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Abstract

We propose a fully Bayesian approach to non-life risk premium rating, based on hierar-
chical models with latent variables for both claim frequency and claim size. Inference is
based on the joint posterior distribution and is performed by Markov Chain Monte Carlo.
Rather than plug-in point estimates of all unknown parameters, we take into account all
sources of uncertainty simultaneously when the model is used to predict claims and esti-
mate risk premiums. Several models are fitted to both a simulated dataset and a small
portfolio regarding theft from cars. We show that interaction among latent variables
can improve predictions significantly. We also investigate when interaction is not neces-
sary. We compare our results with those obtained under a standard generalized linear
model and show through numerical simulation that geographically located and spatially
interacting latent variables can successfully compensate for missing covariates.
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1 Introduction

The premium charged to policyholders is usually broken down to a part covering the insured
risk (the risk premium) and further components related to administrative costs, marketing
strategies and company profit. The risk premium is determined on the basis of the claims that
the company expects during the period of exposure. In order to estimate the risk premium a
statistical model is built, which aims to describe the stochastic relations between information
available on the insured risk and policyholder, and the corresponding claims. In non-life
insurance, Generalized Linear Models (GLM) and their variants are common statistical tools,
see for instance McCullagh & Nelder (1989, pp. 204-208; 296-300), Brockman & Wright (1992)
and Haberman & Renshaw (1996). An appropriate GLM is fitted to the historical data base
of the insurance company, which contains covariate information and losses over a certain
time period. Once the parameters in the model are estimated, it is standard practice to
price the risk premium of a new insurance policy using the corresponding covariates and
estimated parameters. This way, the uncertainty associated with these estimates, which is
a consequence of the uncertainty regarding the adequacy of the GLM and data variation, is
ignored. A remedy is found in the asymptotic theory of maximum likelihood estimation, see
Brockman & Wright (1992, Appendix G). However, the asymptotic model may be inadequate
and can induce serious bias, especially for claim types characterized by a low claim frequency.
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For this reason it is not common practice in the insurance business to associate confidence
intervals to estimated risk premiums. But, ignoring the uncertainty of the risk premium
reduces the room to maneuver of the company.

The first aim of this paper is to present a statistical framework where uncertainty is
propagated to the predicted risk premium. We propose a Bayesian approach and give full
account of all sources of randomness in the final estimate of the risk premium of a new policy,
allowing the company to determine safety loadings, marketing strategies and financial policies
on a more solid basis. Furthermore we compute posterior credibility intervals in a unified
inferential framework. This is technically done by Monte Carlo sampling of the posterior
distribution.

The second aim of this paper is to extend the toolbox of statistical models useful for
risk premium estimation by introducing models with latent variables. The simplest case
of a latent variable is an unknown regression intercept common to all policies that can be
modeled by GLM. Such an intercept can be interpreted as an unknown covariate, which
accounts for the basic common risk factor. If data on the geographical location of the policies
are available, it is possible to differentiate the risk geographically by introducing a regionally
varying intercept also in the GLM setting. This intercept is interpreted as a regional latent
variable and allows for geopricing. More generally, latent variables are introduced in order
to compensate for non-available information which would be useful in order to quantify the
insured risk. Like all other unknown parameters, latent variables are estimated using the
historical data base and used when pricing a new policy.

We extend the GLM framework by modeling the latent structure as random effects and
we make prior assumptions on their joint distribution. The first step in this direction is
Generalized Linear Mixed Models (GLMM), with latent variables that are sampled from a
common multivariate normal distribution, see Clayton (1996). Furthermore, complex correla-
tion structures are possible. For instance, when regional random effects are used, it might be
appropriate to assume that these tend to vary smoothly from one region to the neighbouring
ones. We borrow ideas from disease mapping and spatial statistics to construct Markov Ran-
dom Field (MRF) models for the latent variables with these features. We build the models
hierarchically, following assumptions of conditional independence. Estimation is done using
Markov Chain Monte Carlo (MCMC) to sample from the joint posterior distribution of all
parameters, including the latent variables.

The latent variables are not only substitutes for unavailable but relevant covariate infor-
mation. They also favour the sharing of risk among policyholders characterized by the same
level of such a latent variable. To enhance the mutual and social benefit of insurance, latent
variables collect part of the individual risk of each policyholder in a certain homogeneous
group and distribute it evenly over the same group. When there is no information on how to
assign this risk to individuals, this is likely to be the best strategy.

In this paper we concentrate on regional latent variables and assume smoothing priors for
them. Regionally differentiated pricing, sometimes called geopricing, has been addressed by
Boskov & Verrall (1994) and Taylor (1989), amongst other. Geopricing is easily carried out
within the framework we present.

The final aim of this paper is to demonstrate that spatially interacting latent variables
are useful for risk premium estimation. This is shown in a simulation example where we
investigate the possibility of recovering missing covariates by means of spatially interacting
latent variables. The methodology is not only useful to price the risk premium of a policy
but also in order to predict the total payouts of a large portfolio, which in turn is useful to
take decisions on reserves and reinsurance. Our simulation study shows that latent variables



are useful for recovering missing covariates as prediction of single claims is improved when
latent variables are included in the fitted model. However, for predicting the total payouts,
there seems to be no significant advantage in introducing complex MRF interaction.

The paper is organized as follows. In Section 2 we describe the basic GLMs for claim
frequency and claim size. We use the standard assumptions that the number of claims follows
a Poisson distribution and that, conditional on the number of claims, the claim size follows
a Gamma distribution. Also in Section 2 we describe the current practice of risk premium
estimation. In Section 3 we describe the class of hierarchical GLMs with latent variables and
prepare for Bayesian inference by describing prior models for parameters and latent variables.
We then derive the posterior distributions on which inference is based. In Section 4 and 5
we describe the MCMC procedure adopted for inference and risk premium estimation. Here
we show how credibility intervals for risk premiums can be computed and discuss various
point estimates. In Section 6 we explain how we shall compare different models given new
validation data. Section 7 contains the simulation experiment. Even if the data are fictitious,
we have tried to make this a realistic example. In the simulated data about 12% of the policies
have claims over a two year period of exposure. Our results indicate that MRF interaction
among latent covariates can give significant benefits. In Section 8 we apply our methods
to a small data set of policies on theft from private cars over a one year period. These
data, together with a second independent dataset used for validation, are provided by the
Norwegian insurance company Gjensidige Forsikring. The data are not easy to analyse as the
claim frequency is very small (0.7% of the polices have claims). In this example hierarchical
GLMs perform well. The average error per exposure year of the estimated premiums is
between 17 and 21 NOK. However, it is not clear if structured MRF interaction among latent
variables significantly improves rating performance. Section 9 ends the paper with a short
conclusion. The appendix contains details of the MCMC implementation.

2 Models and Established Practice

2.1 Baseline GLM

We consider a portfolio of I insurance policies. For each policy i = 1,..., 1, the number of
claims N; and the average claim size S; are recorded for an exposure time e;. In addition
covariates x; characterizing the insured risk and policyholder are available. (Boldface is
used to indicate vector-valued variables and all vectors are assumed to be column vectors.)
The covariates may be continuous or categorical for describing qualitative factors. Since
qualitative factors may be rewritten as zero-one variables we will not distinguish between
these two types of covariates in our notation. Interaction terms among covariates (McCullagh
& Nelder 1989, pp. 53, 58) can of course also be included.

GLMs extend classical regression by allowing: (i) the response variable to follow any
distribution in the one-parameter exponential family; (ii) the additivity of the explanatory
variables to occur on a monotone transformation of the mean, rather than the mean itself.
Denoting by Y the response variable with mean p, the density of Y is on the form f(y; 6, ¢) =
exp{(y0 — b(0))/a(¢) — c(y, $)}, where 0 and ¢ are the canonical and dispersion parameters
and a(-),b(-) and c(-) are known functions. The mean y is such that n = g(u) = B'x. The
linear predictor 7 is a linear combination of the explanatory variables x with parameters 3
and is related to the mean by the monotone link function g(-).

We follow a traditional approach in the actuarial literature and assume that the number
of claims N; for policy ¢ is Poisson distributed with individual intensity \; and expectation



i = e;\;, taking account of the exposure time e;. The single claim sizes S;p, k = 1,..., N;, are
assumed to be independent and Gamma distributed with expectation &; and index parameter
v. In this paper we use the parameterization of the Gamma density given in McCullagh &
Nelder (1989, p. 287). Hence, the average claim size S; = ZkN;1 Sik/Ni, k=1,..., N; follows
conditionally on N; a Gamma distribution with the same expectation §;. Given the parameter
values, N;, ¢ = 1,...,I are assumed to be conditionally independent. Similarly for S; given
N;. Summarizing we write

N; ~ Poisson(e;\;) and S;|N; ~ Gamma(&;,vN;) i=1,...,1. (1)

Information on the policyholder and region is incorporated through covariates that influence
the claim frequency and size through the intensity A; and the expectation &; respectively.
The number and type of covariates for the frequency and size component need not be the
same. Typically some covariates are shared but most are unique. We make this explicit
in notation by letting x; be the collection {x,x7} of the covariates x/" and x{ thought
to influence the claim frequency and size respectively. The covariates enter via the linear
predictors nf’ = o'x!" and niS = ﬂ'xf . For both the claim frequency and size model we
choose a log-link as this provides multiplicative models with \; = exp(nf") and ¢; = exp(nf ).
For the Poisson model the exposure time enters as an offset since log(E(N;)) = log(e;) + n;.
Multiplicative models are easy to interpret and use. Alternatively, additive models could be
chosen. However, for the Poisson model, an additive model can give rise to negative fitted
values of );. Brockman & Wright (1992) argue that multiplicative models produce a more
reasonable differentiation between policies.

