SMOOTHED LANGEVIN PROPOSALS IN METROPOLIS-HASTINGS
ALGORITHMS

Q@IVIND SKARE!, FRED ESPEN BENTH!? AND ARNOLDO FRIGESSI

ABSTRACT. The Metropolis Adjusted Langevin Algorithm (MALA) samples from complex
multivariate densities 7. The proposal density is based on a discretized version of a Langevin
diffusion, and is well defined only for continuously differentiable densities w. We propose a
modified MALA algorithm when this condition is not fulfilled or when 7 has very rapid
variations. The algorithm is illustrated on the Strauss model, for which two different classes
of smoothing are proposed. In these examples smoothing gives advantages in terms of reduced
asymptotic variance.

1. INTRODUCTION

Langevin diffusions are stochastic differential equations of the form dL; = %V log w(Ly)dt+
dB;, where B; is Brownian motion on R", 7(x) is a density (with respect to Lebesgue) and
x € R*. If Vlogn(x) is continuously differentiable and for some real values N, a and b < oo
it holds that

(Viogn(z))Te < ale|+b, |z|>N

then the diffusion will have 7 as a stationary distribution. Under suitable assumptions L;
converges geometrically fast. For example, Roberts & Tweedie (1996) show that for the
exponential class 7(z) o« exp(—7y|z|?), this happens if 3 > 1.

Discretizations of Langevin diffusion have been used in Metropolis-Hastings (MH) algo-
rithms as proposals in order to increase the convergence speed, as in many cases (although
not always) the discretized diffusion process is approximately stationary. The Metropolis
Adjusted Langevin Algorithm (MALA) is obtained by using the Euler discretization of the
Langevin diffusion as the proposal in the MH algorithm (Besag 1994). Roberts & Rosenthal
(1995) have compared the MALA algorithm with the corresponding random walk MH algo-
rithm when 7 is the multivariate normal distribution: MALA performs longer steps, and has
a higher acceptance rate than the random walk MH algorithm. An adjustment of MALA
is MALTA (Metropolis Adjusted Langevin Truncated Algorithm) with truncated drift term,
which has more robust geometric ergodicity properties.
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What could be done if 7(z) is discontinuous or not differentiable at some points? The
Langevin diffusion is then not defined at these points, and the conditions for L; to have
stationary distribution 7 are not fulfilled. The main idea of this paper is then to use the
Langevin proposal, dL{ = 1Vlogn®(L{)dt + dB;, where 7 is a smoothed approximation
of the target distribution 7, and then accept with respect to the original target distribution
7 in the MH algorithm. The smoothing of m makes it possible to use gradient information
of 7 in the proposals to better guide the state vector towards the modes of w. This may
not be possible in the case of discontinuous 7: for example, if the target distribution has a
step discontinuity and is otherwise flat, the Langevin diffusion is zero a.e. One might expect
that continuous but steep target distributions could give rise to slow Langevin derived MH
algorithms. Therefore, we also investigate the possible effect of using over-smoothed targets
in the Langevin proposal.

The approach of smoothing discontinuous 7 (x) is illustrated on the classical model of
Strauss (Strauss 1975), for which two different ways of smoothing are proposed. Let & =
(x1,...x,) and x; € [0,1]° and let m be the Strauss model with a fixed number of points, n,
which has density

m(e) = I I hy(dij) 5 dij = |2 — 5],
where the repulsion function h.(d;;) is defined by
hy(dij) = v + (1 —7)h(d;;)
h(dij) = Iy, gy (diz)

for v € [0,1] and Ij,4)(d) is equal to 1 if a < d < b, zero otherwise. We will use either the
Euclidean distance on R® or the distance defined on the torus [0, 1]° given by

S

dij = Z(miﬂ(l —|zig — xjal, |ag — 250]))2
-1

We take R to be the maximal value of d;j, i.e. /s for the non-torus and %\/5 for the torus
geometry.

