Gaus-
sian random fields so no distinction will be made in the following. Note that
stationary random fields are called homogeneous random fields by some authors,
e.g. Yaglom (1986a) and Vanmarcke (1983).

Any stationary covariance function must have constant variance so that

C(1) = a?p(1).

This means that the attention can be focused on the correlation function or
the covariance function without loosing generality. The equivalence of the two
functions for stationary random fields has lead to the concept correlation theory
used by some authors when referring to the study of the two first moments of
stationary random fields (Yaglom 19864).
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10 Petter Abrahamsen No. 917

1.5.2 Isotropy

A translation invariant correlation function is still a complex function so verify-
ing positive definiteness is complicated even for these functions. This leads us
to consider an even more restricted class of random fields possessing two more
symmetries: Rotation and reflection invariance.

Assume that T is a metric space, that is, T is a linear space with a properly
defined distance measure or norm usually denoted d(t,s). A typical example is
R” equipped with the Euclidean norm:

T =d(ts) = 7ll = /7 +-o 72

Definition 1.6 (Isotropic random field) A stationary random field is an
isotropic random field (in the wide sense) if the covariance function depends
on distance alone, i.e.

C(t,s) = C(1),

where 7 = d(t,s). The corresponding covariance/correlation function is called
an isotropic covariance/correlation function.

As for stationary random fields no distinction between ‘in the wide sense’
and ‘in the strict sense’ will be made. The significance of isotropic correla-
tion functions is the simplicity; it depends on a single variable, the distance
between t and s. When using a Euclidean norm in R™ the verification of posi-
tive definiteness is in principle simple. Verifying positive definiteness on general
metric spaces however, is non-trivial. Schoenberg (19384, 1938b) deals with this
problem in some detail.

Isotropic functions are obviously a subclass of stationary functions.

1.5.3 Anisotropic Random Fields

The usual metric space considered is of course R” with the Euclidean norm. In
many applications isotropic correlation functions on this space are to restrictive.
Instead of the Euclidean norm to evaluate distances, a more general norm of
the form

(1.13) =7k = VKT
is possible. The matrix K must be positive semi-definite (i.e. |K| > 0) to ensure
||7]lx > 0 for any T.

Definition 1.7 (Anisotropic correlation function) A stationary correla-
tion function on R™ is an anisotropic correlation function if its dependence
on T is through a non-Euclidean norm of the form (1.13):

p(r) = plI7llx)-

Using the norm (1.13) gives ellipsoidal symmetry so correlation functions of
this form are occasionally called ellipsoidal correlation functions.

Theorem 1.3 The anisotropic correlation function p(T) = p(||7||x) s positive
definite on R™ provided the isotropic correlation function p(T) is positive definite
on R", and K is a symmetric positive semi-definite n-dimensional matriz.
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No. 917 Gaussian Random Fields and Correlation Functions 11

Proof. Tf K is symmetric and positive definite a unique square root K'/2 exists
(Mardia et al. 1979, p. 471). Then

k k
D cicip(lits = tlli) = Y cics p((b — ) K(t: — t5))
i,j=1 ,j=1
k

Z CiCj p(((tz — tj)tK1/2) (Kl/z(ti — tj)))

i,j=1

Z CiCj p((té - t;-)t(t;' - t;))

i,j=1

k
=Y acip(llt; - t51%) > 0.

i,j=1

This is valid for any choice of k, {c1 ...,cx}, and {t,...,tx}, so p(||t; — t;]%)
must be positive definite.

Now consider a positive semi-definite matrix K. Then K'/2 is not uniquely
defined but a generalized square root of K can be defined by taking the square
root of the non-zero eigenvalues of the spectral decomposition. Using this gen-
eralized square root in the calculation makes no difference except that the null
space of K will not contribute so that the transformed coordinates t; will be
confined to a subset of R™. O

1.5.4 Additional Symmetries

Two more symmetries—both subclasses of stationary symmetry—will be con-
sidered.

Definition 1.8 (Separable correlation functions) The correlation func-
tion p(7) on R" is fully separable if
p(T) = p1(71) -+ pu(Tn)-

The correlation function p(7) on R” is partially separable if

p(1) =p1(T1) - pm(Tm), wherem <mn,

where 78 = (7%,...,7L,), and p; is a correlation function on R™ fori =1,...,m,

andn =", n;.

Typical examples are found in geology where the two lateral dimensions are
separated from the vertical dimension: p(z,y,2) = p(z,y)p(z), or in space-time
contexts, e.g. meteorology, where time is separated: p(z,y, 2,t) = p(z,y, 2)p(t).

Theorem 1.4 A function p(17) = p1(71) -+ pm(Tm) is a correlation function
on R™ if and only if each p; is a correlation function on R™ , andn =Y n;.

Proof. Consider the ‘degenerate’ function p(7) = p;(7;) on R™. This function
is positive definite on R™ since

k k
Z cicj p(ti —t;) = Z cicj pi(ti — ti;) > 0.

i,j=1 i,j=1
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12 Petter Abrahamsen No. 917

(Since p; positive definite on R™.) Tt is obviously also a correlation function on
R™. Thus, correlation functions p;(7;) on R™ are correlation functions on R"
when the redundant directions on R" are ignored. Theorem 3.1 part (iii) states
that a finite product of correlation functions on R™ are a correlation function
on R”. O

Definition 1.9 (Quadrant symmetry) A correlation function p(7) on R is
quadrant symmetric if

Py s Tiye ooy Tn) = p(T1yevoy—Tiy...,Tn) foranyi=1,...,n.
Quadrant symmetry does not imply isotropy but isotropic correlation func-
tions are quadrant symmetric. More details on quadrant symmetry is found in
Vanmarcke (1983, pp. 80-82).

1.5.5 Non-stationary Gaussian Random Fields

Stationarity and in particular isotropy impose strong restrictions on the possible
definition of a Gaussian random field. However, from stationary random fields
it is simple to obtain a wide range of non-stationary random fields.

Consider an isotropic Gaussian random field Y; with properties

E{Y;} =0 and Cov{Ys, Ys} = p(1),
where p is an isotropic correlation function. Next consider the random field
Xt = O'(t) Y;;,

where o(t) is a real valued function. The expectation and covariance function
are

E{X;}=0 and Cov{Xe, Xs} = o(t) o(s) p(7),

i.e. the non-stationary variance is specified by o?(t). Now consider the random
field

where m(t) is a real valued function. The expectation and covariance function
are

E{X;} =m(t) and  Cov{Xi,Xs} = p(7)

Here the expectation is non-stationary. This can be extended further. Consider
the Gaussian random field

Xe =34, f() + Y,
p

where A, are Gaussian random variables independent of Y3, and f,(t) are real
valued functions. The expectation and covariance function are

E{X:} =) E{4,} fp(t)
Cov{ X, Xs} = Z Cov{Ap, Ay} fo(t) fo(s) + p(7).

p,q
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No. 917 Gaussian Random Fields and Correlation Functions 13

Both the expectation and the covariance function has become non-stationary.

Combinations of these simple extensions are obviously also possible, and
moreover, the isotropic correlation function can be replaced by an anisotropic
correlation function. The existence of X is ensured by Theorem 1.1, also imply-
ing the positive definiteness of the covariance function. The random fields are
Gaussian random fields since linear combinations of Gaussian random variables
are Gaussian random variables.

1.6 Isotropic Multidimensional Random Fields

Consider the multidimensional random field
XtZ(Xl(t),,Xm(t)), teR".

An isotropic multidimensional random field is defined such that each component
and all cross-covariance functions are isotropic:

Var{X~ (t) } = 0-2
Cov{X;(t),X;(s)} = Ci;(r

The covariance matrix Cj; must be a positive definite matrix for all distances.
This is the almost trivial extension from ordinary random fields on R”. Yaglom
(19864, pp- 370-372) has more details, e.g. a spectral representation.

1.6.1 Isotropic Random Vector Fields

The definition of isotropy used for multidimensional fields will not do. The axes
introduce artificial directions so that each component is not isotropic although
the vector is isotropic. Here only some rudimentary results are given. For a
thorough discussion on isotropic vector fields see Yaglom (19864, pp. 372-383)
or Monin & Yaglom (1975, pp. 35ff).

As opposed to a multidimensional random field a random vector field and
the coordinates are both in R”:

X¢ = (Xi(t),...,X,(t)) €ER* and teR".

Moreover, the transformations of the coordinates also applies to the components
of the vector field itself.

A random vector field on R™ is isotropic if expectations and covariances are
independent of translations, rotations, and reflections of the coordinates in R”.
Consider an isotropic random vector field X¢. The expectation vector must be
invariant under arbitrary rotations implying that E{Xt} = 0. The elements of
the covariance matrix

COV{Xi (t } Cz]
must form an isotropic second order tensor called the covariance tensor. It can

be shown that the general form is

TZT]

(1.14) Cij(t) = (Cr(7) = Cr(7)) 2

+ Cr(7) 6ij,
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14 Petter Abrahamsen No. 917

where §;; is the Kronecker delta and Cr and Cg are two isotropic covariance
functions. The properties of these are studied by Yaglom (19864, pp. 380-383)
and Monin & Yaglom (1975, pp. 35fF).

An immediate observation is that a single component of an isotropic vector
field is not isotropic since for instance

7_.2
Cii(t) = (Cr(r) — CT(T))T—Z + Cr(7)

depends on the direction of the coordinate axes.
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No. 917 Gaussian Random Fields and Correlation Functions 15

2 Geometrical Properties

Geometrical properties of random fields is a vast area including any geometrical
property of functions in n-dimensional Fuclidean spaces. There are several
areas important for practical applications; continuity and differentiability of
random fields, stochastic integration, and the properties of excursion sets*. All
subjects are found in Adler (1981). Cramér & Leadbetter (1967) also contains a
discussion on these topics but it is mainly restricted to random fields on R'. An
even more general treatment of continuity is found in Adler (1990). Excursion
sets are also considered in some detail by Vanmarcke (1983).