By introducing a dummy unity covariate for all individuals so that nZF = agp + a’xf

(similarly for claim size) a risk parameter ag shared by all individuals is introduced. If the
policies are located on J geographical regions, regional specific intercepts are modeled by
introducing J dummy zero-one variables for regional belonging so that nf = ap) + a’xf ,
where R(7) denotes the region where policy ¢ is located. More generally, R(7) might indicate
a group to which policy ¢ belongs.

A few comments on the Poisson/Gamma assumptions are due. There are claim types
for which the Poisson/Gamma model might not be well suited. As an example consider fire
insurance of major industrial sites. Large fires are very rare but once they occur, losses
are huge. A more reasonable model for claim frequency might be the binomial distribution,
while claim sizes typically have a heavy tail and should be modeled using an extreme value
distribution.

GLMs have been considered for application to insurance by several authors. McCullagh &
Nelder (1989, pp. 204-208; 296-300) apply a Poisson model with log link to marine insurance
data on the damages to certain cargo carrying vessels from the Lloyd’s Register of Shipping
and a Gamma claim size distribution with reciprocal link function to the car insurance data
of Baxter et al. (1980). Renshaw (1994) presents several GLMs for modeling the claim
number and size in the presence of covariates. Particular attention is given to the Poisson
and Gamma/Pareto distribution, and questions regarding the choice of link function and use
of quasi likelihood are discussed. Haberman & Renshaw (1996) review applications of GLMs
to actuarial problems including survival modeling, multistate models for health insurance and
non-life premium rating and reserves calculations. The baseline GLM in the present paper is
among the models considered for premium rating.



2.2 Inference and Premium Estimation

The risk premium is defined as p; = e;\;&; for a policy ¢. In the simple setting of Section 2.1
it holds that p; = E(ZkN;l Sik) = E(N;)E(S;|N;) where Six, k = 1,..., N; are single claim
sizes. We call the total payout P; = Zﬁ;l Sik.

In standard GLMs the parameters of the claim frequency and size models are estimated by
iterative maximum likelihood. A classical algorithm for this is Fisher scoring, see McCullagh
& Nelder (1989, Section 2.5). The standard point estimate of the risk premium for an insured
risk with covariates {x",x?} and exposure e; is

~ ~ A~ ~ ~/
pi = eihibi = e;exp(@'x] + Bx5), (2)

where a and B are the parameter estimates. Notice that an estimate of the parameter v is
not needed to compute this point estimate of the premium. However, it is needed to describe
the full distribution of the claim size and total payouts.

Classical maximum likelihood theory allows the creation of confidence intervals around
(2), as described in Brockman & Wright (1992, Appendix G). Basically, it can be shown that
a and ﬁ are asymptotically uncorrelated as I — 0o, and as they are asymptotically normally
distributed, also independent. Since z; and @ are functions of & and E respectively, they are
also asymptotically independent. Moreover, i, EZ and p; are ‘asymptotically lognormal. Hence
Var(p;) = Var(1;&;) = Var(f;)€2 + Var(&;)u2 + Var(fi;) Var(&;) is estimated by plugging in i;
and Zz for u; and &; respectively and by estimating variances of the lognormal distributions.
Confidence intervals are computed from the fitted lognormal distribution. Model bias and
plug-ins introduce errors that are difficult to assess.

A traditional actuarial tool in premium rating is tables of rating factors. In our mul-
tiplicative models, the estimated rating factor for one level of a covariate, say x,, is the
exponent of the corresponding term in the estimated linear predictor, i.e. exp(@,z,). Once
the claim frequency and size model are fitted, rating factors for both components of the
premium are obtained. As seen in (2) the estimated premium for a policy is the product of
the corresponding rating factors in the frequency and size model corrected by exposure time.
Later, in Table 8, we derive rating factors for our theft from car data.

3 Models with Latent Structure

3.1 Hierarchical Generalized Linear Models

Lee & Nelder (1996) define hierarchical GLMs (HGLM) as GLMs where the linear predictor
is allowed to have one or more random components in addition to the usual fixed effect
B'x, so that n = g(u) = B'x + u, where u is an unobserved random effect that we call
latent variable. The Generalized Linear Mixed Model (GLMM) is a HGLM with a normally
distributed random effect u. Interaction between fixed and random effects is discussed by
Clayton (1996, pp. 289-291) who notes that an interaction term which contain factors that
are random effects must itself be a random effect.

Let ”yg(i) be a random effect in the frequency model assigned to each policy 7 belonging to
group R(7). Such latent variables correspond to unmeasured covariates that are either group
specific or associated with the policyholder but merely measured through an average effect
in the group. In the examples we consider R(:) will be the region where policy ¢ is located.
More generally it may be any other criteria useful for grouping policies homogeneously. We
distinguish latent variables in the frequency model from those in the claim size model, and



denote the latter by 71%(;‘)' Observe that two different grouping criteria could be used for the
two models. The linear predictors now take the form

n = a'xf+'y£(i) and 7} =31X2g+’71%(i)7 (3)
where R(7) € {1,...,J}. Naturally, the models may be extended to include latent variables
for several different grouping criteria.

The inclusion of latent variables in the model is motivated by the following commonly
encountered and related problems:

(i) Unmeasured covariates: A common issue is missing information in the form of unre-
ported covariates. A company may fail to collect information on important risk factors
because these relate to questions that cannot be asked, or to answers that are unreliable.
Furthermore, specific risk factors may be unknown.

(ii) Owerdispersion: As a consequence of lack of covariate information, GLMs do not explain
variability in full. Including latent variables in the model amounts to introducing extra
degrees of freedom and can lead to a better fit.

(iii) Risk sharing: Latent variables enable risk to be distributed among all policies belonging
to the same group, thus making prices more uniform.

Random effects have been considered in actuarial sciences before. Nelder & Verrall (1997)
show how credibility theory may be encompassed within the theory of HGLMs. Tomberlin
(1988) uses random effects to estimate accident frequencies for motor vehicles. Premium
rating by geographical area has previously been done by Taylor (1989) and Boskov & Verrall
(1994) and applied to the same dataset on Household Contents in Sydney. In Taylor (1989)
rating is performed by fitting two-dimensional spline functions, while Boskov & Verrall (1994)
use a Bayesian approach and Gibbs sampling to fit a geographically smoothing model. In
these latter two papers, data are preprocessed to remove all risk components other than
the spatial ones, a difficult and non-optimal approach as all risk factors should be fitted
simultaneously. Also, loss-ratios are fitted and there is no separate model for claim frequency
and size. Indeed, Boskov & Verrall (1994) state that such analysis would be preferable.

3.2 Prior Distributions for Latent Variables

A fundamental part of Bayesian inference is the design of appropriate prior distributions for
the unknown parameters. We consider two models for regional latent variables. The first
model is a GLMM with conditionally independent regional latent variables specified by

'y;|ur,03 ~ N(py,02),j=1,...,J, r=ForS.
pr ~ N(ar,07) (4)

1/0?% ~ Gammal(c,, d,),

for region j = 1,...,J and where N(-,-) indicates the normal distribution. The hyperpa-
rameters a,, b, c, and d, are given suitable values, chosen in such a way that if no further
information is available, corresponding priors are quite flat. It is also possible to color this
level in the hierarchy by assigning distributions to a,, b, ¢, and d,.

The second model we consider for the latent variables is a Markov random field (MRF),
see for example Besag et al. (1991). For this purpose, we need to introduce a neighbourhood



structure for the regions. For each region j let §; denote its neighbouring regions, not in-
cluding j itself. For instance, regions are neighbours if they share the same border or if they
are within a certain distance of each other. A MRF prior model describing belief in spatially
smooth latent variables has a density of the form

Y~y cexp{=3 > D (4 =)} r=F or S. (5)

Jj ke&d;

The interaction or smoothing parameter x determines the degree of spatial smoothing: the
larger x the more smoothness. With k = oo all the latent variables are a posteriori equal and
with k = 0 they are a priori independent. These two models are equal to GLMs with one
common intercept and J regional specific intercepts respectively. If indeed the unmeasured
covariates exhibit a smooth spatial pattern, a model like (5) can give a better fit. It explains
correlated residuals best and often allows for interesting interpretations. Observe that differ-
ent neighborhood systems and smoothing parameter x could be used for the frequency and
size model. Pairwise interactions, like in (5) are often enough, although more complex MRFs
can easily be introduced, see for example Tjelmeland & Besag (1998).