2. SMOOTHED MALTA ALGORITHM FOR THE STRAUSS MODEL
The proposal step in the MH algorithm will be generated by a discretized version of the
Langevin diffusion

1
dL; = §V]Og7T(Lt)dt—|-dBt (1)

where 77, is usually chosen to be equal to 7(z). However this choice of 7y, is not always useful.
In our example, we will obtain an almost everywhere zero drift, since Vlog(w(x)) =0 a.e.
The MALA algorithm will thus coincide with the random walk MH. Instead of choosing the
target distribution 7 in (1), we will use a smooth approximation #* of 7. We consider the
parametrised family of densities

*(x) = H?:1H?:i+1ha,7(dij)
with

hay(dij) = v + (1 = 7)ha(dij),
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where h,, is a smoothed version of h, depending on a smoothing parameter a. We choose « to
be the angle of the tangent of h,, in r. Different choices of h, could be conceived. We propose
here two different classes. First define h, as an exponential S-shaped approximation of h

1

ha(d) = 1T o F@F@" d € [0, R]
where the function f(d) is given by
R—r r

and the function k(-) is chosen as follows: The slope in r of hy(d) is hl,(r) = tan(a). An easy
calculation shows that

hi(d) = k(o) f' (d)h? (d)e F@I (@),

Since f(r) = 0 and hqo(r) = 5 we get

() = Th(e) /(7).

But
, B l 1 _ R
1) = . R—-r r(R-r)
and thus
%k(a) - r(TR—r) ~ tan(a) = k(a) = %tan(a)T(R — ).

An alternative choice for h, is the arctangent smoother

ho(d) = % (1 + %arctan(k(a)(w _ r))> ,

with

Here,

so that we obtain
k(o) = mtan(a).
Our idea is to tune the smoothing parameter a to optimise the MH algorithm in terms of
speed of convergence. First we spell out details of the algorithm. At step k£ + 1, the proposal

used in the MH algorithm is the Euler discretization of the Langevin diffusion process (1)
defined for 7*(x) given by

1
Xg+1 =X+ §V10gﬂ'a(Xk) 5+\/55k

where g ~ N (0, I,,xs) and I,,x is the identity matrix of dimension n X s.
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We now compute the drift term in the diffusion process b(z) = 3V log 7®(z) 8, where

d n n
[b()]i = [V 1og m*(z)]; = dm,z > log(hay(dsj))
b k=1j=k+1
z":(l—v)ﬁijha(dij) d E":b(d 4
Lo hag(dy)  dm T 2 g
For the exponential smoother we have

bO(d) = ’

while for the arctangent smoother we get
(1 —7)k(e)
haq(d)7(1 + k()?(d —r)?)
Next we have to distinguish between the torus and non-torus geometry. For the non-torus
case the derivatives of d;; are

d d (x; — x;)
d—a:idij = d—a:z\/(w’ — ;) (@ — xj) = ZTJJ
The torus case on the other hand has derivatives

d 1
[—dw‘dij]l = min(1 — |z — x5, |25 — z5]) {
1

bo(d) =

sign(xi,l — .’Ifj’l) |$i,l — 55j,l| < 0.5,

—sign(z;; — x;) |zig — 5] > 0.5.

As mentioned in the introduction, Roberts & Rosenthal (1995) suggested an adjustment
of MALA called MALTA. In this algorithm the drift term is replaced by the truncated drift
term

bi(z) = (t,V3) Ab(z),
where ¢, is a given truncation parameter.

In Figures 1 and 2 we plot the drift term for the two different smoothing functions and
various values of a. The case @ = 0 corresponds to the random walk proposal (zero drift
everywhere); for a = 90, the drift term is zero in all points d # r, while it is not defined for
d = r. We will later see that the optimal values of a will be for a close to 90°. Here, the drift
term has the largest values in a small region centred in r. This means that points separated
approximately by r are most strongly repulsed.