Excursion sets are not discussed but continuity and differentiability are
treated in some detail. Integration is also briefly mentioned. The discussion
is slightly technical since properties such as continuity and differentiability of
realizations fail to be determined by finite dimensional distributions so reference
to the underlying probability space is needed. Therefore, in this section the less
compact X (t,w) is used occasionally to stress the dependence on the underlying
probability space. The symbol X (t) for X; is used throughout this section for
notational reasons necessary when treating derivatives.

2.1 Continuity

Continuity of a function, f, is a property related to the convergence of a sequence
{f(t,)} when ||t,—t]| = 0 asn — oo. When studying a function being a random
field, continuity is related to the convergence of sequences {X(t,)} of random
variables. As there are different types of convergence for random variables
there are corresponding types of convergence for random fields. Three types of
continuity will be considered based on almost sure convergence (i.e. convergence
with probability one) and mean square convergence.

Definition 2.1 (Continuity of random fields) Consider a B C R".
(i) A random field X has continuous sample paths with probability one in B
if for every sequence {t,} for which ||t,, — t|| = 0 as n — oo, then

Prob{w: | X (tp,w) — X(t,w)] >0 asn— oo forallte B} =1.

(ii) A random field X is almost surely continuous in B if for every sequence
{t,} for which ||t,, — t|| = 0 as n — oo, then

Prob{w: | X (tn,w) — X(t,w)] >0 asn— oo} =1 forallte B.

(iii) A random field X is mean square continuous in B if for every sequence
{t,} for which ||t, — t|| = 0 as n — oo, then

E{|X(t,) — X(t)]’} 20 asn—oo foralte B.

Continuous sample paths with probability one means that there are, with
probability one, no discontinuities within the whole domain B. Continuous sam-
ple paths with probability one are commonly referred to as sample path continu-
ity. Almost sure continuity however, allows discontinuities within B. There is
no contradiction here; although a realization has discontinuities, the probability

*An excursion set is the area, volume, etc. where a function has values above a certain
pre-specified level.
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16 Petter Abrahamsen No. 917

for finding a discontinuity at a particular position, say t, is zero. Evidently, sam-
ple path continuity is a far stronger property than almost sure continuity. An
example of an almost surely continuous random field with discontinuous sample
paths is given in Example 2.1. In general, mean square continuity is not implied
by sample path continuity. Nor does mean square continuity imply sample path
continuity. Sample path continuity is a far stronger condition relying on much
more specific behavior of the covariance function. For Gaussian random fields
however, mean square continuity is a necessary and almost sufficient condition
for continuous sample paths. The meaning of ‘almost sufficient’ will become
clear in the subsequent.
Finally note that continuity in probability:

lim Prob{w: |X(t,,w) — X(t,w)| >6} =0  for any 6 >0

n— oo
is implied by mean square continuity. This follows directly from Chebyshev’s
inequality:
E{|X(t,) — X(t)]*}

62 '

Two random fields X and Y are said to be equivalent or versions of each
other if

Prob{w: |X (tn,w) — X (t,w)| > &} <

Prob{w: X(t,w) =Y (t,w)} =1 for any t.
Two equivalent random fields generate identical finite dimensional distributions
but they need not necessarily be identical as the following example shows.

Ezample 2.1 Consider two random fields X (t,w) and Y (t,w) where t € R*
and w € [0,1] = Q. That is, the probability space is the unit interval with a
uniform distribution of points w. The two random fields are defined as

X(t,w)=0 for all ¢t and w,

Y(t,w) = {

1 fort=w
0 otherwise.

The finite dimensional distributions for both random fields are identical:

1 forallz; >0,i=1,...,k
0 otherwise.

Moreover, the two random fields are equivalent:
Prob{w: X (t,w) =Y (t,w)} =1,

since the probability (measure) of a single point is zero: Prob{w} = 0. Finally,
for the same reason, both X and Y are almost surely continuous and mean
square continuous. Nevertheless

Prob{w: X (t,w) is continuous in [0,1]} =1

Prob{w: Y (t,w) is continuous in [0,1]} = 0.
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No. 917 Gaussian Random Fields and Correlation Functions 17

That is, X has continuous sample paths with probability one whereas Y has not.
Thus, the finite dimensional distributions do not determine the continuity prop-
erties of a random field even for this almost trivial example. Furthermore, surely
continuity is not enough to determine continuity of sample paths. This example
also shows that there can be two versions having the same finite dimensional
distribution although their continuity properties are different. <

2.1.1 Separable Random Fields

In practical applications continuity of sample paths are obviously of far more in-
terest than the piecewise continuity implied by almost surely continuity. There-
fore it is reasonable to impose additional conditions on the random fields guar-
anteeing continuous sample paths (with probability one). This is not simple. As
a start the concept of separability introduced by Doob (1953, p. 53) is needed.
A formal definition for random fields is found in Adler (1981, p. 14). Billingsley
(1986, pp. 551 fI.) consider the concept in some detail for stochastic processes,
i.e. random fields on R!.

Separability ensures that finite dimensional distributions determine sample
path properties by requiring that sample paths are determined by their values
on an everywhere dense but countable subset of positions in R™. The definition
of separability excludes random fields such as Y above; a separable random field
on R' satisfies
(2.1) sup X (t) = sup X (),

te DNB teB
where B C R! and D C R! and D is countable. Since w in Example 2.1 can be
any point in [0, 1], it does not necessarily belong to a countable subset of R!.
Moreover, Prob{w € D} = 0 so (2.1) will be satisfied with probability zero for
the random field Y.

Separability excludes the most pathological random fields, but it does still
not guaranty continuous sample paths even though the random field is almost
surely continuous. Nevertheless, the significance of separability is a consequence
of the two following statements:

To any given random field Y, it is always possible to find an equiva-
lent random field X which is separable.

Properties of a separable random field is uniquely defined by its finite
dimensional distributions.

The first statement is from Doob (1953, p. 57) and the second is a mere con-
sequence of the definition. Thus it is always possible to claim separability such
that random fields behave reasonably regular between two arbitrary close posi-
tions. In the following all random fields are assumed to be separable.

2.1.2 Mean Square Continuity

Even though mean square continuity does not imply continuous sample paths,
the opposite is almost true for Gaussian random fields: mean square continuity
is implied by the sufficient conditions for continuous sample paths given in
the next section. The importance of mean square continuity is owing to the
following theorem. It makes a simple link between mean square continuity and
the continuity of the covariance function.
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18 Petter Abrahamsen No. 917

Theorem 2.1 Assume E{X(t)} is continuous. Then, a random field X (t) is
mean square continuous at t € R™ if and only if its covariance function C(s,s')
s continuous at s = s’ = t.

If C(s,s') is continuous at every ‘diagonal position’, s = s', then it is every-
where continuous.

A proof of the first statement will be given. For a proof of the last statement
see Adler (1981, p. 83).

Proof. If E{X(t)} # 0 consider X(t) = X (t) — m(t), i.e. E{X(t)} = 0. The
“if” part of the first statement follows from

E{|X(t,) — X(t)|*} = C(tn, tn) — 2C(tn,t) + C(t,t).

If C(-,-) is continuous, then the right hand side vanish as n — oo and mean
square continuity follows.

The “only if” part requires use of the Cauchy-Schwartz inequality. Assuming
mean square continuity implies

(2.2) 0= lim C(tn,ts) —2 lim C(tn,t) + C(t,t).

n—oo n—oo

Squaring gives

. 2 . 2
4(”11_{2000%7‘3)) = (nlgr;o C(tn, tn) +C(t,t)) ,
Interchanging the limit and the square on the left hand side and applying the
Cauchy-Schwartz inequality, E{X(t)X(tn)}2 <E{X(t)’} E{X(t,)?}, gives

2
4 Hm C(bn,ta) C(t,8) > (lim C(tn,ta) +C(6,1)) -
This inequality is not satisfied unless lim,,_,, C(tn,t,) = C(t,t). (The parable
touch the straight line at C(t,t)). Moreover, (2.2) then implies that

lim,,, o C(t,t,) = C(t,t) so that the “only if” part holds. O

A direct consequence of the theorem is:

Corollary 2.1.1 A stationary random field X (t) is mean square continuous at
any t € R" if and only if its correlation function p(7) is continuous at 0.

Since separable Gaussian random fields are uniquely specified by expecta-
tions and covariances, intuition suggests that mean square continuity must be
‘almost’ sufficient to guarantee continuous sample paths. Theorem 2.3 below
gives the answer: an additional weak restriction on the behavior of C(t,s) for
small 7 is necessary.

2.1.3 Sufficient Conditions for Continuous Sample Paths

In this section a few theorems are stated without proof. Most of the proofs are
found in Adler (1981, pp. 41-49, pp. 59-62). All random fields are assumed to
be separable.
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1 Figure 2.1: The function cr?/|log 7|3**
plotted for different values of € (0, 1, 2, 5,
and 10). The value of cis chosen such that
1 the curves coincidence at 7 = 0.0001. The
upper curve has ¢ = 0 whereas the bottom
curve has € = 10.
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Theorem 2.2 Let X(t) be a random field on R*. Then if, for some ¢ > 0,
some a > 0, and some n > «,

E{|X(t) — X (s)|* 707-2"
t <
{| ( ) (S)| } |10g7_|1+7]7

then the random field X (t) will have continuous sample paths with probability
one over any compact subset in R™.

This result is a corollary to a general theorem by Belyaev (1972). See Adler
(1981, pp. 47-49) for a derivation of the result above.

For Gaussian random fields this result can be sharpened. The following
theorem is from Adler (1981, p. 60).

Theorem 2.3 Let X(t) be a zero-mean, Gaussian random field with a contin-
wous covariance function. Then if, for some finite ¢ > 0 and some € > 0,

(2.3) E{|X(t) - X(s)]"} < Tlog 7]+

for all T with 7 < 1, then the random field X (t) will have continuous sample
paths with probability one.

