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Abstract

The Swedish HBV-model for rainfall-runoff is extensively used as a flood forecasting tool in
the Scandinavian countries. To develop a statistical method for assessing the uncertainty
in runoff forecasts, we combine a model for the HBV-model error and models for the
uncertainty of the weather forecasts. An algorithm for simulating runoff values have been
developed and empirical distribution of simulated values form the basis for probability
calculations. The results for two Norwegian catchments seem promising.
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1 Introduction

Floods may threaten human lives and inflict damage on nature, the infrastructure and
the economy. Because of their destructive potential, they must be carefully forecasted
well in advance. During the spring flood of 1995 in the Glomma River Basin in Eastern
Norway, the total cost of the damage was estimated to be NOK 1.8 billion (NOU 1996:16).
At that time, daily flood forecasts were made independently by Glommen and Laagen’s
Water Management Association (GLB) and by the Norwegian Water Resources and Energy
Administration (NVE). The GLB and NVE forecasts were often different.

The uncertainty associated with a flood forecast is important for risk assessment and
should be taken into account in the decision making process. For example, the probabilities
of exceeding certain critical levels may be more informative for a decision maker than the
precise expected level of such a flood. Therefore, it is useful to quantify this uncertainty and
incorporate it as part of the forecasting and flood warning routine. Based on a study of the
flood in Glomma in 1995, Lundquist (1997) lists the following elements as important sources
for this uncertainty: meteorological forecasts, the rainfall-runoff model, initial conditions
of the rainfall-runoff model, transport time, temporary loss of water and discharge rating
curves.

As part of the HYDRA program, the Norwegian Computing Center (NR) is engaged in
the project “ Quantification of uncertainty in runoff forecasts”. The main purpose of this
project is to quantify the uncertainty in these forecasts due both to errors in precipitation
and temperature forecasts and to approximations performed by the specific rainfall-runoff
model. The rainfall-runoff model we consider in this study is the Swedish HBV-model,
which is widely used in Scandinavia. However the methods developed to assess the uncer-
tainties could be applied to other models as well.

This report is the final of a series of three. The first report (Langsrud et al., 1997) pre-
sented a statistical method for assessing the uncertainty in the rainfall-runoff model. The
second report (Follestad and Hgst, 1998) considered the uncertainties in the meteorological
forecasts. In this report the methodology from the first two reports will be combined to
quantify the uncertainty in runoff forecasts.

As in the two first reports we apply the methodology to the two catchments Rgykenes
(Western Norway) and Knappom (Eastern Norway). Section 2 presents the actual data
for these catchments. The statistical method is described in section 3 and the results for
Rgykenes and Knappom are given in section 4.

2 The data for Knappom and Rgykenes

The catchment of Rgykenes in Western Norway has an area of 50km?2. The annual mean
flood (runoff expected to be exceeded once per year) used by NVE for this catchment is
51 m3/s. Large runoffs at Roykenes often occur during fall or winter, due to heavy rain.
The catchment of Knappom has an area of 1625km? and an annual mean flood of 178
m?3/s. Large flows at Knappom often result from a combination of snowmelt and rain



Tabell 2.1 Notasjon

Table 2.1 Notation

T, Temperature at day ¢

St(j ) Forecast for temperature at day ¢, forecasted at day ¢ — j.
R, Precipitation at day t.

Pt(j ) Forecast for precipitation at day ¢, forecasted at day ¢t — j.

Qos(t) | Measured runoff at day .

Qsmv(t) | Runoff at day ¢ calculated by the HBV-model.
Q%%)R(t) Forecast for runoff for day ¢, forecasted at day ¢t — ;.
SWE(t) | Snow water equivalent estimated by the HBV-model.

during spring. Daily measurements have been taken at the catchments of Knappom and
Roykenes since 1957. We denote by Qops(t) the time series of measured runoffs, where ¢
counts days. The unit of measurement is m®/s. In the sequel we shall always make clear
which catchment is under consideration.