3. CRITERIA OF CONVERGENCE: ASYMPTOTIC VARIANCE

Suppose that we want to estimate m = E; {g(X)} for some integrable function g(z).
Under certain regularity conditions the Central Limit Theorem for Markov chains holds (see
e.g. Kipnis & Varadhan (1986)), so that as T — oo,

1 T
VT (:F ;g(Xt) — m> — N(0,72)

in law, where the asymptotic variance 72

arity, v, = Cov(g(X),9(Xi1x)) for all 4.

is given by 72 = 40 + 2 Y req Yk and, under station-
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FIGURE 1. The truncated drift term for various values of the smoothing pa-
rameter « in the torus case for the exponential smoother having v = 0.1,
r = 0.3, § = 0.00625 and t, = 1.5.
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FIGURE 2. The truncated drift term for various values of the smoothing pa-
rameter « in the torus case for the arctangent smoother having v = 0.1,
r=0.3, 6 = 0.00625 and ¢, = 1.5.

The asymptotic variance will be used as the criteria of convergence and for comparison
between different algorithms. It can be estimated by the initial positive sequence estima-
tor (Geyer 1992)

M
P =F0+20+ ) Ay,
k=1

where f\k = Ao + Yok+1 and M is the largest integer such that f\k are strictly positive for
k=1,... ,M. We shall compare various algorithms in terms of 72, preferring those for which
this is smaller. We shall tune « to minimize 72.
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4. SIMULATION STUDY

The function g is chosen to be the number of pairwise overlaps,

n n
9(X) =Y 1wy (dig),

i=1 j>i
which is the sufficient statistic of the conditional Strauss model. The asymptotic variance
is computed for different values of a with the other parameters fixed. The optimal « which
minimizes the asymptotic variance is found. If the smoothed MALTA algorithm is to be
useful, the optimal value of a should be different from 0° which corresponds to a random
walk proposal. Furthermore the associated 72 should be significantly smaller than %go, where
7o denotes the estimated asymptotic variance when the smoothed MALTA algorithm with
smoothing « is used.

There are a number of other parameters to vary, including the model parameters n, s, r
and v and the algorithm parameters § and ¢,. We fix ¢, to 1.5. Simulation studies indicate
that the results are not too sensitive to variations in ¢,. However, a too high value of ¢, could
cause the state vector to get stuck in certain point configurations. The parameters r and
v determine the degree of model complexity: a high value of r and a low value of v makes
it hard to sample from w. We have chosen to fix ¥ = 0.1 and then adjust . The other
parameters are determined in the following way. First, fix n € {2,3,... ,} and s € {1,2}. We
choose the value of r, so that a reasonable difficulty in sampling is obtained; so let

~Jro(1/n)@/9) for the torus geometry,
ro(1/(n —1))(*/9)  for the non-torus geometry.

9 = 1 gives approximately the largest feasible value of r in a hard core model with n points
in [0,1]°. A larger value of 7 would make it very hard to place the n points. The factor rg
must be adjusted somewhat as a function of n and s to keep the same difficulty in sampling;
e.g for n equal to 3 and 10, we choose ry to be 0.9 and 0.6 respectively. The model complexity
can be measured by the acceptance probability of the algorithm. For § we choose an optimal
dopt by simulations over a range of § values and a = 0°. So dgp¢ is chosen as the 6 minimizing
70o. The layout of the experiments is given in Table 1. The P|accept] column contains the
average acceptance probabilities of a rejection sampler with uniform proposals.

Experiment | n | s | Torus | dopt, r | Placcept]
1 3|1 N 0.0062 | 0.450 0.037
2 3|1 Y | 0.0062 | 0.300 0.057
3 3|2 N 0.0125 | 0.636 0.065
4 3 2] Y ]0.0250 | 0.520 0.012
5 o5 |1 N ]0.0039 | 0.200 0.007
6 5|1 Y 0.0020 | 0.160 0.012
7 5 |2 N 0.0039 | 0.400 0.016
8 5 |2 Y 0.0039 | 0.358 0.004
9 101 N 0.0005 | 0.067 | 0.0009
10 10 |1 Y | 0.0005 | 0.060 0.002

TABLE 1. The ten experiments.