For stationary Gaussian random fields condition (2.3) simplifies:

Corollary 2.3.1 Let X(t) be a stationary Gaussian random field with a con-
tinuous correlation function. Then if, for some finite ¢ > 0 and some € > 0,

2.4 1-— < —
(24) pT) < o
for all T with T < 1, then the random field X (t) will have continuous sample
paths with probability one.

These conditions deserve a few comments. The bounds given by Theorem 2.2
are extremely restricting. Consider for instance a stationary random field on R!
with known correlation function. Choosing a = 2 gives the inequality [compare
to (2.4)]

cr?

2.5 1-— < —
(23) pT) < o

where € > 0. Figure 2.1 shows the behavior of 72 /[log 7|>*¢ for different values
of €. The figure shows that the correlation function must approach 0 with zero
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Figure 2.2: The function |log 7|~(**) plotted for different values of € (0, 0.05, 0.1,
0.25, 0.5, and 1). The left figure is a magnification of the lower left corner of the right
figure.

slope. In higher dimensions the condition becomes even more restrictive since
the power of 7 in the numerator increases. It is of course possible to choose
a # 2 and hope for less restrictive bounds. In practice however, this can be
complicated since the evaluation of the corresponding expectations is difficult.
Also note that Theorem 2.2 gives a sufficient but not a necessary condition. It
will soon be realized that this condition is abundantly restrictive for Gaussian
random fields.

Now consider condition (2.4). The bound is an everywhere increasing func-
tion of 7 starting at zero at 7 = 0 and approaching infinity at 7 = 1. Note also
that 7 < 1 could be replaced by 7 < § where ¢ is some non-zero (but arbitrarily
small) constant less than one. This is obvious since a change of scale has no influ-
ence on continuity properties. Thus the conditions really impose a restriction on
how slow the convergence towards continuity of the covariance function can be.
Figure 2.2 shows the behavior of |log 7|~(1*¢) for different values of e. Note that
the vertical scale is arbitrary since any positive and finite ¢ can be chosen. The
figures suggest that the slope of the curves are infinitely steep at 7 = 0. A cal-
culation shows that this observation holds: d[log7|~(*9) /dr = 1/(r|log 7|>¢)
which approach* oo as 7 — 0. Therefore, it is almost impossible to find a
continuous correlation function violating the bound. Thus, I boldly state:

Conjecture 2.1 Gaussian random fields with continuous expectations and con-
tinuous covariance functions possess continuous sample paths with probability
one.

The limiting value € = 0 has the most extreme behavior. Figure 2.3 illus-
trates this. Thus the most including bound is obtained by using € as small as
possible, i.e. infinitesimal. Alternatively, consider ¢ = 0 and require a strict
inequality for 7 > 0. It is also evident from the figures that covariance functions
having a finite derivative at 7 = 0 can always be bounded by a proper choice of
c.

It is possible to verify the inequality (2.4) analytically. An example illus-
trates this.

*lim; 0 7% log 7 = 0 for any « > 0 (Abramowitz & Stegun 1972, Eq. 4.1.31). Moreover,
1/(tllog 7|?¢) = 1/(r1/(+e)|log 7|)?*<. Since 1/(2 + €) > 0 then 71/(+)|log 7| — 0 so that
1/(r|log 7|2T¢) — oo when 7 — 0.
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Figure 2.3: The function c|log7|~(+<)
plotted for different values of ¢ (0, 0.05,
0.1, 0.25, 0.5, and 1). The value of ¢ is
chosen such that the curves coincidence
at 7 = 0.0001. The upper curve has e =0

T

Figure 2.4: The exponential correlation
function is plotted as 1—exp(—7") for dif-
ferent values of v (0.001, 0.1, 0.25). The
‘Bound’ is 10|log 7|~!. The bound is ob-
viously not satisfied for » = 0.001.

whereas the bottom curve has ¢ = 1.

Ezample 2.2 Consider the isotropic exponential correlation function (4.5):

p(1) = exp(—1"); O<v<2

The corresponding sample paths vary from smooth (analytical at v = 2) to
irregular (v < 1). To ensure continuous sample paths it must be verified that

(2.6)

for some positive ¢ and e. First note that both sides vanish at 7 = 0. Thus the
crucial point is the ‘speed of departure’ from 7 = 0. The derivative of the left
hand side is v7”~! exp(—7") which is oo at 7 = 0 when v < 1. For v > 1 the
derivative is finite for any 7, so (2.6) can be satisfied for any € simply by choosing
a sufficiently large ¢. Thus the complicated part is for » < 1. From Figure 2.4 it
is seen that a particular bound can be violated by choosing a sufficiently small
v. Note in particular that the limit v — 0 gives a special form of ‘white noise’:

limp(r):{l forr=0

1—exp(—7") < c|log;T|’1*6

v—0 1/e = 0.37 otherwise.

The corresponding random field is not continuous at any position. Thus to pin
down the exact value of v for which continuous sample paths exist needs more
than a quick look at plots. Rewrite inequality (2.6) as

(1 — exp(—7"))|log 7|'T* < .

For 7 > 0 the left hand side is obviously finite since log T and exp(—7") is finite.
For T = 0 this is also true. Consider

1 1
(1 - exp(—T”))|log7—|1+6 = <_T" + 57—2" _ 737—31’ +- > log 7|1+

1 1
= (—1 + 57‘” - . ) 7"’|10g7'|1+E

2-3

Tel.: (+47) 22 85 25 00

)1+e

1 1
= (_1+_7-"——7-2"+--- log 7| <ec.

2 2-3
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Since lim,_,o77+¢|log7| = 0 for any 4 > 0 (Abramowitz & Stegun 1972,
Eq. 4.1.31) the left hand side is finite for any 7 > 0 provided v > 0. Thus it is
always possible to find a (finite) ¢ satisfying the inequality for all finite 7 > 0. So
sample paths are continuous with probability one for isotropic Gaussian random

field with the exponential correlation functions for all 0 < v < 2. o

The example shows that sample paths are continuous even though the corre-
lation functions are similar to a white noise correlation function. This strength-
ens the conjecture that Gaussian random fields with continuous covariance func-
tion will possess continuous sample paths.

2.2 Derivatives

Consider a Gaussian random field X (t) on R”. Assume that X has differentiable
sample paths. Then the associated gradient field, X(t), is a space-vector in R"
defined by its components in a Cartesian coordinate system*:

_ 0X (t) — lim X(t — Aej,w) — X(t,w)

where w is kept fixed and e; is a unit vector in the ith direction. A gradient field
is commonly called a potential vector field and is characterized by zero curl. The
components of X are also Gaussian random fields since the differential operator
is linear. The moments of X is related to the corresponding moments of X.
Assume E{X (t)} = m(t), then

B0} = 229 o).

Further, assume that the covariance function of X (t) is given:
C(t,s) = Cov{X(t),X(s)},

and assume that C(t,s) is simultaneously differentiable in t and s, that is, X is
mean square differentiable. Then, the cross-covariance function between X and
a component of X is a space-vector defined by the components:

(2.8) Ci(t,s) = Cov{X(t),X,»(s)} = a%C(t,s); i=1,...,n.

i
The covariance functions and cross-covariance functions between components of
X are

. o2

(29)  Cj(t,s) = Cov{X;(t), X;(s)} = MC‘(W); hji=1...,mn.

The matrix C is the components of a second order tensor and is called the
covariance tensor of the gradient field. To see that (2.8) and (2.9) are correct
simply use the definition (2.7) and use that limits and integration commute.
The details can be found in Christakos (1992, pp. 43—46).

*The widely used convention that, e. g. ™, means a gradient vector whereas, e.g. é, means
a tensor of second order derivatives is adopted.
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2.2.1 Higher Order Derivatives

Consider the general derivative of X (assuming sufficient regularity conditions
are satisfied):

olxl
X (t) = WX(t)’
mLoth

where £ = (K1,..., k) are n non-negative integers and |k| = >, k;. The cross-
covariances form a higher order tensor (Christakos 1992, pp. 44-45):
CFN(t,s) = Cov{X(”) (t), X (s)}
glrl+IAl
B

C(t,s).

By restricting || = k and |A| = I the components of C(*}) form a k + I order
tensor. For stationary covariance functions, i. e. C(t,s) = C(7), the tensor
must satisfy

CmN(t,s) = (=1)ANCHEH (7).

In the case k = [ = 2 the covariance tensor is a fourth-order tensor containing

n* components, e.g. 81 components when n = 3. Imposing isotropy reduces the

degrees of freedom to three. Thus, exploiting symmetries is crucial for reducing
complexity.
2.3 Differentiability

As for continuity there are different forms of differentiability based on different
forms of convergence.

Definition 2.2 (Differentiability of random fields) Consider a B C R”.

(i) A random field X has differentiable sample paths with probability one in
B if for every sequence {t,} for which ||t,, — t|| = 0 as n — oo, then

Prob{w: | X;(tn,w) — Xi(t,w)| =+ 0 asn — oo
Vi=1,...,n,Vte B} = 1.

(ii) A random field X is almost surely differentiable in B if for every sequence
{t,,} for which ||t, — t|| = 0 as n — oo, then

Prob{w: |X;(tn,w) — Xi(t,w)| >0 asn—occ Vi=1,...,n}=1
VtebB.

(iii) A random field X is mean square differentiable in B if for every sequence
{t,} for which ||t, — t|| = 0 as n — oo, then

E{|X,(tn) —Xi(t)|2} -0 asn—o00 Vi=1,...,n,VteB.

The discussion following Definition 2.1 of continuity of random fields applies
to differentiability simply by replacing continuity by differentiability.
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2.3.1 Mean Square Differentiability

As for mean square continuity, the significance of mean square differentiability
is that it is a necessary condition for differentiable sample paths and it has a
simple relation to the covariance function.