The MRF density (5) is in fact improper, but this is not a problem because the posterior
that is used for estimation is proper. An important property of (5) is that, while it induces
spatial homogeneity of the latent variables, it leaves the overall level undecided.

Mollié (1996) remarks that the regularity/irregularity of the topology is important when
choosing a smoothing spatial prior. For very irregular topologies where some regions have
many neighbours and others very few, it may be necessary to assign different smoothing
parameters to regions with different numbers of neighbours, for example taking x; = k/n;
where n; is the number of neighbours of region j.

We shall not estimate  in this paper, but perform a sensitivity analysis. To estimate s
is a difficult task, similar to the choice of smoothing parameter in nonparametric statistics.
There are several methods, including cross validation, which allows to assess an appropriate
value for k, see Wand & Jones (1995), Fan & Gijbels (1996). A discussion of these methods
goes beyond the scope of this paper.

Other possible models for latent variables include the conditional autoregressive (CAR)
model, see Carlin & Louis (1996, pp. 263) and modeling sources of risk at unknown geograph-
ical locations with latent Gamma fields, see Wolpert & Ickstadt (1998).

3.3 Posterior Distribution

The posterior distribution is the tool for inference within the Bayesian framework. In our case
we need the posterior distribution of the parameters and latent variables which is conditioned
on the observed claim numbers and claim sizes. The posterior distribution fully describes
the uncertainty associated with the parameters and latent variables. To obtain posterior
estimates for the parameters of interest we shall compute their marginal posterior means
(MPM). The joint posterior density for the model specified by (1) and (3) and latent variables
with prior 7(y) and 7(~°) as in (5) is by conditional independence

m(a, B,7F, %, v|N, 8) x n(N|a,y")n(S|N, 8,7, v)a(vF)w (v°)m(a)w(B)7(v) (6)

where

I

m(Nla,vF) o eXP{Z[—ei exp(ax] + vﬁ(i)) + Ni(o/x{ + ’Yg(i))]}
i=1



and

I
w(SIN,B,7°,v) oc exp{) _[~log (v N;) + (vNi) (log(vNs) — (B} + 7))
=1
+ (vN; — 1) log S; — (vN;Si)/ exp(B'%] + 7)1}

The factors m(a), 7(8) and 7(v) are assigned prior densities. We will use flat priors for a, 3
and v in the applications of Sections 7 and 8.

Let 6 = (ur,ps,o0r,0s,ar,as,br,bs, cr,cs,dr,ds) be the collection of hyperparameters
in (4). Assuming a,,br,c,,d, for r = F, S to be fixed, we have by conditional independence
in (4) that 7(8) = mi(urlar,bp)m2(1/0%|cr, dr)m (us|as, bs)m2(1/0%|cs, ds) where 71 and
72 are the normal and Gamma density respectively. Furthermore, we have 7(yF |ur,0%) =
H‘jjzl T ('yJF \ur,o%) and similarly for m(v5|ug,0%). The posterior for the model specified by
(1), (3) and (4) is then given by

m(a, B,7F,75,v,8|N, S) « 7(N|a,vF)r(S|N, 8,75, v)n(vF|ur, oF) 7 (v°|us, 0F)
x m(a)mw(B)m(v)n(d). (7)

For, say fyf , the marginal posterior mean (MPM) is given by E(’yJF |IN') where a has been
integrated out. Given the posterior distribution it is possible to define marginal posterior
credibility 100(1 — )% intervals for each parameter or latent variable as the interval given
by the lower and upper «/2 points of the corresponding marginal posterior. Joint posterior
credibility intervals may also be of interest.

4 Markov Chain Monte Carlo Inference

4.1 The Metropolis-Hastings Algorithm

For a HGLM, estimation can no longer be done by iterative maximum likelihood with Fisher
scoring. A complex structure for the latent variables in the model specified by (1) and (3),
like the MRF prior (5), requires the use of Markov Chain Monte Carlo (MCMC) algorithms to
compute MPM estimates. For the GLMM with prior (4), Breslow & Clayton (1993) propose
two maximum likelihood based algorithms to do inference, but MCMC, is usually a good
alternative. For all the models we consider, Bayesian inference can be done via MCMC. We
shall do so even if Fisher scoring could be used when the latent variables follow prior (5) with
k=0or Kk =00.

It is not the purpose of this paper to explain MCMC. For a review of MCMC methods see
Gilks et al. (1996). Applied to our setting, the idea of MCMC is to run an ergodic Markov
chain which has as stationary distribution the posterior distribution (6) or (7) on the full
parameter space (including the latent variables). Starting from arbitrary initial parameter
values and latent variables, the chain is run until it is believed to have reached equilibrium.
Convergence of the chain can be assessed using a variety of diagnostics, see Brooks & Roberts
(1999) for reviews. Thereafter, the chain produces a sequence of dependent samples from the
posterior distribution.

We have chosen to use a single-component Metropolis-Hastings algorithm in which one
parameter or latent variable is updated at a time. A new value for the selected parameter or
latent variable is sampled from a proposal distribution and accepted with a certain probability
that guarantees ergodicity. In this paper, one step in the MCMC algorithm includes an update



of all the parameters and latent variables. Since the full posterior (6) is the product of the two
posterior components 7(N |a, Y¥) 7 (vF)7(a) and 7(S|N, 8,75, v)n(v%)n(B) for the claim
frequency and size respectively, we may run two separate MCMC chains. Similarly for the
posterior (7). This is computationally convenient since the two algorithms may then be run
in parallel. A full account of the algorithm and expressions for acceptance probabilities are
given in the appendix.

4.2 Inference

A crucial advantage of using MCMC is that it allows to approximate by sampling the full pos-
terior distribution. Hence, finding credibility intervals requires no more effort than obtaining
point estimates.

Assume that the Metropolis-Hastings algorithm has converged after T steps and that
it is then run for an additional T steps to obtain 1" dependent samples from the posterior
distribution. Marginal posterior means (MPM) are estimated by empirical sample means

®)

along the sampled MCMC trajectories. For instance, let 'yf be the sampled value for the

latent variable ’yf in the t-th MCMC step. By the law of large numbers for Markov chains

To+T

~ 1 F(t )
=L 30, o1 ®)
t=Tp+1

approximates E(nyF |IN') for T large enough. Similarly for all other parameters. An estimate

of the posterior variance Var('yf |IN') is the empirical variance along the sampled trajectory,
i.e.

To+T
VarfIN) & & > (O -5
ar(9; N ; ;)%
t=To+1

Through the sampled trajectory 7f(t) ,t=Tp+1,...,T9+ T, we can estimate the marginal

posterior density of 'yf given IN by the empirical density. Credibility intervals are created by

taking lower and upper a/2 points ’yE(a/z) and ’yf(l_aﬂ) of the MCMC trajectory so that

('yf(a/ 2), 'yf(l_a/ 2)) describes the posterior variability of 'yf at the specified 1 — a level. The

parameters and latent variables are not only interesting per se. For instance, the expected
posterior claim intensity E(\;|IN) = E(exp(n/ )|IN) for policy i can be easily approximated
by

1 To+T To+T

1
7 2 e ) =5 Y exp((@)x] +g)

t=To+1 t=To+1

taken along the MCMC trajectory. The marginal posterior density of the claim intensity
A; given IN incorporates all uncertainty, is easy to approximate and can be plotted. The
posterior mean E()\;|IV) should be contrasted to exp{E(nf|IN)} for which a natural estimate

. . ~ ~ ~ To+T ~ To+T F(t

is the plug-in exp(a'xl + ’yg(i)), where & = Eti}(ﬁl oW /T and 'yg(i) = ZtiJTr0+1 PYR((i))/T'
By Jensen’s inequality E(exp(nf)|IN) > exp{E(n{|IN)}. Table 1 summarizes quantities of
interest and the corresponding estimates based on MCMC for both the claim frequency and

size model.



posterior moment MCMC samples estimate
F E(ar|N) {a;z)} ar =3, a;t(i )/T
E(y; |N) {7y . A =3 T
t t ~ t
eiB{exp(e’x] + 7)) IN} | {i} = {es exp((@®)'x] + 755} it =y, ul/T
ei exp{E(a’x] + 7}1;(1') [N)} B = eiexp(@'x] + /’95(1'))
S E(8,|S,N B B =3, 8T
(8-|S,N) { Sr(t)} r=2 ;(t)/
E(v{|S,N) t {7} » ﬁi: >, % /T
E{exp(8'x{ +75;))|S, N} {0} = {exp((BY)'x§ + 153} &=,
~1 ~
exp{E(B'x] + 775 |S, N)} & = exp(B x5 + Yae))
P E(pi| N, 8) (o7} = {u{"e} =0T
e;exp{E(n{"|N) + E(n7|S,N)} | {a®},{BD},{r"®},{y°"} pi = piE;

Table 1: Summary of the estimation and simulation procedure for the frequency (F), size (S)
and risk premium (P) components. The indez of t runs over T steps in the MCMC sampler
following the burn-in Ty, t.e. t =Ty +1,...,T + 1.