With Qgrvi(t) we denote the runoff predicted with the HBV-model for day ¢, where
actual meteorological conditions are input to the calculations. Hence Qgn(t) can be
considered as a function of today’s and the historical meteorological conditions:

QSIM(t) = HBV(E; Tt—la Tt—?a ey Rta Rt—la Rt—Qa .. ) (1)

where T; denotes the temperature at day ¢ and R; denotes the precipitation at day ¢. Note
that the two single values 7; and R; represent the temperature and the precipitation for
the whole catchment. They are calculated based on observations at specific locations.

To forecast future runoff the HBV-model is run forward with forecasted temperature
and precipitation as input:

QFOR( ) = HBV(St 75(] Y J St(l)]—klaﬂ—jaﬂ—j—laﬂ—j—Qa ..
-F)t(J)a Pt(il 1)7 DR -I)t(flj—kla Rt—ja Rt—j—b Rt—j—?a .. ) (2)

Here QFOR( ) is the runoff for day ¢ forecasted at day ¢t — j. Similarly St(j ) is forecasted

temperature and Pt(j ) is forecasted precipitation.

An overview of the notation is given in Table 2.1. This table also includes SWE(t)
which is the snow water equivalent estimated by the HBV-model. This means the SWE(t)
is also a function of today’s and the historical meteorological conditions:

SWE(t) = HBVswe(Ti, Ti—1, Ti—2, - . -, Rty Ry—1, Ry—a, . . .) (3)

By using meteorological forecasts it is also possible to forecast the SWE. In this study we
consider forecasts from one to six days ahead (j =1,...,6).

The data considered in this study are for the period 8/6-95 to 26/8-97. To illustrate
these data Figure 2.1 (page 13-14) shows the observed (Qogs), the HBV predicted (Qgmv)
and the forecasted (QroR) runoff for Rgykenes in 1996. Figure 2.2 (page 15-16) shows the
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Tabell 2.2 Andel av variansen til observert vannforing som forklares av den
simulerte og den prognoserte vannfgringen.

Table 2.2 The amount of the variation in observed runoff that is explained
by the predicted and the forecasted runoff.

explained variance

original data log-transformed data

Rgykenes | Knappom | Rgykenes | Knappom
Predicted (Qgmv) | 0.80 0.83 0.76 0.65
Forecast, step 1 0.32 0.69 0.65 0.64
Forecast, step 2 0.32 0.67 0.56 0.63
Forecast, step 3 0.27 0.71 0.55 0.64
Forecast, step 4 0.26 0.58 0.50 0.63
Forecast, step 5 0.18 0.49 0.44 0.61
Forecast, step 6 0.07 0.48 0.37 0.60

same plots for Knappom. For Rgykenes the scatterplots of the observed values (Qogs)
versus the HBV predicted (Qgnyp) and forecasted (QpoR) are given in Figure 2.3 (page 17-
18). It can be seen that the predicted values are closer to the true values than any of
the forecasts. Among the forecasts, step 1 is best and step 6 is worst. This is, of course,
as expected. The scatterplots for Knappom are given in Figure 2.4 (page 19-20). The
difference between the predicted values and the different forecasts are in this case not so
clear as for Rgykenes. This indicates that the HBV-model error part is more important
for Knappom than it is for Rgykenes. In contrast, the meteorological forecasts seem to be
a major source of uncertainty for several-days-ahead forecasts at Rgykenes.

More formally we evaluate how much of the total variance of the observed runoff is
explained by the predicted and the forecasted runoffs. Table 2.2 shows such explained

variances calculated as
| _ Zi(Qoss(t) — @su(1))”
>:(Qogs(t) — Qogs)?

where (Qops denotes the sample mean. For the forecasts (Qgm is replaced by ng)R
(j = 1,...,6). Since the explained variances are influenced very much by a few large
values, Table 2.2 also presents explained variances calculated after all data have been log
transformed. As indicated earlier, for Knappom there is not much difference between the
explained variances for predictions and forecasts (especially after log-transformation).

Note that it is possible to calculate how much of the uncertainty is caused by the model
error. For the log-transformed data at Rgykenes the forecasts one day ahead explain
65% of the variation. The uncertainty is then represented by 35% and we know that
(100 — 76) = 24% represents the model error. Hence, we can say that 24/35 = 69% of the
uncertainty is caused by the model error.