Theorem 2.4 Consider a random field X (t) on R™ with covariance function
C and differentiable expectation. If the derivative 8>C(s,t)/0s; Ot; exists and is
finite for all i =1,...,n at the point (t,t), then X (t) is mean square differen-
tiable at t. The covariance function of X;(t) is then given by 8>C(s,t)/ds; Ot;.

A proof is given by Cramér & Leadbetter (1967, p. 84). For stationary
random fields the theorem simplifies.

Corollary 2.4.1 Consider a stationary random field X (t) on R with covari-
ance function C. If the derivative 8°C(7)/d7} exists and is finite for all
i =1,...,n at the point O then X(t) is mean square differentiable at any t.
The covariance function of X;(t) is then given by —0?C(1)/07%.

The negative sign comes from 9C(t — s)/0s; = —0C(7)/07;. For a sta-
tionary random field the covariance function attains the maximum value at 0.
Therefore it is necessary that 0C(7)/0r; = 0 for all i = 1,...,n for the second
order derivatives to exist. For isotropic covariance functions this simplifies even
further since all partial derivatives are equal; it is enough to consider dC'(7)/dr2.

It is of course possible to continue further in this direction by considering
higher order derivatives. By induction (see Section 2.2.1 for notation):

Corollary 2.4.2 Consider a random field X (t) on R™ with covariance function
C and expectation possessing the necessary derivatives. If the derivative
62|n\
C(t,
T P R L)

(2.10)

exists and is finite for olli = 1,...,n at the point (t,t) then X (t) is |k| times
mean square differentiable at t. The covariance function of
AlFIX (t)
oty - - - Oty

is then given by (2.10).

This means that the smoothness of the random field is related to the smooth-
ness of the covariance function.

Exzample 2.3 Consider once more the isotropic exponential correlation func-
tion studied in Example 2.2: p(7) = exp(—7") with 0 < v < 2. The first
derivative is

so that

—o00o forO<v<l1
(2.11) p0)=< -1 forv=1
0 forl<v<2.
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Thus, there is a potential for differentiable sample paths for 1 < v < 2. Also
recognize that ¥ = 1 is special in the sense that the transition from the poten-
tially differentiable domain to the erratic domain is not continuous. The second
derivative is

. _ _ v—2 v v
pr) = 2 =T (1-v+vr")exp(—7")

Since (1 — v +v7¥)exp(—7") > 1—vast—0forany v > 1

lim /5(0) =

7—0

- forl<v<?2
-2 forv=2.

This means that the only possibility for differentiable sample paths are v = 2.
For v = 2 the sample paths are co times mean square differentiable. To verify
this it must be shown that all odd numbered derivatives of p are zero and all
even numbered derivatives are finite. Consider the series expansion for p when
v=2

5 7_4 7_6 7_8 x k,r2k
p(7) Tt{ 3 123" 1.2.3.47" kz_%( )

It is obvious that odd numbered derivatives will always result in a series of the
form c¢174co73 4375 +- - - which is zero for 7 = 0. Similarly the even numbered
(say 2m) derivatives will always result in a series of the form co+c¢1 72 +co*+- - -
where ¢ = —%’rﬁ' Thus p can be differentiated any number of times. <

2.3.2 Sufficient Conditions for Differentiable Sample Paths

Differentiable sample paths means that the partial derivatives of the sample
paths are continuous. Thus, applying Theorem 2.2 or 2.3 to the gradient field
or correlation functions of the gradient fields gives sufficient conditions. Gen-
eralization to higher order derivatives is straight forward; simply consider the
higher order partial derivatives of X and C.

2.4 Stochastic Integration

A full account of stochastic integration will not be given; only some preliminary
results on the two first moments of a spatially averaged random field are given.
For more details on this fundamental subject see e.g. Doob (1953), Cramér &
Leadbetter (1967), Adler (1981), Christakos (1992), or Priestley (1992).

The integrals considered here are spatial averages of random fields. Consider
a Gaussian random field X on R" with an everywhere continuous correlation
function*. Then a new ‘average’ Gaussian random field is defined by the Rie-
mann integral

(2.12) Y(t) = /BX(S) w(t,s)ds,

*Correlation functions with a discontinuity at the origin are not considered since the more
general Riemann-Stieltjes integrals would be needed.
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where B C R". The weight function w(t,s) on R” @ R" is assumed to be
piecewise continuous and bounded. The integral Y (t) is defined as the limit of
the sequence of random variables {Y*(t)} formed by a refinement of the partition
of B leading to the Riemann integral. The existence of Y (t) is ensured provided
the sequence {Y?(t)} converges in mean square.

The expectation of Y is

E{Y(t)} = /Bm(s) w(t,s) ds,
whereas the covariance is
(213)  Cov{Y(t),Y(s)} = /B /B C(v, u) w(t, u) wis, v) dv du.

These results are obtained directly from the definition (2.12) by interchanging
the sequence of integration (Fubini). If E{X(t)} = 0, then the requirement of
mean square convergence amounts to (Christakos 1992, p. 48)

E{Y (t)*} :/B/BC(v,u)w(t,u)w(t,v) dvdu < co.

Thus, if the covariance given by (2.13) exists, then Y (t) is properly defined.

Finally assume that the weight function w(t,s) is everywhere differentiable
in t. Then Y (t) will also be differentiable since the components of the gradient
field are defined as

Yi(t):/BX(s)%;’S)ds.

Moreover, the expectation and covariances of the components of the gradient
field are

E{Y,(t)} = /Bm(s) %:Z’S) ds,

and

Cov{Ti(t), Vj(s)} = /B /B C(v,u) ang;“) ang;v) dv du.

In this fashion it is possible to obtain arbitrarily smooth Gaussian random fields
by using a smooth weight function.
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3 Correlation Functions

3.1 General Properties

The two basic properties of a correlation function are its positive definiteness
and that p(t,t) = 1. These properties implies that correlation functions are
bounded by 1*:

(3.1) Ip(t,s)| < 1.

This inequality will be made stronger for isotropic correlation functions when
n > 1 in Section 3.3.3. It also follows directly from the definition of the corre-
lation function (1.6) that it is symmetric:

p(t,s) = p(s, t).

Denote by 9B, the class of correlation functions on R”. According to Corol-
lary 1.2.1, this class is equivalent to the class of positive definite functions on R”
where p(t,t) = 1. The following theorem says that 9,, is closed under addition,
multiplication, limits, and integration.

Theorem 3.1 Fort,s € R".
(1) If p1(t,s), p2(t,s) € By, a1,a2 >0, and a; + az = 1, then

a1p1(t,s) + a2p2(t s) € B,.

(ii) If pi(t,s) € B, anda,ZOforl—l .., and ), a; =1, then
Z a;p z(tas)

(iii) If p1(t,s), p2(t, ) € B, then Pl(t,S)Pz(t;S) € B,.

(iv) If pi(t,s) € B, fori = 1,..., and p(t,s) = lim;_,, p;i(t,s) exist for all
pairs t,s, then p(t,s) € B,.

(v) If p(t,s;a) € B, for alla € A, and p is a measure such that u(A) = 1,
then

?

plt,s) = /A plt,s;a) du(a) € B,

Proof. (i) A positive sum of two positive definite functions must be positive
definite. Thus aqp1(t,s) + a2p2(t,s) is a covariance function. Since aqp1 (t,t) +
aspa(t,t) = a; + ay = 1, the sum is a correlation function.

(i) Induction from (i).

(iii) Assume that Corr{X¢,Xs} = pi(t,s), and Corr{Y;,Ys} = pa(t,s),
and that X; and Y; are independent random fields with expectation zero. The
random field Zy = XY; is well defined according to Corollary 1.1.1(ii). Inde-
pendence gives Corr{Z, Zs} = Corr{ Xy, X5} Corr{Y;,Ys} = p1(t,s) pa2(t, s).

(iv) If p;(t,s) is positive definite for all ¢ then certainly the limit must be
positive definite. The same applies to the condition p;(t,t) = 1.

(v) This is a consequence of (ii) and the definition of the integral as a finite
sum over decompositions of A (Billingsley 1986, p. 203). Since each contribution
to the integral must be positive definite the integral must be positive definite
according to (ii). Finally, p(t,t) = [, p(t,t;a)dp(a) = [, 1du(a) = p(A) =1
so that p(t,s) is a correlation functlon O

By virtue of Theorem 3.1(i) and (ii), sums of correlation functions give valid
models. In geostatistical jargon this is usually referred to as nested structures.

*Using £ = 2 and ¢1 = £e2 in (1.7) gives 1 & p(t,s) > 0 which is equivalent.
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3.2 Stationary Correlation Functions
3.2.1 Continuity

Denote by €, the class of stationary correlation functions on R™. Further,
denote by € stationary correlation functions being continuous everywhere ex-
cept possibly at 0. Finally denote by €' stationary correlation functions being
continuous everywhere. Thus by definition

¢ Ce Ce,C By
Theorem 3.2 If p € &, then

(3-2) p(T) = apw(T) + bp(T)

where py, € € is the white noise correlation function given by (4.1), p € €,
a,b>0, anda+b=1.

A proof is given in Matérn (1960, p. 12). This suggests that a random field
X¢ on R" can be decomposed into a completely chaotic part and a continuous
part:

(3.3) Xe = X7 + Xq,

where Corr{ X, X'} = pw(7) and Corr{X¢, X} € €, and X}* and X; are in-
dependent. Non-continuous correlation functions are seldom reasonable models
for natural phenomena. The nugget effect (Journel & Huijbregts 1978, p. 39)
considered in geostatistics is hardly an exception. Thus the focus will be on
continuous correlation functions, that is p € €/!. The lack of generality is min-
imal since the decompositions (3.2) and (3.3) means that any p € € can be
obtained from a p € €/ by adding a pure ‘white noise’ component.

Theorem 3.3 If p(T) is continuous at 0, then p(T) is continuous everywhere,
ie. pe €.