Another level in the hierarchy can be introduced by sampling the posterior number of
claims for policy ¢ from a Poisson distribution with stochastic expectation u;. This is done by
sampling in step ¢ a number Ni(t) from a Poisson distribution with expectation ,ul(t) (see Table
1). Sampling claim sizes is done conditionally on the sampled claim numbers being non-zero

and also involves the index parameter v. Hence, Si(t) is sampled from Gamma(ggt), Ni(t)y(t))
if Ni(t) > 0, otherwise the claim size is zero. This introduces a further level of variability.
While perhaps important in practice, for the purpose of this paper we shall not pursue this

any further.

5 Price Predictions with MCMC

The risk premium p; = e & = e; exp(nf + 7715 ) has a posterior marginal distribution
that describes the variability in full. The MCMC algorithm generates samples from the
posterior density of p; given N and S of the form pgt) = ,é“gf“ = e;exp((a®)xF +
'yg((:)) )exp((BY)x5 + 715;8), see Table 1. Estimates of posterior variance and credibility
intervals are then constructed as described in Section 4.2. In the right column of Figure 7
we display such posterior densities and credibility intervals for some selected policies. We
shall return to Figure 7 in Section 8. Here we only notice that the posterior marginal density
visually describes the uncertainty around a risk premium prediction. We synthesize infor-
mation in the posterior distribution through the posterior expectation E(p;|IN,S) which is

estimated consistently as T — oo by p; = EtTST'OTH ﬁgt) /T. A natural alternative quantity of

interest is e; exp{E(nf|N) + E(n?|S, N)}, estimated consistently as T — oo by p? = ﬁfé?,
where we plug posterior estimates of all parameters into (3) before taking exponents. The
reason why we also keep track of these estimates, is that they become equal to (2) since for
k = 0 and Kk = oo the hierarchical model reduces to standard GLM as we take flat priors on
a and 8. As I — oo this is also true if the priors were informative. By Jensen’s inequality
E(pi| N, S) > e; exp{E(nf|N)+E(n7|S, N)} which implies that p} gives a more conservative
estimate of the risk premium. Table 1 gives an overview of posterior moments of interest and
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estimators based on the MCMC simulations.

Both the suggested premium estimators are easily implemented in an automated pricing
routine. To find p}, the trajectories {a®}, {8V}, {yF®} and {5}, t = Ty+1,..., To+T
are needed. These may be generated by running MCMC for each new pricing or a fixed
sample may be stored. For p?, only the point estimates @, B,"YF and 5° need to be stored.
In both cases risk premium estimates are obtained by straightforward matrix operations.

As indicated at the end of Section 4.2, a further step in the hierarchy involves sampling
the actual posterior number of claims and claim sizes. In MCMC step ¢, the sampled total
claim for a policy ¢ with one or more claims is P(t) N, (t)S( ), otherwise it is P( ) = 0. The

sampling induces an extra level of variability, even if MPM estimates of the type », Pi( ) /T
will be approximately as ﬁzl

6 Validation on Test Data

Models may be compared and validated on an independent test dataset in terms of their
predictive power. In our setting there are three components of interest, the claim frequency,
the claim size, and the sum of claims for each policy over the exposure period. Assume that
the validation dataset contains M policies with the same covariates as the dataset used for
estimation and information on the number of occurred claims and claim sizes. For policy 4
in the validation dataset let 6; be the quantity of interest, that is, either the claim frequency
N;, the claim size S; or the total payout P;. For 6; = N; possible estimates are ﬁzl and ,ﬂf
Similarly, El and ? estimate §; = S;. For 6; = P; possible estimates are p; and p?. See
again Table 1. Denote in general the observed and estimated quantities of interest as 6; and
8;, i =1,..., M respectively. We define the total error TE? = Zf\f 1(6; — — 6 ;) and decompose
it according to the sign of the error as

M M
TE’ = Z(oz - @)I(ei > (9\1) + Z(ez - @)I(Qi < @) =TES + TE?. (9)
i=1 i=1

The subscripts u and o are used to distinguish the contributions from under- and over-
estimation respectively. Because claim size is modeled conditional on the number of claims
being at least one, the sum should be over policies with observed claims only when 6; = S;.
We are interested in the total error in claim size for the occurred claims and as the majority
of the policies have no claims, the contribution from these would dominate the total error if
included in the sum. To estimate the uncertainty of the total error we find

M
TEe(t):Z(ei_é\(t)), t:T0+17...,T0+T,

1
i=1

with 0?) denoting the t-th MCMC iterate of the quantity of interest and use as credibility
limits the appropriate empirical posterior percentiles.

The predicted total claim is important to determine company reserves. We shall compare
models in terms of their total error. Naturally, a small total error is to be preferred. However,
two models might have the same total error, but the absolute values of the under- and
over-estimation terms in (9) may differ significantly. Of course, the model with smallest
contributing errors allows for improved pricing.
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7 Simulation Experiment

The aim of this simulation experiment is to explore to what degree models with interacting
regional latent variables are able to capture the effects of unmeasured covariates. If so, such
models should be preferred to GLMs. Our approach is to generate a simulated portfolio
of 5 000 policies with different types of covariates and claims. The models specified by (1)
and (3) with priors (4) or (5) are fitted, using the simulated covariates with the exception
of some selected ones that are substituted by the latent variables. We compare the various
models in terms of their ability to predict the number of claims of a second independent set of
simulated policies with the same covariates. Only the frequency component of the premium
is considered in this section and hence all superscripts F' or S are omitted.

7.1 Description of the Simulated Data

The simulated polices are located in Norway which has 19 administrative regions. The port-
folio was distributed randomly to these 19 counties proportionally to the population census.
Each policy has a random uniform exposure between 1 and 24 months. The covariates x; of
policy 7 located in region R(i) are as follows:

URBANIZATION:  Zp(;) 1 = log(inhabitants per km? of region R(i))
CRIME RATE: Zpg(;) = number of crimes per 1 000 inhabitants in region R(i)
POLICYHOLDER’S INCOME: x;3 = I{high} ;4 = I{average} x;5 = I{low}
POLICYHOLDER’S SEX: ;s = I{female} ;7 = I{male}.

Here I(-) is the indicator function so that for instance z;3 = 1 if the policyholder’s income
is categorized as “high” and zero otherwise. For each policy located in region j =1,...,19
the income is sampled from a Gamma distribution with expectation equal to the average
individual net income in region j and standard deviation equal to the difference between the
maximum and minimum average income of the 19 regions. This results in a high variability in
the sampled incomes. The income is classified as “low” if it is smaller than the 1st empirical
quantile of the sampled incomes, “high” if it is larger than the 3rd quantile, and “average”
otherwise. The sex of the policyholders is sampled according to the census proportions of
women and men in the counties. All data are from Statistics Norway for the years 1997/1998.
Because we want our simulation example to mimic smoothly varying regional covariates, the
urbanization and crime rate of the capital Oslo (county 19) are adjusted to be the average of
the three more rural counties sharing the same border. The linear predictor for each policy
is constructed as 7; = ap + a'x; with ap = —2.5 as a common intercept for all the policies
and ' = (0.1,0.005,—0.7,—0.1,0,—0.2,0). The two zero parameter values imply that males
with low income are taken as reference level. Finally the number of claims for each policy is
generated by sampling N; ~ Poisson(e; exp(n;)), ¢ =1,...,5000 independently.

The parameter values are chosen to give reasonable differences between the policyholders
and covariates groups with the highest and lowest claim frequency, as well as a reasonable
percentage of claims in the portfolio. The data are summarized in Table 2. Figure 1 shows
the spatial distribution of the urbanization (before taking the logarithm) and the crime rate,
as well as the location of the counties.
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characteristic value
number of policies 5000
number of policies with claims 601 (12.02%)
claims 0 1 2 3 4 5
distribution of claims count | 4399 550 43 6 1 1
% 87.98 11.0 0.86 0.12 0.02 0.02
male vs. female 1.22
low income vs. high income 2.01
low income vs. average income 1.10
average income vs. high income 1.82
region with highest vs. lowest frequency 1.83
policy with highest vs. lowest frequency 4.51

Table 2: Summary of the simulated portfolio. The lower part of the table shows ratios between
the expected number of claims, according to the model used to create the data, for policies
that have all covariates equal except for the indicated ones.

POPULATION DENSITY CRIME

Figure 1: The regional information used to create the urbanization and crime rate covariates.
The left panel shows the population density of the counties of Norway and the right panel shows
the number of reported crimes per 1000 inhabitants. Dark color indicates high density/number
and the solid lines show the county borders.
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Figure 2: The left panel shows the risk factors exp(0.1zg(;) 1) and exp(0.005xg(;)2) asso-
ciated with the urbanization (upper panel) and crime rate (lower panel) covariates for each
region. The right panel shows the spatial distribution of the income covariate. The bars in
the histograms are (left to right) the number of individuals with income characterized as high,
average or low. The number under each histogram is the region number.