(4)



3 The simulation algorithm

The aim of this study is to quantify the uncertainty of the runoff forecasts, QFOR( ).

This means that we are interested in the distribution of the error Qops(t) — QFOR( ) for
j=1,...,6. We decompose the error into two parts:

(Qos(®) — Q¥OR(®)) = (Qoss(t) — Qsna(®) + (Qsna(t) — QdR (1)) (5)

The first term, (QoBs(t) — @stv(?)) is the HBV-model error. A statistical model for this
term is developed by Langsrud et al. (1997). The second term, (QSIM(t) - Q(P%R(t)), is
error due to the uncertainty of the meteorological forecasts. Statistical models for the dis-
tribution of temperature and precipitation given their forecasts are developed by Follestad
and Hgst (1998). Rather than modelling (QSIM( ) — QFOR( )) directly we will use their
results to develop a simulation algorithm.

In modern statistics stochastic simulations are often used when the distributions are
too complex for analytical calculations. Such methods are often much more precise than
methods based on 81mphfy1ng analytical approximations. Here we are interested in the
distribution of Qopg(t) — QFOR( ), or alternatively in the distribution of Qopg(t) given all

that was known when the forecast Q%)()R(j) was made (the forecast and the observations
of temperature, precipitation and runoff up to that day). Below we will formulate an
algorithm for simulating values of Qopg(t). The empirical distribution of the simulated
values will form the basis for probability calculations. An uncertainty interval will be
constructed to cover 95% of the simulated values. The probability of exceeding a certain
threshold value will be estimated as the proportion of simulated values that exceeds this
threshold. The accuracy will depend on how many values are simulated.

Consider any day k for which all relevant present and past weather observations exist,
and on which forecasts have been made for the next 6 days. The algorithm for simulating
the runoff values for these six following days, Qfpg(k +1),...,QHps(k + 6) , consists of
the following three steps:

1. Simulate the weather for day k£ + 1,...,k + 6 given the observed weather up to
day k£ and the forecasts made on that day. That is, generate synthetic values for

temperature and precipitation: Ty, ..., Ty 4, Ry 1, ..., R} ¢. The values are drawn
according to Follestad and Hgst (1998). A detailed description of this is given in the
appendix.

2. Treat the simulated values of temperature and precipitation as real and calculate
future values of Qg using the HBV-model. These simulated values are denoted as
Qémi(k +1),..., Q& (k + 6). In the appendix this is described in more detail.

3. Treat the simulated values of temperature, precipitation and Qg as real data and
draw HBV-model errors according to Langsrud et al. (1997). With these errors
added to the simulated values of QQgm\, we now have a set of simulated values for

QoBs: Qops(k +1),...,Q5ps(k +6).



This algorithm produces one value for ()opg for each of the six days after day £. It can
be repeated to produce a large number of values for each of these days. Thus we obtain
the distribution of actual runoffs for each of the six days after day k, given the conditions
and forecasts on that day. This can be repeated for any other day for which the relevant
data is available.

As an example consider a single day, say 20.07.95. The temperature and rainfall on this
day were 13.73C and 6.84mm respectively. The forecasts for the next 6 days for rainfall
were 17.78, 4.43, 9.55, 5.26, 6.85 and 1.45. Those for temperature were 14.23, 11.53, 10.58,
14.66, 16.54 and 17.34. One set of simulations of rainfall based on the conditions on the day
and the forecasts was 16.84, 14.24, 2.85, 0.53, 0.28 and 1.33. The corresponding simulations
of temperature were 14.72, 11.59, 9.43, 9.59, 8.77 and 12.39. Running the HBV model on
these values gives values of Qg of 5.74, 8.5, 3.87, 1.03, 0.96 and 0.91. After adding model
errors the simulated QQopg values are 6.80, 7.64, 2.86, 0.64, 0.56 and 0.29. This procedure
was repeated 100 times to obtain the distribution of Qopg for each of the 6 days after
20.07.95, given the conditions and forecasts on that day.