Proof. Consider U = Xy — Xy and V = Xy 5. Using the Cauchy-Schwartz
inequality (E{UV}” < B{U?} E{V?2}) gives (p(r — &) — p(1))° < 2(p(0) —
p(€)) p(0). Hence, if lim._,o p(e) = p(0) then lim o p(T + &) = p(7). O

3.2.2 Spectral Representation

Multidimensional Bochner’s Theorem A real function r(T) on R" is pos-
itiwe (semi-)definite if and only if it can be represented in the form

(3.4) r(r) = / TRAF(K),

where F(-) is a non-negative bounded measure.

For a proof see for instance Bochner (1959). An even more general proof
having Bochner’s theorem as a special case is given byRudin (1973, p. 285).

Bochner’s theorem says that all positive definite functions have a unique
spectral representation. The integral (3.4) is the n-dimensional Fourier trans-
form of the non-negative F. Such integrals are sometimes called Fourier-
Stieltjes integrals.
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According to Theorem 1.2 the class of positive definite functions coincidence
with the class of covariance functions. Thus, the following theorem follows
almost immediately from Bochner’s theorem:

Wiener-Khintchine’s Theorem A real function p(1) on R" is a correlation
function if and only if it can be represented in the form

(3.5) p(r) = / ¢ TE AP (K),

where the function F(k) on R"™ has the properties of a n-dimensional distribution
function.

Proof. Bochner’s theorem says that p(7) is a covariance function if and only
if F'is bounded and non-negative. Also p(0) = [;,d"F(k) = F(c0). Thus
F is a n-dimensional distribution function if and only if p(7) is a correlation
function. O

The n-dimensional distribution function is called the spectral distribution func-
tion.

A useful observation linking correlation functions to characteristic functions
is (Matérn 1960, p. 12):

Theorem 3.4 A correlation function in €, is the characteristic function of
some n-dimensional random variable X. Conversely, the characteristic function
of any n-dimensional random variable is a correlation function in €,.

This is obvious since F' has the properties of a distribution function so that
(3.5) can be written as

p(t) =E{eT*}.

Characteristic functions for many multidimensional distributions are known, so
these provide a useful source of valid correlation functions. Thus the Wiener-
Khintchine theorem is useful for obtaining valid correlation functions.

When F is continuous, the spectral density function exists and is defined as

_ 0"F(K)
1) = G o

Then the Fourier-Stieltjes integral in (3.5) becomes
(3.6) p(T) = / e’k f(k)d k.

Corollary 3.4.1 A function f(k) on R™ is the spectral density function of a
stationary correlation function on R™ if and only if f(k) > 0 and [5, f(k)d"k =
1, i.e. f(k) has the properties of a n-dimensional probability density.

Proof. F is a distribution function if and only if f(k) > 0 and [, f(k)d"k =
1. O
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The spectral density function is obtained from the correlation function by the
usual formula for the inversion of an n-dimensional Fourier transform:

(3.7) FK) = (2m) " / =T p(7) dPr.
This gives us our first explicit method for verifying the positive definiteness of
a (stationary) correlation function on R™:

Evaluate the spectral density, f(k), given by (3.7), and check if it is
non-negative for any k € R™/

This is not necessarily a simple procedure; the calculation of n-dimensional
Fourier integrals can be tremendously complicated. Even checking that f is
non-negative can be difficult. However, for correlation functions possessing ad-
ditional symmetries the integration simplifies. For instance the spectral density
of separable correlation functions are simple to evaluate since each direction
is integrated independently. Here are two examples of separable correlation
functions and their spectral density functions:

Exzample 3.1 Consider the separable correlation function
ﬂ("')Zallﬁl---a‘{"‘; lai| <1fori=1,...,n.

The n-dimensional spectral density can be calculated independently for each
direction giving

(1-ai)---(1-ap)
letkt —ay|2- - Jeihn — ay,|?

fk)=(2m)™" >0 for all k.

Thus, this correlation function is permissible and belongs to €. <&
Example 3.2 The stationary exponential correlation function
p(T) =exp (—ai|n| — - — anl|m0l) ; a; >0fori=1,... n.

is also separable and the n-dimensional spectral density is

f) ==="

al...an

>0 for all k.
B a2 +a) =" 0

Once again the spectral density is everywhere non-negative and the correlation
function belongs to €. <o

3.3 Isotropic Correlation Functions

Isotropic correlation functions on R™ satisfy: p(7) = p(7). It will soon be
realized that the requirement of isotropy is restrictive leading to conditions on
continuity and constraints on lower bounds. These restrictions become stronger
as the dimension increase.

Denote by ®,, the class of isotropic correlation functions on R™. Since a
correlation function valid on R must be valid in any (n — 1)-dimensional subset
of R™:

(3.8) D1 DD3093D - D Do
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Further, denote by ®!, the subclass of isotropic correlation functions that are
continuous everywhere except possibly at 0. Finally denote by D! the subclass
of correlation functions being continuous everywhere. Thus by definition

DI CD, CD,.

Since isotropic correlation functions are a subclass of stationary correlation func-
tions @) Cc €' ©! C €, and D,, C €,. Thus, according to Theorem 3.2 any
p € ©! can be decomposed into a white noise correlation function and an ev-
erywhere continuous correlation function.

Schoenberg’s Conjecture The class ©) —D,, is empty for all n > 1.

This means that the only discontinuity in p € ®, must be at 0. This
conjecture from Schoenberg (19384, pp. 822-823) is found in Matérn (1960,
pp. 13-14) which gives some arguments strengthening the assumption of cor-
rectness. No proof of this statement can been found in the literature—at least
by this author—despite its apparent simplicity. The conjecture implies that any
isotropic correlation function can be decomposed into a white noise correlation
function and an everywhere continuous correlation function.

Finally denote by D!, the class of p € D! which vanish at infinity. Several
examples of such isotropic correlation functions will be given in Section 4.2. If
Schoenberg’s conjecture holds, the following conjecture also holds:

Conjecture 3.1 For any p € ®, and any n > 1, then

p(7) = a+bpw(7) + cp(7),

where a,b,c > 0, a+ b+ ¢ = 1, py is a white noise correlation function, and
P € Dno-

This is a consequence of Schoenberg’s conjecture, Theorem 3.1.(i), Theo-
rem 3.2, and Theorem 3.7 which says that any p € ®,, for n > 1 must approach
a limit as 7 approach infinity. The significance of this is that any isotropic cor-
relation function can be constructed from correlation functions in D!, i.e. con-
tinuous correlation functions approaching zero at infinity.

A preliminary result from Christakos (1984) also found in (Christakos 1992,
pp. 73-74) gives a sufficient but not necessary condition for the permissibility
of a correlation function on R!, R? or R3.

Theorem 3.5 A continuous real function p(T) is a correlation function if the
following conditions hold (p, jp, and P are first, second and third order deriva-
tives respectively):

(i) The derivative at zero is negative: p(0) < 0.

(ii) The long range behavior satisfies [see (3.20) below]

. p(7)
‘rlgr;o 7'(1 —n)/2

=0.

(iii) One of the following inequalities hold for all T > 0:

p(r) > 0; for p € D
/ u (u? — 72)71/2 dp(u) > 0; for p € D
p(r) — 7P (1) > 05 for p € 3.

Norwegian Computing Center, Box 114 Blindern, N-0314 Oslo, Norway, Tel.: (+47) 22 85 25 00



32 Petter Abrahamsen No. 917

A proof is found in Christakos (1984, p. 256). This result is useful in practical
applications since it imposes restrictions directly on easily accessible derivatives
rather than conditions on the spectral representation. On the other hand, it
fails to include many useful correlation functions such as those possessing dif-
ferentiable sample paths.

3.3.1 Spectral Representation

For isotropic correlation functions the Wiener-Khintchine theorem takes a sim-
pler form where the n-dimensional Fourier integral is replaced by a one-dimen-
sional Bessel transform:

Theorem 3.6 A real function p(7) on R™ is a correlation function if and only
if it can be represented in the form

 Jin—2)/2(kT)
_ o(n—2)/2 (n—2)/2
(3.9) p(r) = 20=D/2D(n/2) /0 e
where the function ®(k) on R has the properties of a distribution function and
J are Bessel functions of the 1. kind.

This result is obtained by eliminating angular dependencies in (3.5) by using
spherical polar coordinates and integrating over all angles. The calculation is
mainly straight forward manipulations with known tabulated integrals. For the
details consult Yaglom (19864, pp. 349-353) who treats the cases n = 2,3 and
general n separately (general n obviously includes the former). For a more
compact and rigorous treatment see Adler (1981, pp. 36-37).

The isotropic spectral distribution function & is related to the spectral dis-
tribution function F' by

(3.10) B(k) = /| L AP0,

de(k),

As many integrals of the form (3.9) are tabulated, it is much simpler to verify
positive definiteness using this relation rather than the general n-dimensional
Fourier representation.

A few special cases of (3.9) are of particular interest:

(3.11a) p(r) = / cos kT d®(k) for p € Dy,
0

(3.11b) p(r) = / Jo(k7) d®(k) for p € D,
0

(3.11¢) p(r) = / SIRT 45 (k) for p € s,
0 kT

(3.11d) p(r) = / exp(—k?r?) dd (k) for p € Deo.
0

All except the last relation are simple to obtain. A proof of the last expression
is given in Schoenberg (1938a, pp. 8171f).

It is common and convenient to denote the kernel in (3.9) by a special symbol
[see Yaglom (19864, p. 355) or Matérn (1960, p. 14)*]:

Jin—2)/2()

An(z) = 2("_2)/2F(H/Q)W,

*Matérn defines Ay, where k = (n — 2)/2.
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such that (3.9) reads

(3.12) p(r) = /000 Ap(k7) d® (k).

It follows that A, (0) =1 for any n since p(0) = 1.
As for stationary correlation functions an inversion formula for the spectral
density can be obtained. Assuming

| el <o
0

the spectral density f(k) given by (3.7) exists. Once again passing to spherical
polar coordinates and integrating over all angular coordinates results in the
following inversion formula for the n-dimensional isotropic spectral density:

(3.13) F(k) = (27;”/2 /°° i(&)“’()lfg/? = p(r) dr.