Figure 2 shows risk factors due to the urbanization and crime rate covariates, exp(0.1z R(,-)’l)
and exp(0.005z R(i),2) respectively, and the spatial distribution of the income covariate. The
region numbers are also shown in the figure. Observe that the categorical income covariate
seems to be distributed quite homogeneously over the country. In fact, the common intercept
ap and the terms in the linear predictor 7; involving the income variables, can be substituted
by a regional specific parameter. This parameter then measures the average effect of the
policyholders’ income in a region. A calculation shows these regional specific parameters to
be in the range —2.59 to —2.53 with a standard deviation of 0.04 when disregarding region
19 (with value —2.72).

7.2 Description of the Study

We perform two separate experiments. First, the regional covariates urbanization and crime
rate are not used when fitting the models so that x; = (z;3,. .., z;7). Instead, regional latent
variables 7;, 7 = 1,...,19 are introduced for each region as in (3). In the second experiment,
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the individual income information is discarded instead so that x; = (z R(i),1, T R(i)’2,$i6,.’lﬁi7)
when fitting the models. Again, seeking to replace this missing information, regional la-
tent variables are introduced. We fit latent variables with priors (4) and (5) for a range
of smoothing parameters k including the limit cases kK = 0 and K = oo, which are GLMs.
Regions are neighbours if they share the same border. The study shows that models with
interacting regional latent variables (5) give better results in terms of predictive power only
when the missing covariates exhibit a relatively smooth spatial pattern. This shows that the
prior distribution for the latent variables should represent the correlation structure among
the unmeasured covariates. Of course, it is difficult obtain such knowledge, but a good guess
can help model building.

The predictive abilities of the fitted models applied to validation data are compared in
terms of the total error as described in Section 6. We create a validation dataset by generating
a new independent portfolio in the same way as was done for the estimation dataset, with all
covariates X; = (Tg(;)1,---,Zi7)- In the notation of Section 6 we take as quantity of interest
0; = u;, the expected number of claims for policy ¢. Since the purpose of this experiment
is model comparison, we use u; instead of N; to avoid measuring the effects of the Poisson
variation associated with the number of claims which might blur the model comparison. Then
é\i can be chosen as ZIZl or ZZZQ, see Table 1. The results are similar. Here we report ,TIZZ, showing
that even in the more standard setting of using plug-in estimates, interacting latent variables
is useful. In order to quantify the uncertainty in the estimated errors due to variability in
the simulated data, we repeat the procedure on 1000 independently generated test datasets,
always using the same fitted model to predict the claims. Over the 1000 repetitions we obtain
the average total error and confidence intervals for the total error.

As starting values for the parameters in the MCMC algorithm, we use the corresponding
true values a and for the latent variables we use the common intercept ag. Also, in the
GLMM (4) «y is used as starting value for y and 10 is used for 02. The hyperparameters
a, b, c and d are fixed to ag, 10, 0.001 and 0.001 respectively. For both simulation experiments,
all estimates are based on 100 000 MCMC iterations, following a burn-in of 50 000 iterations.
For all our models this is more than sufficient since results indicate that convergence is
obtained after 5 000 — 10 000 iterations, depending on the model.

7.3 Results

Table 3 shows the average total errors over the 1000 repetitions for the two simulation exper-
iments. In the first experiment, where regional latent variables are used to replace discarded
urbanization and crime rate covariates, models with a high (but not infinite) smoothing have
the best predictive power. Values of « in the range 30 to 60 reduces the contributions to the
total error from under- and over-estimation. Confidence intervals (not displayed in the table)
for TE), at level 95% for models with £ = {30,40,50} are (35,37), which is significantly better
than all other models, except from models with k = {20, 60}, where significance is not reached
at that level. Looking at confidence intervals for TES, the best smoothing parameter values
are k = {20,30}, with confidence intervals (23,26). At 95% level these are not significantly
different from the models with x = {6, 8, 10,40, 50,60}, but significantly better than the rest
of the models. Comparing the model with k = 30 to the GLMs (i.e. kK = {0, 00}), the error
in under- and over-estimation, is reduced by more than 50%. This shows that interacting
latent variables can be very useful. In this comparison the results from fitting the true model
using all covariates, that is the one used to generate data, are used as reference. For the total
error TE* the differences between models are not significant. Hence, for reserve calculations

15



true smoothing parameter x
model | 0O 2 4 6 8 10 20 30 40 50 60 oo | GLMM
experiment 1
TE}, 21 54 48 45 42 41 39 37 36 36 36 36 52 46
TEL 15 38 33 30 28 27 26 24 24 25 26 26 38 32
TEH 6 6 15 14 14 13 13 12 12 11 10 10 14 14
experiment 2
TE, 21 93 89 87 8 86 8 83 82 82 82 82 73 90
TEh 15 6 T4 73 72 71 71 69 68 67 67 66 67 73
TEH 6 16 15 15 14 14 14 14 14 14 15 16 6 17

Table 3: Total errors for different fitted models with regional latent variables to replace dis-
carded urbanization and crime rate covariates (experiment 1) and individual income (experi-
ment 2). The first column shows the results obtained by fitting the model from which the data
are generated, including all the covariates. Columns 3-14 show the result for varying values
of the smoothing parameter k in (5). The right column shows the results for the GLMM (4).
All the total errors are averages over prediction on 1 000 independently generated validation
datasets. One would expect a total error of zero for the true model. The resulting value of 6
is due to the average number of claims for the 1 000 validation datasets being 669, whereas
the number of claims in the estimation dataset equals 663.

introducing interacting latent variables might be less important.

In the second experiment, conducted as the first but with latent variables to replace
discarded individual income information, the model with x = oo is significantly better than
all the other models. This is not surprising considering the argument of Section 7.1 where
we show that the income covariate is distributed homogeneously over the country. Hence, as
we exclude a covariate with no differentiated spatial trend, introducing regional interacting
latent variables does not improve predictions with respect to a single common latent intercept.
Notice that the GLMM does not compare favourably with the other models.

8 Norwegian Theft from Car Data

8.1 Description of the Data

We study a dataset of 19 840 policies on theft from cars. The dataset originates from a
random sample of 20 000 policies from the 1998 database of the Norwegian insurance company
Gjensidige Forsikring. An initial removal of records with missing or invalid data produces
the final estimation dataset. An independent validation dataset is created and screened in
the same way, leaving 19 844 records.

The two datasets are described in Table 8.1. Theft from cars appear to be a quite low
frequent claim type. In the estimation dataset only 0.7% of the policies have claims. The
variability in the claim sizes is quite large with the empirical mean and standard deviation
being of the same magnitude. Also, as seen in Figure 3, the distribution of the claim size is
skewed due to occasional large claims. All claim sizes are given in Norwegian kroner (1 NOK
~ 0.124 USD).
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variable | description estimation data validation data
SN total number of claims 139 159
de; total exposure years 14383 14106
>2S:N; | total claim size (1000 NOK) 1145 1407
mean sd mean sd
N; number of claims per policy 0.007 0.086 0.008 0.093
S; mean claim size (NOK) per claim 8236 8036 8850 7657
EXPO exposure time in years 0.725 0.338 0.711 0.316
AGE age of policyholder 45.2 15.3 444 14.9
CAR AGE | age of car 10.1 6.0 9.8 5.9
MILEAGE | insured kilometers (in 1000 km) 13.5 6.4 14.0 6.8
SEX % female 29.4 29.8
% records % claims | % records % claims
COUNTY | 1. Finnmark 0.52 0.0 0.62 0.0
2. Troms 2.26 0.7 2.15 1.3
3. Nordland 3.77 1.4 3.75 0.6
4. Nord-Trgndelag 4.76 5.0 4.88 4.4
5. Sgr-Trgndelag 7.50 7.9 7.21 7.5
6. Mgre og Romsdal 5.40 0.7 4.90 1.3
7. Sogn og Fjordane 2.48 14 2.42 1.3
8. Hordaland 9.31 7.9 9.45 6.9
9. Rogaland 7.18 6.5 7.48 6.9
10.Vest Agder 1.95 0.7 2.12 3.1
11. Aust Agder 1.99 14 2.19 2.5
12. Telemark 3.33 0.7 3.63 3.8
13. Buskerud 5.89 5.0 5.75 6.9
14. Oppland 7.11 2.9 6.95 6.9
15. Hedemark 7.03 6.5 6.90 1.9
16. Akershus 11.05 14.4 11.44 15.7
17. @Ostfold 6.21 8.6 6.15 6.9
18. Vestfold 4.15 8.6 4.02 4.4
19. Oslo 8.11 194 7.98 17.6

Table 4: Summary of covariates and response variables for the

occurred therein.

Figure 3: Histogram of claim size for the estimation dataset. Only policies with claims are

included.
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The table shows the percentage of policies located in each county and the percentage of claims
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Figure 4:  The plots show (left to right) how the total exposure time, number of claims,
total claim size (in 1000 NOK), claims per year and average claim size (in 1000 NOK) vary
as functions the covariates AGE, CAR AGE, MILEAGE, SEX and COUNTY for the estimation
dataset.