4 Results

With the current implementation of the algorithm, it takes about ten minutes to generate
1000 sets of 6 simulations. Therefore, the simulations have only been performed for a
period of 100 days during summer 1995. This means there are 95 days for which we have
an observed runoff, 6 HBV forecasts (1 day ahead up to 6 days ahead) and 6 simulated
distributions. These simulated distributions form the basis for the probability calculations
below.

Together with the HBV-forecasted runoffs we can now calculate uncertainty intervals.
Figure 4.1 (page 21-23) (Rgykenes) and Figure 4.2 (page 24-26) (Knappom) show such
95% intervals together with the HBV forecasts and the observed runoffs. We can see that
the observed runoffs are rarely outside the intervals. As expected, the intervals get wider
as the forecast time increases up to six days. Note that the increased uncertainty is not
only caused by errors in the weather forecasts but also by increasing HBV model errors.
This is because the model error for a 5 day ahead forecast depends on the errors in all of
the shorter range forecasts. This is most important for Knappom since the values of oy
(14) are relatively close to one.

One may also use the empirical distribution of 1000 simulated Qopg-values to calculate
the probability of exceeding certain threshold values. Based on our historical data for
Rgykenes we expect Qopg to exceed the threshold 51 m3/s once a year, and 73 m?/s
once every ten years. The corresponding values for Knappom are 178 m?/s and 264 m3/s.
One may therefore be interested in the probabilities that these values will be exceeded
given a particular forecast. Figure 4.3 (page 27-29) (Roykenes) and Figure 4.4 (page 30-
32) (Knappom) present the result of such calculations. We see that the probabilities of
exceedence for the period under study are quite low, usually below 5%.

One way to check the performance of the probability calculations is to verify that



the probabilities for the real observations, P(Qops > “real Qops”) are distributed Uni-
form(0,1). For Rgykenes these probabilities are plotted in Figure 4.5 (page 33-35). A
uniform distribution looks plausible, although there is some autocorrelation among the
probabilities. However, autocorrelation is expected for step 2 to step 6 (most for step 6).
The corresponding probabilities for Knappom are plotted in Figure 4.6 (page 36-38). In
this case there seems to be some deviation from the uniform distribution. The number of
extreme observations (outside the 95% interval) seems OK, but the distribution elsewhere
seems skewed. To find out whether this is a general tendency one should check the simu-
lation algorithm on other periods. However, the skewness could be explained by the fact
that the model error is a very important part of the forecast uncertainty for Knappom.
It is possible to improve the model error model by using a more complex model including
heavy tailed distributions (Langsrud et al., 1997).

5 Conclusions and recommendations

In this report we have combined a model for the HBV-model error and models for the
uncertainty of the weather forecasts to quantify the uncertainty of the HBV runoff forecasts.
An algorithm for simulating runoff values has been developed and empirical distributions
of simulated values form the basis for probability calculations.

The methodology has been applied to the two catchments Rgykenes (Western Norway)
and Knappom (Eastern Norway). For Rgykenes, we have seen that the uncertainty of the
weather forecast (precipitation and temperature) is most important for the uncertainty of
the runoff forecasts. On the other hand, for Knappom, the HBV model error part is in
fact most important. Note that we have built in a correction for the HBV model error.
The latest observed model error is used to predict future model errors. Such a correction
could also be used to improve the HBV forecasts directly.

Overall, the results of the probability calculations seem reasonable. The results for
Knappom indicate, however, that improvements are possible. Since the model error is so
important, an more accurate model error model may be useful.

Finally, we recommend that one start using the presented methodology routinely to
gain experience. Note that, in addition to what we have described, it is possible to use the
method to find other types of information. One may, for example, calculate the probability
of exceeding a threshold value within the next six days (not only the probability for a single
day).