This gives an explicit method for verifying the positive definiteness of an isotropic
correlation function on R”:

Evaluate the n-dimensional isotropic spectral density, f(k), given by
(3.13), and check if it is positive everywhere!

Be aware that f(k) depends on n; a non-negative spectral density on R™ does
not necessarily imply a non-negative spectral density on R**1. The opposite
however, is true, according to (3.8).

The correlation function is given by [compare (3.9)]:

n o Jn—2 2(kT) n—
.14 plr) = aml® [ R 0 ak
In particular, (3.11a—c) take the forms
2p(7'):/ coskt f(k)dk for p € Dy,
/ Jo(kr) f(k) kdk for p € Ds,
k
p(r )_/ SIRT o) k2 dk for p € Ds.
0 kT

Since (3.14) must be a particular form of (3.9), ®(k) is related to f(k) b

(k) = T, / ) i

where ¥,, = 27™/2/T'(n/2) is the area of an n-dimensional unit sphere (Grad-
shteyn & Ryzhik 1980, Eq. 4.633).  Moreover, provided a spectral density
function exists, the identity 2"J,_1(z) = d(2"Jn(z))/dz (Abramowitz & Ste-
gun 1972, Eq. 9.1.30) gives

1

(k) = So27r(n 2)

/ Insa( kT)(kT)”/2 plr )d'r.
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It is possible to show that this expression is valid for any isotropic correlation
function—even with nonexistent spectral density function—if the half-sum of &
at points of discontinuity is used.

Here follow some examples of spectral densities. Spectral densities are given
up to a proportionality constant since the shape is the most interesting. The
cited references give the complete formulas.

Example 3.3 The isotropic exponential (and Gaussian) correlation func-
tions (see Section 4.2.3)

p(t)=e%; a>0
p(r) = e*‘”Q; a>0

have the n-dimensional isotropic spectral density functions (Yaglom 1986a,
pp- 362, 364)

k 1
f(k) o (a® + k2)(nt1)/2

f(k) x e /4 50 forall k>0

(3.15) >0 forall k>0andalln

respectively. Thus, these correlation functions belongs to ®/ . Note that the
latter does not depend on n.

Spectral densities for the Gaussian correlation function and the exponential
correlation function is plotted in Figure 3.1. <

<
-

0.8
I

Spectral density

0.4

0.2

Figure 3.1: The n-dimensional isotropic spectral density functions for the Gaussian
correlation function (upper curve) and the exponential correlation function for n =
1,2, 3,10, and 100. They are all scaled such that f(0) = 1 using a = 1.

Example 3.4 The modified Bessel correlation function is (see Section 4.2.5)
p(1) x (a1)"K,(ar); a>0,v>0.

The corresponding n-dimensional isotropic spectral density function is (Yaglom

19864, pp. 363)
1
f(k) o

W>O for all £ > 0 and all n,
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so that the correlation function belongs to ©!_ . Note that choosing v = 1/2

gives (3.15). o
Ezample 3.5 The rational quadratic correlation function (see Section 4.2.4)
1

has the n-dimensional isotropic spectral density function (Matérn 1960, pp. 17)
f(k) o< (ak)*"/?K,_p/2(ak) > 0 for all k > 0 and all n.

So once again we find that the correlation function belongs to D%.
Note the relationship between rational quadratic and modified Bessel corre-
lation functions and spectral densities. <&

There is also a Laplace transform representation for correlation functions in
D' . Consider the isotropic exponential correlation function: p(7) = e~ € D
for all finite @ > 0. Then, according to Theorem 3.1(v)

(3.16) p(r) = /00 e dF(a) €.
0

Thus the Laplace transform of any probability measure on RT, is a valid isotropic
correlation function in D.,. (Note that a contribution at a = 0 gives an every-
where constant correlation whereas a contribution at a = oo gives white noise.)
In other words, for such probability measures, the moment generating function
(Billingsley 1986, p. 285) defined as

p(r) =E{e™},

is a correlation function in ® for non-negative X.

3.3.2 Turning Bands Representation

The turning bands method is a simulation algorithm based on a particular rep-
resentation suggested by Matheron (1973, pp. 461-462). Consider a random
field X on R' with an isotropic correlation function p; € ®;. Then consider a
random field Y on R™ defined such that

Y;::X(e't)a

where e is a unit random vector in R” uniformly distributed on the unit sphere.
This construction can be used for simulation of random fields. The correlation
function of Y becomes

p(r) =% ! /|e||=1 pi(e - t)do(e); pPED,,

where ¥,, = 27™/2/T'(n/2) is the area of the unit sphere in R". According to
Matheron (1973), this integral can be written as the turning bands representa-
tion:

n/2)rw-1/2 1
(3.17) p(T) = %/0 pi(vr) (1 — vz)("73)/2 dw.
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This representation is related to the spectral representation; it is possible to
show that (3.17) is equivalent to (3.9):

(3.18) p(r) = 27D/ (n/2) /OOO % d®, (k)

where the measure is given by (3.11a):

pi(r) = /0 ~ cos kr dd; (k).

According to Theorem 3.6 the representation (3.18) is the general form of an
isotropic correlation function so that the mapping from p; to p must be one-
to-one. In particular for n = 3, representation (3.17) gives p(7) = fol p1(v7) do,
or equivalently, pi(7) = d(7p(r)) /dr. Similar relations between the one-dimen-
sional spectral function and the n-dimensional spectral function can be found
in Yaglom (19864, pp. 359-360).

An example of the use of the turning bands representation is taken from
hydrology (Mantoglou & Wilson 1982, Christakos 1984):

Ezample 3.6 Consider the correlation function py(7) = (1 — %) exp(—F%).
For n = 2 the following correlation function is obtained:

p(r) = const - (Io(r/R) = Lo(r/R) + % (Li(r/R) = L_(7/R)) ),

where I,, are modified Bessel functions and L,, are modified Struve functions
(Abramowitz & Stegun 1972, pp. 375ff, 498). o

3.3.3 Bounds and Limits

According to (3.10), ®(0) = 0. However, limg_,o ®(k) = ®(0+) = a can be
non-zero. Since A,(0) =1

(3.19) p(r) = a+ /0 " A (kr) Ay (),

where ®; is continuous at 0 and ®;(c0) = [~ d®1(k) =1 —a.

Theorem 3.7 For p € ®,, and any n > 1 the following limit exists

lim p(7) = q,

T—00
where a = limg_,q (k).

Proof. It must be shown that the integral in (3.19) vanishes as 7 — co. Assume
n > 1. It is well known that for some c,,, |J,,(z)| < c /2 for all z [see (3.21)
below]. Thus, |A,(z)|] < c,z—(*1/2 for all z such that lim, . An(z) = 0.
Moreover, since |A,(z)| < 1 for all z, the following limit is well defined (bounded
convergence theorem):

lim [ An(kr)d®; (k) = / lim A, (k7) dd, (k)
T—00 0 0 T—00
= AL (0)31(0) + / lim A, (kr) d®; (k).
k>0 T—00
Since ®1(0) = 0 and lim, o, A, (k7) = 0 for k£ > 0, the limit vanish. O
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The next theorem gives a restriction on how slowly this limit can be approached.

Theorem 3.8 For p € ®,, where n > 1, p must behave at infinity according to

(3.20) lim 2

rooo 7(1-1)/2

=0.

Proof. Assume the existence of a spectral density function f(k), that is, assume
that lim; . p(7) = 0. Then the integral (3.13) must be finite for all k. The
asymptotic expansion for large positive real arguments of the Bessel function is
(Abramowitz & Stegun 1972, Eq. 9.2.1)

(3.21) J,(z) = V/2/(nz)(cos(z — vm /2 — 7/4) + O(z™)).

Inserting this in (3.13) gives the condition (ignoring insignificant constants)

oo
(3.22) /S (cos(kT - ¢(n)) + O(|k’l’|7l)) (]W)p(gii)n)p dr < oo for all k.
The lower limit can be chosen arbitrarily large but finite. This condition must
hold for the spectral density to exist. Thus a sufficient and necessary condition
is that p(7)/7(1~™/2 approaches zero for large 7.
For correlation functions not possessing a spectral density function, the result
still applies although the condition (3.22) can be violated for certain £’s. O

A different proof is given by Christakos (1984, p. 261) who states that this result
is a direct consequence of the lemma in Section 14.14 of Watson (1966).

Theorem 3.7 says that the correlation function must approach a specific limit
as 7 — 00. An example of the opposite is p(7) = cosar € D;. The following
theorem also implies that cosar is not valid for n > 1.

Theorem 3.9 If p(1) € D, withn > 1, and p(s) = 1 for some s > 0, then
p(T) =1 for all 7.

Proof. Suppose ||t — t'|| = s. To every v in the interval (0,2s) a point t” can
be found such that ||t —t"'|| = s and ||t' — t"|| = v. Since both Xy and X~
have correlation 1 with X¢, a perfect correlation must also exist between Xy
and X¢». Hence p(v) = 1, and the theorem follows by induction. O

The following theorem proposed by Matérn (1960, p. 13) strengthens the
lower bound given by (3.1). The next theorem will strengthen this bound even
further, but the simplicity of the first result makes it worthwhile to mention.

Theorem 3.10 For any p € D, then p(1) > —L, for any 7.

n

Proof. Tt is possible to select a set of n+1 equidistant points in R”. By choosing
such a set and taking ¢; = 1for i =1,...,n+ 1in (1.7) gives: (n+ 1) + ((n +
1)2 — (n 4 1)) p(7) > 0, which is equivalent. O

An absolute lower bound can also be found. To obtain the numerical values
however, access to tables of A, is required.

Theorem 3.11 For any p € Dy, then p(t) > inf, A, (x), for any T.