The available covariates are age of policyholder (AGE), age of the car with -1 indicat-
ing a 1999 car model (CAR AGE), maximum allowed mileage measured in 1 000 kilometers
(MILEAGE), sex of the policyholder (SEX) and region where the policy is located (COUNTY).
Figure 4 shows how several important quantities (total exposure in years, number of claims,
sum of claim sizes, number of claims per insured year and average claim size) vary with these
different covariates in the estimation dataset. We let AGE, CAR AGE and MILEAGE enter the
models as continuous covariates. The covariate SEX is coded as a zero-one variable that takes
value 1 for men. Hence, women are used as the reference level in the parameter estimation.

The geographical regions of interest are again the 19 Norwegian administrative counties.
Table 8.1 shows that the portfolio is unevenly distributed over the country, with some counties
being well represented in the dataset and others not. Also, the distribution of the number of
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claim frequency claim size
model AIC model AIC
1 1384 | 1 109
14+AGE 1342 | 1+AGE 104
COUNTY 1368 | COUNTY 124
AGE+COUNTY 1325 | AGE+ CAR AGE2+MILEAGE 102
AGE+CAR AGE+ MILEAGE+ SEX+ COUNTY | 1330 | AGE4+CAR AGE2+ MILEAGE+ SEX | 103

Table 5: AIC values for some frequency and size models.

claims in each county is clearly not proportional to the number of policies therein. There are
counties with very few claims, for which estimation of independent regional effects is difficult.

8.2 Precise Form of the Linear Predictor

As a first step in our analysis we use Generalized Additive Models with a smoothing spline to
determine advantageous transformations of the continuous covariates, see Hastie & Tibshirani
(1990). For the claim frequency model this analysis supports the use of linear terms for all
these covariates, while for claim size a quadratic term should be used for CAR AGE.

We next consider the explanatory power of each covariate. When choosing among several,
possibly nested GLMs, classical methods for model selection like the Akaike information
criterion (AIC) may be applied. For models with latent variables that originate from the
same prior distribution as in (4) or interact as in (5), this criterion is inapplicable because
model dimension is not well defined. As a first step we therefore use the AIC criterion on
the GLMs (k € {0,00}) only. It is reasonable to believe that the effect of the covariates is
similar for the GLMM (4) and for models with interacting latent variables (5). For both
claim frequency and claim size we fit several models, starting with only an intercept term
and adding covariates to see which models give the best fit in terms of smallest AIC. We use
the statistical software S-Plus, see Venables & Ripley (1994, p. 177) in this analysis.

In Table 5 some of the fitted models with their AIC values are reported. For the frequency
model AGE and COUNTY give the smallest AIC. For claim size, a quadratic term for CAR AGE
gives a better fit than a linear term. When including COUNTY the AIC increases considerably
for claim size, which is not surprising since there are regions with very few claims (see Table
8.1). Based on our findings we decide to include all the covariates for both the frequency
and size model as this is what would be done if a larger dataset was available and is close to
optimal.

8.3 Inference

We fit the Poisson and Gamma models (1) with linear predictors (3). For the latent variables
associated with the 19 regions we either use the normal prior (4) or the MRF (5) with
k € {0,0.5,1,2,3,4,8,16,20,00}. With kK = 0 or kK = o0, parameters can be estimated
without the need for MCMC. The parameter estimates obtained by fitting the claim frequency
and size models with one common intercept (k = oo) using Fisher scoring are used as starting
values for the Markov chains. The estimated common intercepts are taken as starting values
for ur and pg, in the GLMM, while 10 is taken as starting value for or and og. Also, ar and
ag are fixed as the estimated common intercepts, while by = bg, cp = cg and dp = dg are
set to 10, 0.001 and 0.001 respectively to make the priors quite flat. A natural starting value
for v is 1 since this corresponds to a model with standard deviation equal to the expectation
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for single claims. MCMC convergence time is monitored by visual inspection of the plots
of the trajectories of the MPM estimates (8) for all parameters and latent variables and by
estimating the integrated autocorrelation time, see Geyer (1992). With k = 0 or kK = o0,
the number of iterations needed to reach equilibrium in the Markov chain can be determined
by comparing the Newton-Raphson estimates with the estimated MPM from MCMC. These
results can be used as guidelines also when fitting models for other values of k. Convergence
is achieved quickly for low values of k and convergence time increases in k. We feel confident
that a burn-in of 20 000 iterations for x € {0,0.5,1,2, 3,4, 00} and the GLMM gives reliable
estimates. We reparameterize the model with Kk = oo to have only one common intercept
(or latent variable) for all the regions, which explains the short convergence time. A burn-in
of 100 000 iterations is needed for x € {8,16,20}. For all the models the MPM estimate is
based on the 10 000 iterations following the burn-in.

8.4 Results

The resulting MPM estimates for a few chosen models are given in Table 6 for claim frequency
and in Table 7 for claim size. As there are no claims in county number 1, an independent
regional claim size effect as needed when k = 0 cannot be estimated. Also, there are 7 other
counties (numbered as 2, 3, 6, 7, 10, 11 and 12) with only one or two claims (see Table 8.1)
for which estimation of independent regional latent variables are associated with a larger
uncertainty. However, as k increases these regions share the information of the neighbouring
regions and the uncertainty is clearly reduced. Figures 5 and 6 show estimates of the marginal
posterior density of the parameters for the frequency model with k = 8 and x = oco. The
posterior densities of the parameters approach normal distributions as « increases. For k zero
or small (no figure), the latent variables in the claim frequency model have a slightly skewed
density with a tail towards smaller (and negative) values for regions with few claims. For
claim size (no figure), the marginal posterior density of the latent variables are skewed towards
larger values for regions with large claims. When the normal approximation to the posterior
marginal distribution is satisfactory, the posterior standard deviation gives an idea of the
dispersion and is given in Tables 6 and 7. For the GLMMSs the posterior normal distributions
in (4) are found to be N(—3.0,0.78) and N(10.17,0.54) for the claim frequency and size
respectively. The possibility to plot posterior marginal densities is particularly important
and useful for the quantities of interest related to the risk premium. Figure 7 shows the
posterior densities of u;, & and of the risk premium p; = p;&; for four different policies. These
policies are selected to show the wide range in the obtained posterior densities. In Figure 7
we use the model with prior (5) with k = 8 for claim frequency and k = oo for claim size.
The covariates (AGE, CAR AGE, MILEAGE, SEX, COUNTY) are for the first of these policies (43,
0, 8, male, 7) and the exposure time is 0.51 years. We notice the peaked marginal posterior
density for the corresponding risk premium. The second policy has 1 year of exposure and
covariates (27, 8, 16, female, 8) and has a more dispersed posterior density, with a longer
right tail. Both these policies have no claims in the exposed period. The two last policies
have one claim each of 4 200 NOK and 16 455 NOK and exposure times of 0.73 and 0.87
years respectively. Their covariates are (29, 13, 8, female, 8) and (24, 5, 14, male, 19). The
posterior density of the risk premium of the third policy is centered at approximately 100
NOK and is relatively peaked, while the posterior density of the last policy is centered at
approximately 370 and is very dispersed. The point estimates ]o\zl for the four policies are 56,
161, 103 and 369 respectively, with 95% credibility intervals (30, 95), (92, 269), (57, 174) and
(208, 600) respectively.
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name k=0 k=28 K =00 GLMM
AGE -0.04 0.01 | -0.04 0.01 | -0.04 0.01 | -0.04 0.01
CAR AGE -0.01 0.02 | -0.02 0.02 | -0.02 0.02 | -0.01 0.02
MILEAGE | 5e-03 0.01 | 1e-03 0.02 | 2e-03 0.01 | 4e-03 0.01
SEX(male) -0.07 0.18 | -0.04 0.19 | -0.08 0.18 | -0.01 0.17
county 1 | -16.83 9.23 | -3.36 0.65 | -2.71 0.39 | -3.34 0.85
2 -4.54 130 | -3.32 0.57 | -2.71 0.39 | -3.51 0.75
-3.97 0.88 | -3.17 0.51 | -2.71 0.39 | -3.50 0.68
-2.72 060 | -2.86 0.49 | -2.71 0.39 | -2.78 0.58
-2.76 0.51 | -2.78 0.46 | -2.71 0.39 | -2.80 0.53
-5.27 1.27 | -2.98 0.47 | -2.71 0.39 | -3.95 0.73
-3.67 090 | -2.83 0.46 | -2.71 0.39 | -3.34 0.68
-3.03 0.50 | -2.80 0.45 | -2.71 0.39 | -3.02 0.51
9 -2.95 0.52 | -2.83 0.46 | -2.71 0.39 | -2.97 0.53
10 -4.14 131 | -291 0.51 | -2.71 0.39 | -3.37 0.74
11 -3.25 086 | -2.85 048 | -2.71 0.39 | -3.12 0.69
12 -4.80 1.28 | -2.77 0.46 | -2.71 0.39 | -3.63 0.73
13 -2.97 0.56 | -2.63 0.44 | -2.71 0.39 | -2.98 0.55
14 -3.76 066 | -2.74 0.44 | -2.71 0.39 | -3.51 0.63
15 -2.89 0.54 | -2.69 0.47 | -2.71 0.39 | -2.90 0.54
16 -2.50 0.46 | -2.49 0.44 | -2.71 0.39 | -2.55 0.49
17 -2.39 0.50 | -2.37 0.48 | -2.71 0.39 | -2.49 0.53
18 -1.94 0.50 | -2.38 0.48 | -2.71 0.39 | -2.11 0.55
19 -1.87 042 | -2.22 044 | -2.71 0.39 | -1.96 0.46