Appendix: The simulation algorithm in detail

Simulation of temperature and precipitation
Simulation of temperature

The temperature model described by Follestad and Hgst (1998) is for each forecasting step:

T, = 04(()])[[50>> ot Oégj)f[stm@] + ag)st(])fsu)> 0T azg,])st(])f[sg)@] (6)
+ a'z(l)(T 1 _St 1) 5<J'>>:0] (J)(T 1 _St 1) S(J)<O]+€§J)-

Here T, is the actual temperature on day ¢, S; () is the j step forecast for this temperature
and the superscript (j) on the alpha parameters indicates that they are different for different

steps (j = 1,...,6). I[St(j)<0] and I[St(j)>:0] are indicator variables taking the values 1 if

St(j) <0 (St(j) >=10) or 0 if St(j) >=0 (St(j) 0), and the e§ 75 are ii.d Gaussian variables

with zero mean and standard deviation aéj ) where

o) = | o 87 >=0 (7)

! ol i S <0
In total we have 48 temperature parameters. For each of the six steps (j = 1,...,6) we
have the eight parameters: o, ..., o, ofi), o). All parameters are estimated based on

historical data.
The simulation of temperature values is done as follows:

e Draw e§1+)1 from a normal distribution with zero mean and standard deviation oéi)l.

The simulated temperature value, T}, ,, is calculated by setting j = 1 in (6)).
e Draw eg)Q from a normal distribution with zero mean and standard deviation 0232.
Ty, 5, is calculated from the step-two model (j = 2 in (6)) replacing Ty, by Ty.

e The values T} 5, T}, 4, T} 5 and T}, 4 are generated in the same way as T} ,.

Simulation of precipitation

Let R; be the volume of rain on day ¢, and Pt be its j step forecast. Let pt ) be the
probability that R; > 0 given this forecast

Follestad and Hgst (1998) model p) by a generalized linear model, using a binomial
distribution with log:it link. The model is

(4)
bt _ o) (), /pl) o 4)
log (1_p(j)) =00 + B porsg T BV A+ By I[Pt(i')1>0r1Rt71:0] (8)
t



Given that R, is greater than zero, its square root is assumed to be Gamma distributed,

with an expected value at time ¢ depending only on the forecasted precipitation at time t.
Thus,

VR: |(Re > 0) ~ Gamma(i”, v9) (9)

Here, v is the inverse of the dispersion parameter of the Gamma distribution. The mean
value, ,u§ ), is modeled as

’ung) — ,Y(()J) + ,)é])1 /I)t(J) (10)

In total we have 42 precipitation parameters For each of the six steps (j = 1,...,6) we

have the seven parameters: 8\, ..., 8,48 ) 1@ All parameters are estimated based

on historical data. The simulation of prec1p1tat10n values is done as follows:
e Calculate the probability p§1+)1 of precipitation at day t +1 (j =1 in (8)).
e According to this probability draw whether the precipitation will be zero or positive.

— If the result is zero set R; ; = 0.

— If the result is positive draw a random number from the appropriate Gamma
distribution (j = 1 in (9) and (10)). The square of the result is the simulated
precipitation Ry, .

e Precipitation for day ¢ + 2, R}, ,, is generated similarly (j = 2 in (8), (9) and (10))

replacing ;1 by R} ; in the expression for pgiL)Q.

e The values R} 5, R ,, R 5 and R} ¢ are generated in a similar manner.

Finding simulated Qsn-values

Qémi(t+1), ..., Q% (t + 6) are calculated by

QgIM(t + 1) = HBV(]}:l,ﬂ,ﬂ_l, e .,R;_l,Rt, Rt—la e )

QgIM(t + 6) = HBV(CZ:;_(S, ey 71;_1, ﬂ, T’t—la e R;—FG’ ey RZ—H’ Rt, Rt—la e ) (11)

Final simulation of (Qops-values

Langsrud et al. (1997) used a logarithmic transformation to model the error of the HBV-
model. Following their notation:

d; = log(Qos(*)) — log(Qstm(?)) (12)

The following dynamic model is used:
dt = Ottdt_l -+ Oy (13)
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Tabell 3.1 Kategoriene som brukes til parameter-estimeringen.