Proof. This is a direct consequence of (3.12) since ®(dk) is positive everywhere.
|
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Tables of A,, give (Jahnke, Emde & Ldsch 1960, pp. 164-173)

(3.23a) p(1t) > -1 for p € ©; [from (3.11a)],
(3.23b) p(1) > —0.403 for p € ®g,
(3.23c) p(T) > —0.218 for p € O3,
(3.23d) p(T) > —0.133 for p € Dy,
(3.23e) p(1) > —0.06 for p € Dg,
(3.23f) p(t) > —0.03 for p € Dg,
(3.23g) p(t) >0 for p € Doo-

Thus noticeable negative correlations are restricted to lower dimensions. A
consequence of Corollary 3.12.3 below, is that the last inequality must be strict.

3.3.4 Smoothness of Isotropic Correlation Functions

Theorem 3.12 Any p(7) € D is at least* | ((n—1)/2) times differentiable at
any T > 0.

A proof is found in Schoenberg (19384, pp. 822-823). Three immediate
consequences of the theorem are:

Corollary 3.12.1 Any p € Y is everywhere differentiable.
Corollary 3.12.2 Any p € DY is everywhere two times differentiable.
Corollary 3.12.3 Any p € D7 is analytic.

Thus increasing smoothness is required for correlation functions in higher
dimensions. For instance, the widely used spherical (3D) correlation function,
(4.3c), is only one time differentiable at the correlation length. Therefore, Corol-
lary 3.12.2 implies that the spherical correlation function is not usable on R or
higher dimensions.

Corollary 3.12.3 implies that the inequality (3.23g) must be strict since oth-
erwise p = 0 everywhere.

*| ((n —1)/2) means the largest integer not exceeding (n — 1)/2.
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4 Examples of Isotropic Correlation Functions

4.1 Special Correlation Functions
4.1.1 White Noise

The ‘white noise’ correlation function is defined as

1 ifr=0 )

(4.1) pw(T) {0 otherwise " € Doc:

It belongs to D%, (discontinuous isotropic) and describes a completely chaotic
phenomenon. The spectrum is uniform in all frequencies and hence a proper
normalization of the spectral density function is impossible. This difficulty
carries over to the alternative notation py (7) = ¢d(7) where d(7) is the Dirac
d-function. Since §(0) = oo, an appropriate scaling, ¢, must be zero! White
noise models are hardly realistic models for any natural phenomenon. They
are sometimes mistakenly considered as a measuring error effect, but measuring
errors should be modeled separately. From an estimation and prediction point
of view the difference is hardly recognizable, but a simulated sample path with a
white noise component has nothing in common with a continuous sample path
where conditioning is inexact owing to measuring errors. The nugget effect,
see Journel & Huijbregts (1978, p. 39) or Christakos (1992, pp. 272-274),
considered in geostatistics is therefore either a mistakenly modeled measuring
error, or some erratic micro scale variation not properly modeled by Gaussian
random fields.

4.1.2 Everywhere Constant Correlation

The opposite extreme is an everywhere constant correlation:
(4.2) p(r)=1  peDL.

A random field possessing this correlation function is determined by a single
random number, e.g.

Xt = Af(t)a

where A is some random number and f is some deterministic function. A related
covariance function was considered in Section 1.5.5 on non-stationary random
fields. Consider the random field Xy = > A, f,(t) where A, are Gaussian
random variables. The non-stationary covariance function becomes

C(t,s) = Zzpq fp(t) fq(s)a

p,q

where ¥, is the covariance matrix of the A,’s.

These are seldom interesting models in themselves, but in combination with
other correlation functions, common models appear, e.g. the ordinary or univer-
sal kriging model in geostatistics [see e.g. Journel & Huijbregts (1978, pp. 304ff)
or Cressie (1991, p. 120)].

Norwegian Computing Center, Box 114 Blindern, N-0314 Oslo, Norway, Tel.: (+47) 22 85 25 00



40 Petter Abrahamsen No. 917

4.2 Continuous Non-negative Correlation Functions

In the following sections correlation functions belonging to ®! (everywhere con-
tinuous) will be considered. Recall that ! C ! |

First some examples of non-negative correlation functions are considered.
All these are parameterized by the correlation length R. For some a scaling
factor is introduced so that p(7 = R) =~ 0.05. This is to simplify comparison.

4.2.1 Spherical

The following is taken from Matérn (1960, pp. 28-30) which includes more
details. The spherical correlation functions originate from the considerations of
a Poisson process, N (t) on R” with intensity A. Consider the stationary random
field defined as

1 ifr<r,

X = I -dN(s), here Iy ..\ =
‘ /Rn trerydN(g), - w {r<r} {O otherwise.

Thus, X; is the number of points within distance r from t. The covariance
function is given by

C(r) = A/R Iz <rtIgjsi<ry d"s.

So C(7) is given by the volume of intersection of two n-dimensional spheres
of radius r separated by 7. The correlations are zero beyond the correlation
length, R = 2r. For 7 < R the correlation functions are for n = 1, 2, 3, and 5
respectively

(4.3a) psph1 (T3 R) =1 — T/R €D

T T "

(4.3b) pspn2(T;R) =1 — — 7 E + arcsm €D,
37 1

(4.3¢) poona(rs R) = 1= =+ 7 (& )’ €Dy

‘R) = §_513_§15 "

The correlation function for n = 3 is probably the most used. Figure 4.1 shows
a plot of these four spherical correlation functions and Figure 4.9 contains some
simulated sample paths.

The correlation function p(7; R)spn2 is sometimes called the circular corre-
lation function and the correlation function p(7; R)sphs is sometimes called the
penta-spherical covariance function.

The positive definiteness is guaranteed by construction. Some are possibly
valid in dimensions beyond the defining dimension.

4.2.2 Cubic

The cubic correlation function is zero beyond R. For ¢ < R the correlation
function is (Wackernagel 1995, p. 218)

09 ptrm=1-1 (1) (G TG L) oo
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0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.1: Spherical correlation functions (solid lines) obtained with n = 1, 2, 3,
and 5. Exponential correlation functions with ¥ = 1 and 2 are added for comparison
(broken lines). The correlation length is R =1 for all.

This correlation function is illustrated in Figure 4.2 and a sample path is shown
in Figure 4.10.

0.8 1.0
I

0.6

Correlation

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0
T

Figure 4.2: Cubic correlation function (solid line). Exponential correlation functions

with v = 1 and 2 are added for comparison (broken lines). The correlation length is
R =1 for all.

4.2.3 Exponential

The exponential* correlation function is defined as

(4.5) Pexp(T; R, v) = 730/ €@ for 0 < v < 2.

*The exponential correlation function is also called the stable correlation function.
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The scaling factor ‘—3’ is chosen so that the correlation at the correlation length
is €73 = 0.05. Figure 4.3 illustrates the class of exponential correlation func-
tions. The figure suggests that the exponential class does constitute a v depen-
dent range of correlation functions with continuously changing properties. This
is not so: Examples 2.2 and 2.3 shows that the continuity and differentiability
properties are different for the sets {0 < v < 1}, {v = 1}, {1 < v < 2}, and
{v=2}.

Figure 4.11 shows some sample paths for different values of v.

When v = 2 the corresponding correlation function is sometimes called the
Gaussian correlation function.

Note that v = 0 corresponds to a white noise process with a constant global
correlation of e~ &~ 0.05 which belongs to D..

A proof of the positive definiteness is found in Schoenberg (1938b, p. 532).

S
-

0.8

Correlation
0.6
|

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.3: Exponential correlation functions for » = 0, 0.1, 0.2, ..., 1.9 and 2.
(Solid lines for v =0, 0.5, 1.0, 1.5, and 2.0.) The correlation length is R = 1 for all.

4.2.4 Rational Quadratic
The rational quadratic* correlation function is given by

1
1+8,(r/R)?)"

(4.6) prq(T; R, V) = ( p €D forv>0.

Choosing the scaling factor as S, = 20/ — 1 gives correlation 0.05 at the
correlation length. Figure 4.4 gives an illustration of the correlation functions
and Figure 4.12 shows some sample paths for different v values.

A proof of the positive definiteness based on representation (3.11d) is found
in Matérn (1960, p. 17). See also Example 3.5.

*The rational quadratic correlation function is also called the Cauchy correlation function.
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Figure 4.4: Rational quadratic correlation functions (solid lines) for » = 0.01, 0.25,
0.5, 1, 2, 5, and 50. Exponential correlation functions with ¥ = 0.5, 1 and 2 are added
for comparison (broken lines). The correlation length is R = 1 for all.

4.2.5 Modified Bessel Function

The modified Bessel* correlation functions are related to the exponential corre-
lation functions. They are defined as
(47 pr(r;Rv) =

2"K,(2); 2=38, € D! for v >0,

1 T
D(v)2v-t R’
where K, is the modified Bessel function of order v. The v-dependent scaling
S, is chosen such that p(R; R, v) = 0.05 for simple comparison; see Appendix A.
Note that px (73 R,v = 0.5) = pexp(7; R, v = 1). Some examples of the correla-
tion function is found in Figure 4.5.

The smoothness of the sample paths is determined by the behavior of p at
t = 0. The limiting form for small arguments is

K,(2) ~T(v)2" 27" v >0,

(Abramowitz & Stegun 1972, Eq. 9.6.9) such that p(r;R,v) - 1l ast — 0.
(Note that Ko(z) ~ —Inz so that v = 0 is not acceptable.) The derivatives
satisfy the following recurrence relation:

diz(z"K,,(z)) = —2"K,_1(2),

(Abramowitz & Stegun 1972, Eq. 9.6.28). According to Corollary 2.4.2 the
correlation function must be everywhere 2m times differentiable for a random

field to be m times mean square differentiable.