00O~ O ULk W

Table 6: Estimates of the marginal posterior mean (left) and standard deviation (right) for
the spatial smoothing prior (5) with k € {0,8,00} and the GLMM (4) for claim frequency.

name k=0 k=28 K= 00 GLMM
AGE -0.02 0.01 -0.02 0.01 -0.01 0.01 -0.02 0.01
CAR AGE? | -1e-03 1e-03 | -2e-03 1e-03 | -2e-03 1e-03 | -2e-03  1e-03
MILEAGE -0.02 0.02 -0.03 0.02 -0.03 0.01 -0.04 0.01
SEX(male) 0.03 0.16 0.07 0.17 0.09 0.14 0.15 0.02
county 1 NA NA 10.09 0.71 10.14 0.33 10.18 0.67
2 9.59 1.00 10.09 0.62 10.14 0.33 10.00 0.59
9.97 0.72 10.17 0.54 10.14 0.33 10.09 0.55
10.14 0.55 10.30 0.49 10.14 0.33 10.27 0.46
10.26 0.39 10.34 0.43 10.14 0.33 10.28 0.36
11.26 1.09 10.35 0.47 10.14 0.33 10.50 0.53
9.68 0.78 10.24 0.46 10.14 0.33 9.99 0.55
9.74 0.44 10.15 0.43 10.14 0.33 9.94 0.41
9 10.25 0.44 10.24 0.43 10.14 0.33 10.37 0.40
10 10.26 1.10 10.17 0.50 10.14 0.33 10.13 0.60
11 8.76 0.76 10.11 0.48 10.14 0.33 9.73 0.59
12 9.78 1.01 10.19 0.45 10.14 0.33 10.05 0.58
13 10.36 0.47 10.29 0.43 10.14 0.33 10.37 0.41
14 9.81 0.63 10.29 0.45 10.14 0.33 10.08 0.51
15 10.10 0.55 10.32 0.47 10.14 0.33 10.27 0.47
16 10.02 0.42 10.30 0.43 10.14 0.33 10.20 0.38
17 10.20 0.52 10.40 0.51 10.14 0.33 10.35 0.45
18 9.94 0.48 10.20 0.47 10.14 0.33 10.13 0.44
19 10.20 0.44 10.38 0.45 10.14 0.33 10.36 0.40

0 O O W

Table 7: Estimates of the marginal posterior mean (left) and standard deviation (right) for
the spatial smoothing prior (5) with k € {0,8,00} and the GLMM (4) for claim size. In
region 1 there are no claims and an independent regional effect cannot be estimated.
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Figure 5: FEstimated posterior density of the parameters of the claim frequency model for
k = 8. The vertical line shows the MPM estimate.

0.0 04 08 00 04 08 0 20 40 60

0.0 04 08

age

0510 20

car age

05 15 25

b

mileage

-0.06 -0.05 -0.04 -0.03 -0.02

county 2

N

-0

00 04 08

county 3

N

.08 -0.04 0.0 0.04

00 04 08

-0.04 -0.02 0.0 0.02 0.04

county 4

.

00 04 08

-4.0 -3.5 -3.0 -2.5 -2.0 -1.5

county 7

_dill,.

00 04 08

-4.0 -3.5 -3.0 -2.5 -2.0 -1.5

county 8

_dill.

0.0 04 08

-4.0 -3.5 -3.0 -2.5 -2.0 -1.5

county 9

.

00 04 08

-4.0 -3.5 -3.0 -2.5 -2.0 -1.5

county 12

_dill.

00 04 08

-4.0 -3.5 -3.0 -2.5 -2.0 -1.5

county 13

_dill.

0.0 04 08

-4.0 -3.5 -3.0 -2.5 -2.0 -1.5

county 14

.

00 04 08

-4.0 -3.5 -3.0 -2.5 -2.0 -1.5

county 17

-4.0 -3.5 -3.0 -2.5 -2.0 -1.5

county 18

-4.0 -3.5 -3.0 -2.5 -2.0 -1.5

county 19

00 10 20

sex (male)

P

00 04 08

-0.6 -0.2 0.2 0.6

county 5

.

00 04 08

county 1

b

-4.0 -35-3.0 -25 -2.0 -1.5

county 6

N

-4.0 -3.5 -3.0 -2.5 -2.0 -1.5

county 10

.

00 04 08

-4.0 -3.5 -3.0 -2.5 -2.0 -1.5

county 11

_dill,.

-4.0 -3.5 -3.0 -2.5 -2.0 -1.5

county 15

<

00 04 08

-4.0 -3.5 -3.0 -2.5 -2.0 -1.5

county 16

_lll,

-4.0 -3.5 -3.0 -2.5 -2.0 -1.5

-4.0 -3.5 -3.0 -2.5 -2.0 -1.5

_dill.

-4.0 -3.5 -3.0 -2.5 -2.0 -1.5

b, :

-4.0 -3.5 -3.0 -2.5 -2.0 -1.5

.

0.0 04 08
0 04 08

00 04 08

0

-4.0 -3.5 -3.0 -2.5 -2.0 -1.5

Figure 6: FEstimated posterior density of the parameters of the claim frequency model or
Kk = 00. The solid curve shows the asymptotic normal distribution according to mazximum
likelihood theory. The vertical line shows the MPM estimate.
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Figure 7: The posterior density of u; (left), & (center) and risk premium p; = p;&; (right) for
4 selected policies from the validation dataset. The fitted models have prior (5) for the latent
variables with k = 8 and Kk = 0o for claim frequency and size respectively. The covariates
AGE, CAR AGE, MILEAGE, SEX and COUNTY are for the policies (top to bottom) (43, 0, 8,
male, 7), (27, 8, 16, female, 8), (29, 13, 8, female, 8) and (24, 5, 14, male, 19). The first
two policies have no claims, while the last two have one claim each of 4200 NOK and 16 455
NOK respectively. Ezposure times are 0.51, 1, 0.78 and 0.87 years. In the histogram for the
risk premium, the two outer vertical lines indicate 95% credibility intervals and the center
line indicates the estimate p; of Table 1.

Table 8 gives posterior rating factors (see Section 2.2) using the prior (5) with k = 0
for claim frequency and k = oo for claim size. For the continuous covariates, factors are
given for some chosen values. As an example of premium calculations using these tables, a
policy located in region 19 with a male policyholder aged 18 and a 1998 car model (0 years)
with annual mileage of 12 000 km has an estimated premium p? = (0.155 - 0.462 - 0.934 -
1.064) x (25369 -0.772 - 1.094 - 0.681) = 1038 NOK. For comparison, a policy with the same
characteristics in county 7 is priced to 174 NOK.

8.5 Model Validation and Comparison

Assessing the fit of models with interacting latent variables is difficult. Bayesian model
validation is an active research area and we refer to Spiegelhalter et al. (1998) for an interesting
idea that could be applied in our context. It goes beyond the scope of this paper to investigate
this aspect thoroughly, though we shall perform some standard testing for the standard GLMs
in the maximum likelihood setting.

The Pearson statistic (McCullagh & Nelder 1989, pp. 34, 37) is a common goodness of
fit measure for GLMs. Our models specified by (1), (3) and (5) with kK = 0 or kK = oo can be
evaluated this way in a pure likelihood setting. The Pearson test applied to the estimation
data, indicate that the Poisson and Gamma assumptions for these two models are adequate.
As the claim frequency is very small we need to group the data in order to check the Poisson
assumption. When the Pearson test is applied to the validation dataset, we need to ignore a
few large departures from the expected values to obtain a satisfactory fit.