Table 3.1 The chosen categories for the estimation.

i(t) Roykenes Knappom
1 | T <0 ;<0
2 | T, >0AND SWE(t) =0 | T; > 0 AND SWE(t) =0 AND R; =0
3 | T, >0AND SWE(t) >0 | T; > 0 AND SWE(¢) >0 AND R; =0
4 T; > 0 AND SWE(t) =0 AND R; > 0
5 T, > 0 AND SWE(¢) > 0 AND R, > 0

where u; are i.i.d. with standard normal distribution N(0, 1), and

o = lgsm(>@uus) (i + blog(@sna(t))) +
)

Tigsnut<@ran) (i) + 1og(Qsiv(?) (14)
10g(0) = Iiguu(®>@uun) (Aitr) + Blog(Qsma(t))) +
I[QSIM(t)<QTHR] (gz(t) + E log(QSIM (t))) (15)

The subscript i(t) indicates that the parameters vary with the meteorological regime at
time ¢. For the catchments in this study, the regimes fall into the categories in Table 3.1;
three for Rgykenes and five for Knappom. Note that Ijgq,1)>Qrur] @04 T[Qgun(t)<@rur] aT€
indicator variables taking the values 1 or 0. This means that there are separate parameters
for small and large values of Qg (See Langsrud et al. (1997) for an explanation). In our
cases the threshold value, QTyR, is chosen so that this value is exceeded in 25% of the
days.

For the specific catchment, Roykenes, we have a total of 17 parameters (25 for Knap-
pom): QTHR, 01, G2, 03, b, Al,A2,A3,B G1, o, G3, b, A1, Ao, A3, B. All parameters are esti-
mated based on historical data.

The simulation of the QQopg-values is as follows:

e Find i*(¢t+1) by replacing T'(t+1), R(t+1) and SWE(¢+1) by T*(t+1), R*(t+1) and
SWE*(t+1) in table 3.1. Here SWE*(t+1) is calculated from (3) as: SWE*(t+1) =
HBVSWE(T;H—D 7-;5’ ,-Tt—la LRI R;;-f—lv Rta Rt—17 H )

e Calculate a1 and o044, from (14) and (15), replacing Qgnv(t + 1) by Q&p(t + 1)
and i(t + 1) by i*(t + 1)

e Draw ut 4 1 from N(0,1) and calculate d; , from (13)
e Calculate Q)pg(t + 1) = exp (log(QgIM(t +1))+ dt+1)
® QHpg(t+1) can be generated similarly, replacing d;;, by d,; in (13)).

e The values Q5pg(t + 3), Qpps(t +4), Qpps(t +5) and QHpg(t + 6) are generated
in a similar manner to Qpg(t + 2).
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Figur 2.1 Observert (Qogs) (heltrukket), simulert (Qsiv) (overst)
(to sider) og prognosert (Qror) vannforing for Roykenes i 1996.
Figure 2.1 Observed (Qogs) (solid), HBV predicted (Qsmv) (upper panel)

(two pages) and forecasted (QroRr) runoff for Roykenes in 1996.
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Figur 2.2 Observert (Qogs) (heltrukket), simulert (Qsiv) (overst)
(to sider) og prognosert (Qror) vannforing for Knappom i 1996.
Figure 2.2 Observed (Qogs) (solid), HBV predicted (Qsiv) (upper panel)

(two pages) and forecasted (QroRr) runoff for Knappom in 1996.
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Nedre-, pure- og median-verdier i 95% prognose-intervaller (stiplet)
sammen med HBV-prognosene (lang-stiplet) og de observerte
vannforingene (heltrukket) for Roykenes.

Lower, upper and median values in 95% forecasting intervals (dashed)
together with the HBV forecasts (long-dashed) and the observed
runoffs (solid) for Roykenes.
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together with the HBV forecasts (long-dashed) and the observed
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Figur 4.5 P(Qos > “faktisk Qops”) for Roykenes. Linjene viser

(tre sider)

Figure 4.5
(three pages)

50% og 95% intervaller.

P(Qos > “real Qops”) for Roykenes. Lines illustrate
50% and 95% intervals.
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Figur 4.6 P(Qos > “faktisk Qogs”) for Knappom. Linjene viser

(tre sider)

Figure 4.6
(three pages)

50% og 95% intervaller.

P(Qops > “real Qops”) for Knappom. Lines illustrate
50% and 95% intervals.
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