For 0 < v < %, 9p(r;R,v)/0r|,—o = —oo causing extremely erratic sur-
faces. For 1 < v < 1, dp(r;R,v)/0r|,—g € (—00,0) which gives a wide
range of erratic surfaces. For n < v then 82"~ !p(r; R,v)/0r*™=1|,—¢ = 0 and

*The modified Bessel correlation function is also called the Basset or the Matérn correlation
function.
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Figure 4.5: Modified Bessel correlation functions (solid lines) for » = 0.065, 0.1, 0.25,
0.5, 1, 2, 4, and 25. Exponential correlation functions with v = 0.75 and 2 are added
for comparison (broken lines). The correlation length is R =1 for all.

8?"p(r; R,v)/0r®™|,—¢ € (—00,0) implying that the stochastic surface is n times
differentiable. So increasing v gives increasingly smoother surfaces.

The positive definiteness of modified Bessel correlation functions are estab-
lished in Yaglom (19864, pp. 362-363) and Matérn (1960, p. 17). See also
Example 3.4.

4.3 Continuous Oscillating Correlation Functions

In the following some examples of oscillating correlation functions are given.
They are parameterized by the (angular) frequency, w, or alternatively by the
period v = 27 /w.

4.3.1 Bessel Function of the First Kind

These Bessel correlation functions are damped oscillations. They are defined as

(4.8) py(rw,v) =T(w+1)2"(wr) " Jy(wr) €D
forv>(n—2)/2 and w > 0.

The restriction on v implies e.g. that v > 0.5 when n = 3. Figure 4.6 illustrates
some of these correlation functions.

The limiting form of the Bessel functions of the first kind for small arguments
are

J(2) ~ (2/2)" [T (v + 1), (v#-1,-2,-3...)

(Abramowitz & Stegun 1972, Eq. 9.1.7). Thus p(r; R,v) = 1 ast — 0.

For integer v the positive definiteness is obvious from the representation
(3.9). The positive definiteness for arbitrary v is established in Yaglom (19864,
pp- 366-367) and in Matérn (1960, p. 18).
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Figure 4.6: Ordinary Bessel correlation functions for v = 0, 0.25, 0.5, 1, 2, 5, and 10.
Note that v = 0.5 coincidence with the correlation function sinw7/w7. The angular
frequency is w = 1 for all.

4.3.2 Exponentially Damped Cosine

The exponentially damped cosine correlation functions are

(4.9)
DY for w >0 and R > 0,
3T/ B coswr € { DY for w >0 and 3/w > R >0,
DY for w >0 and v/3/w > R > 0.

peos(T;w, R) = e

The bounds on R for different dimensions are found in Yaglom (19864, p. 366).
The period (one cycle) is v = 27/w so that the bounds requires that R $ v
for R* and R < v for R.

Figure 4.7 illustrates these oscillatory correlation functions and Figure 4.13
shows some sample paths for different R.

4.3.3 Sine Damped by Inverse Distance

This correlation function is sometimes referred to as the wave or hole effect
correlation function (Cressie 1991, p. 62). It is defined as

1
(4.10) psin(T3w) = — sinwr € DY for w > 0.
T

Note that pgin(7;w) = ps(7;v = 0.5,w) which establish the positive definiteness.
Figure 4.8 shows this correlation function and Figure 4.14 shows some sample
paths for different periods. The period (one cycle) is once again given by v =
27 fw.

A summary of some properties of the correlation functions are given in Ta-
ble 4.1.
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Figure 4.7: The exponentially damped cosine correlation function has been plotted
with R/v = 0.1,0.25,0.5,1 and 10. The period, v = 27 /w, is 1 for all.
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Figure 4.8: The damped sine correlation function with period » = 1. For comparison
the damped cosine correlation function with the same period and R = 1 is also plotted.
Note that they have a phase shift of /4.

4.4 Examples of Sample Paths

Figures 4.9 to 4.14 show some simulated sample paths (realizations) in R! for
various correlation functions. All have zero expectation and unit variance. The
horizontal axes are ¢t and the vertical axes are X (¢). The horizontal axes are
not labeled but the relevant length scale is marked in the figures.

Each sample path is stored as 200 equidistant points. This is sufficient for
most sample paths but the most irregular are slightly smoothed by the lack of
resolution. All sample paths are produced using the same 200 pseudo-random
numbers. Similar correlation functions will therefore give similar sample paths.

The algorithm for drawing the sample paths consists of constructing the
200 x 200 covariance matrix for the 200 equidistant points. Then a square root
of the covariance matrix is obtained by using the eigenvalue decomposition of
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Table 4.1: Summary of properties of correlation functions.
Correlation functions Eq. Param. Class” Geom.?  Characteristics

White noise (4.1) Dl 0 Zero range
Everywhere constant  (4.2) DY, 0o Infinite range
Spherical (4.3a—d) R, n o7 f Finite range
Cubic (4.4) R Dy d Finite range
Exponential (4.5) R, v DY | to oo

Rational quadratic (4.6) R, v D )

Modified Bessel 4.7 R v DY, | to oo

Bessel of 1. kind (4.8) w, v n () Damped osc.
Damped cosine (4.9) w, R D (w,R) Damped osc.
Damped sine (wave)  (4.10) w 3 Damped osc.

*See Section 3.3.

Differentiability as t — 0:

‘0’ means discontinuous sample paths,
‘|’ means an infinite first order derivative at 0,
> means finite negative first order derivative at 0,

’d’ means differentiable (finite negative second order derivative at 0),
‘oo’ means analytic sample paths.

the covariance matrix. This is more stable than the standard Cholesky decom-
position which fails for very smooth sample paths. Minute negative eigenvalues
caused by numerical inaccuracies are set to zero. The simulation algorithm is
exact apart from the minor numerical problems caused by the negative eigen-

values.
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n=5 Range:

Figure 4.9: Sample paths with spherical correlation functions with n =1,2,3 and 5.
Note how increasing n gives slightly increasing irregularity. The spherical correlation
function with n = 3 is the most widely used.

Range:
l 4
O 4
-1 A

Figure 4.10: Sample path with cubic correlation function. This path looks similar
to the path obtained using an exponential correlation function in Figure 4.11 with
v = 1.9. Note however that this sample path is differentible whereas the ‘exponential’
is not.
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v=0.1 Range:

v=1 Range:

v=19 Range:

v=2 Range:

Figure 4.11: Sample paths with exponential correlation functions with v =
0.1,0.5,1,1.5,1.9, and 2 (Gaussian). The exponential correlation function with v =1
is the most widely used.
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v=0.1 Range:
11
0
-1
v=05 Range:
1
0
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1
0
1
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0
-1
v=5 Range:
1
0
-1 A
v=25 Range:
1
0
-1 A

Figure 4.12: Sample paths with rational quadratic correlation functions with v =
0.1,0.5,1,2,5, and 25. Note that v = 25 gives a sample path which is indistinguishable
from the path obtained using the Gaussian correlation function in Figure 4.11.
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/ Range = 0.5 x perij W/\/\/\/\/\N

’Ranﬁe =1 x period:

]
Iiiva
[\/

Figure 4.13: Sample paths with damped cosine correlation functions. The period,
v = 27 /w, is identical in all figures and is clearly seen on the lowest figure.
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Perind:

Period:

Figure 4.14: Sample paths with damped sine correlation functions. The period is
v =2r/w.
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A Scaling of Modified Bessel Correlation Func-
tions

The scaling factor S, in (4.7) is obtained by using Newton’s method. Fast con-
vergence is ensured since the correlation functions are monotonically decreasing.
Consider the non linear equation pk (R; R,v) = 0.05 leading to (z = S,)

F(2) = 2"K,(2) = 0.05-2""'T(v) = 0.

Newton’s method is to iterate

F(2)
L F(z)

Zi+l = Zi —

which for the present case gives

2YK,(z;) —0.05-2""1T(v)
z;’K,,,l(zi) ’

Ziy1 = 2 +

where

d 14 14

a(z K, (2)) = —2"K,_1(?)

has been used (Abramowitz & Stegun 1972, Eq. 9.6.28). Any initial point 2o > 0
will do. A reasonable stopping criterion is chosen such that |F(2;)| < § for some
reasonably small §, say § = 0.0001. The final z; value is used for S,,.
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Notation

Abbreviations:

cf. - correlation function(s), cont.

— continuous, cov. — covariance,

df. — distribution function, iso. —isotropic, rf. — random field.

[|-|| norm of vector.

||  absolute value of scalar.

| -] determinant of matrix.

Bk the Borel sets in RF.

B € B* a Borel set.

B, class of cf. in R".

C  cov. function.

C  cov. tensor.

C  cov. tensor of gradient field.
C(A) cov. tensor for higher order

derivatives.
Corr{-} correlation.
Cov{-} cov.
¢, C B, class of stationary cf. in
R™.
¢ C¢, — cont. except at 0.
¢rce, — cont.
D, C ¢, class of iso. cf. in R™.
D! C®, — cont. except at 0.
D" C®, — cont.

E{-} expectation.

F  o-algebra, e.g. Borel sets B*.

Fi, ...t (-) finite-dimensional df.
F (k) spectral df.

) spectral density function.
) iso. spectral df.

— 5=

r gamma, function.

J,  Bessel function.

K, modified Bessel function.
An(@) o J(n_sy(x) /(=272
m(t) expectation of rf.

P probability measure.

Dty,....t. (-) finite-dimensional
probability density function.

Prob{-} probability of event.

p(-) correlation function.

R™ n dimensional Euclidean
space.

3 cov. matrix.

¥, area of unit sphere in R”.

a2 (t) variance of rf.

>t transposed vector or matrix.

(k) iso. spectral density function.

T parameter set, e.g. R™.

t,s position, coordinate, i.e. € T.

T separation vector, e.g.
T=t—s.

7 =||7|| norm of r.

Var{-} variance.

X, X, X (t), X (t,w) rf.

X  multidimensional or vector rf.

X gradient field.

X, X, X® higher order
derivatives.

x¢  sample path.

Q sample space.

w sample point in €.

(Q,5, P) probability space.
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