Experiment | 1 2 3 4 5 6 7 8 9 10
opt 70° | 70° | 50° | 80° | 50° | 80° | 85° | 80° | 89° | 80°
Topt 4.16 | 3.52 | 31.8 | 3.38 | 21.7 | 11.3 | 58.3 | 18.1 | 104.8 | 50.3
Too 4.87|4.03 | 35.6 | 4.03 | 23.6 | 12.9 | 61.8 | 22.7 | 115.6 | 55.4

TABLE 2. The optimal values for « and 7 for the exponential smoother.

The results from the 10 simulation experiments is given in Figure 3 for the exponential
smoother and in Figure 4 for the arctangent smoother. The plots in the figures summarise the
result of 10 independent experiments, each with 2 x 10° iterations after a burn-in of 2 x 10?
iterations. KEach chain produces estimates of 7, for a range of different values of . The
average value of these ten estimates is indicated by a dot, while estimated 95% confidence
intervals for 7, are indicated by the vertical lines through each dot.

A reduction of asymptotic variance with respect to 7go is seen in all the 10 experiments.
The optimal value of « varies, but in the torus case it seems to be stable around 70°-80°,
see Table 2. The torus model with exponential smoother gives the largest reduction in as-
ymptotic variance, about 15%. The arctangent smoother gives quite similar results, however
the reduction in asymptotic variance seems to be smaller. This indicates that the smoothed
Langevin proposal is useful in a MALTA setting.

In the next example we consider the smoothing of a continuous but steep target distribution
w. We take the distribution 7, for a near 90° as target distribution in the torus model with
the exponential smoother. In Figure 5, we see that for target mggo the optimal a was around
70° and there is a reduction in asymptotic variance of about 20%. Again this is an indication
that smoothing helps.

Finally, a larger simulation study is performed, using the estimated parameters obtained
for the Spanish town example (Ripley 1988). Here, n = 69, s = 2 and -y and r are estimated to
0.5 and 0.0875 respectively. The experiment consists of a total of 45 chains of length 2 x 103
iterations after a burn-in of 2 x 103 iterations. The torus geometry and the exponential
smoother are considered. See Figure 6 for the simulation results for different values of a. The
optimum oy seems here to be around o = 89°. This indicates that the optimal value of «
gets closer to 90° as n — oo or r — 0.

5. CONCLUDING REMARKS

In the non-torus case the point pattern proposed by the smoothed MALTA algorithm is
often rejected because some points are, due to repulsion, “forced” outside the legal region
[0,1]°. We expect therefore the smoothed MALTA algortihm to perform better on the torus
geometry. The simulation results in Figures 3 and 4 confirm this. The simulations indicate
a reduction of approximately 15% of the asymptotic variance for the torus case when the
exponential smoother is used with respect to random walk MH. The optimal a for the torus
case and the exponential smoother seems to be stable around 70°-80° for small n, and seems to
increase (Spanish towns example) closer to 90° for larger n. The performance of the smoothed
MALTA algorithm as compared with random walk MH (corresponding to the o = 0° case),
may depend further on the other model and algorithm parameters. A larger simulation study
is needed to see the dependence of «y; on different model parameters and on t,.
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The value 5opt> chosen to minimize 7,—ge, may not minimize 7, for a # 0°. Our results
may therefore be improved by finding a better §. However, a simulation study of experiment 2
showed that the optimal § did not differ for &« = 0° and o = 70°.

We conclude with a very important remark: When comparing the smoothed MALTA
algorithm with the more simpler MH algorithm with random walk proposal, we do not take
into account that the computation time of each iteration is larger. A look-up table for the
drift term, initialised at the beginning of the simulation program, does however reduce the
additional computation time considerably.
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