23



COUNTY AGE CAR AGE MILEAGE SEX

F S F S F S F S F S
1 5e-08 25369 | 18 0.462 0.772 | -1 1.013 0.998 8 1.042 0.774 | female 1 1
2 0011 —uw— |20 0.424 0.751 0 1 1|12 1.064 0.681 male 0.934 1.094
3 0019 —.w— |25 0.342 0.699 1 0987 0.998 | 16 1.086 0.599
4 0066 —u— |30 0.276 0.650 2 0975 0993 | 20 1.108 0.527
5 0063 —.— |35 0.223 0.605 3 0963 0984 | 50 1.293 0.201
6 0005 —.— |40 0.180 0.563 4 0951 0972 | 80 1.509 0.077
7 0026 —.— |45 0.145 0.524 5 0.939 0.956
8 0048 —,— |50 0.117 0.488 | 10 0.882 0.836
9 0052 —.— |55 0.094 0454 | 15 0.828 0.669
10 0016 —.— |60 0.076 0.423 | 20 0.777 0.489
11 0039 —.— | 65 0.061 0.394
12 0.008 —.— | 70 0.050 0.366
13 0051 —.— | 75 0.040 0.341
14 0023 —.— | 80 0.032 0.317
15 0.056 —.—
16 0.083 —.—
17 0.092 —.—
18 0144 —.—
19 015 —u—

Table 8: Rating factors for the claim frequency and size model with prior (5) for the latent
variables with k = 0 and kK = 0o respectively.

Test results indicate that there could be some overdispersion in the frequency data, con-
tradicting our Poisson assumption. In the Gamma model (1), the parameter v is taken equal
for all policies. Also this assumption is tested and found acceptable.

The residuals of the Poisson model show no outliers or unexpected patterns. For the
Gamma model, residuals are markedly large and positive for claim size exceeding approxi-
mately 20 000 NOK which is the 95th percentile. This suggests the presence of a heavier
tail.

The main issue is to compare the various models in terms of their capacity to predict the
number of claims and claim sizes. For this purpose we use the validation dataset. For each
policy 4 in the dataset we compute the estimates 7}, é} and p! as well as [i7, Ef and p? (see
Table 1) using its covariates. These estimates can then be compared to the actual number
of claims, claim sizes and total payouts which for most policies is zero. The total errors are
computed as described in Section 6, but here we also find the average errors. Hence, for claim
frequency and total payouts the errors TEY and TE are divided by the total exposure time
> ;€ in the dataset. For claim size, interest lies with the average error per claim, and TES
is divided by ), N;. The fitted models are then compared.

Table 9 shows the best and the worst model in terms of absolute average error using
ﬁf,é? and ,f)? to predict NV;, S; and P; respectively. Compared to ﬁzl,é} and /3\11 these exhibit
the largest variability in total error between models. For claim frequency and claim size the
models with the smallest average error on the validation dataset is found have prior (5) with
k = oo and Kk = 16 respectively. The largest errors are achieved for kK = 0 and k = 1. The best
model in terms of average error for the risk premium has K = 0o in both components, although
we did not try all possible smoothing combinations of the two models. The important point
is that none of the above differences is significant. In fact, if we approximate the posterior
density of the total error TEN by the empirical density of TEN(To+1)  TeNTo+T) apd
compute 95% credibility intervals for each model, these overlap significantly. For example,
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frequency size risk premium
K = 00 k=16 k = (00,00) | model type
best 0.00013 1064 16.9 average error
Predict the (-0.0007, 0.0027) | (-414, 1925) | (-6.6, 32.1) | credibility
validation data k=0 k=1 k = (0,00)
worst 0.0018 1185 21.2
(-0.0008, 0.0027) | (-744, 1926) | (-7.8, 31.5)
K = 00 K =00 Kk = (00,00)
best 0.0002 -405 1.2
Predict the (-0.0017, 0.0015) | (-1740, 551) | (-21.0, 15.5)
estimation data k=0 k=0 k = (0,00)
worst 0.0007 -752 5.7
(-0.0017, 0.0015) | (-4584, 27.9) | (-21.4, 15.3)

Table 9: Awverage errors with ﬁ?, Z—? and ,?)\12 used to predict the claim frequency, claim size
and total payouts for the validation and estimation dataset. The table shows the best and
worst model in terms of smallest and largest absolute average error. For each model a 95%
credibility interval for the average error is given. For the risk premium the values of k are
for the frequency and size model respectively.

as seen from Table 9, the 95% credibility intervals of the average error for the best and worst
model are essentially identical. Similar results are found for claim size and risk premium. We
are not able to find any model with predictive properties significantly better than the other
ones. The difference between models is minor compared to the uncertainty associated with
the predictions for each model. As the smoothing increases, the uncertainty gets smaller since
the number of effective parameters is reduced. As the validation dataset features a higher
claim frequency and claim size than the estimation dataset (see Table 8.1), all fitted models
underestimate claims in the validation dataset. The average error for the risk premium is
between 17 and 21 NOK which is a good performance.

For comparison we also repeat the prediction of claims and compute the errors on the
original estimation dataset used to fit models. In Table 9 we see that these errors are smaller.
The negative average errors for claim size is a consequence of large claims in the tail of the
distribution. The average error varies between 1.2 and 5.7 NOK. The small magnitude of
these errors illustrates that the models are very well suited for premium estimation.

Considering this dataset it is not surprising that regional latent variables do not signifi-
cantly improve the ability to predict on the validation dataset compared to standard GLM.
First of all, our datasets are small with respect to the low claim frequency. Because claims
are rare, a pattern of regional smoothness simply is not present in this data. Hence, latent
variables that would stand as proxies for unaccounted smooth regional variation cannot lead
to significant improvements. The effect of large claims is similar: the occurrence of a large
claim will cause the average claim size of a specific covariate group to be markedly different
from that of similar groups. Hence, again smooth latent variables are unnecessary. A larger
dataset is needed to verify that interacting latent variables can be helpful in replacing missing
covariates, as we believe and as confirmed by our simulation results in Section 7.
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9 Conclusions

Hierarchical models and Bayesian inference have been applied to the context of risk premium
rating and compared to classical GLMs. We have shown that a fully Bayesian analysis is
feasible by means of MCMC algorithms. This allows us to account for all sources of uncer-
tainty and errors in the final posterior estimates. These can be given as point estimates but
it is important to inspect the posterior marginal density to evaluate dispersion around such
estimates and to detect important skewness and heavy tails. Latent variables associated to
specific categories of policies or policyholders, have been introduced both in claim frequency
and claim size modeling. From our simulation example we conclude that interacting regional
latent variables can improve the performance of models in terms of their ability to predict
the number of claims, their size and the risk premium. This is particularly true if the port-
folio includes unmeasured covariates which display regional patterns, trends or smoothness.
Our analysis of a the car theft data shows that the improvement achieved by models with
interacting latent variables compared to standard GLMs is not significant if the dataset is
too small with respect to its claim frequency.

Hierarchical Bayesian models are very flexible and allow us to incorporate important
features like heavy tails, time trends and seasonal effects. There is a wide literature exploring
such models in the areas of epidemiology (Glad et al. 2000), disease mapping (Biggeri et al.
1999), image analysis (Rue & Hurn 1999) and environmental monitoring (Wikle et al. 1998).
A specific characteristic feature of insurance is that both a frequency and size model are of
interest.

A The Metropolis-Hastings Algorithm

The single-component Metropolis-Hastings algorithm works as follows. Assume that the
distribution of interest is 7(%). Denote by " the k-th iterate of the Markov chain. Assume
that at step k£ + 1 the I-th component of % is updated. A proposal v; for the [-th element of
1) is sampled from an irreducible proposal density ql(-|'t/:k). Then wlkﬂ equals the proposed
value with probability

(o, ¥* 1) @i (F 19 9)
(%) aileb)

p(¢1, %) = min{1, %,

where ¥* ; denotes the current value of all components except the [-th one. With probability

1-— p(vzl,zbk) we have wlkﬂ = ¢lk- In our context the elements of ¥ are updated in the
following order. First the latent variables are updated, then the parameters for the fixed
effects. For the claim size an additional step for the parameter v of the Gamma distribution
is needed. The algorithm for the GLMM has additional steps for updating the parameters
pr and oy, r = F, S of the normal distribution in (4). During each full update the latent
variables are updated in a random permutation order which is drawn independently in each
iteration. The same procedure is followed for the other parameters. All proposal densities
are uniform distributions over a range centered at the current values. For v in the claim size
model and o, in the GLMM (4) the densities are truncated at zero to restrict proposals to
positive values. The range of the uniform distributions is tuned to give an approximate 50%
acceptance probability. Notice that this is a very simple Metropolis-Hastings algorithm. We
have made no special effort to achieve fast convergence as should certainly be done in an
implementation intended for professional use.
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We give the acceptance probabilities for the latent variables and parameters in the claim
frequency model. As the Poisson and Gamma distributions belong to the exponential family,
the structure of the acceptance probabilities is the same. The acceptance probabilities for the
latent variables and the parameters in the claim size model are obtained from the expressions
below by replacing —e; by N;S;, multiplying the sum over policies by —v and changing the
sign of the terms in the linear predictor that go into exponents inside the sum. Hence,
only one computer code needs to be implemented. In the following all indexing on iteration
number is omitted for notational convenience.

As nearly all computing time is spent calculating the acceptance probabilities, the speed
of the algorithm may be increased considerably by precalculating all terms in the acceptance
probabilities which involve only the responses and covariates as they need only be calculated
once. Also, when updating the latent variables (or parameters), the parameters (or latent
variables) are unchanged and terms including these may be precalculated as well.

Denoting by n; the number of neighbours of region [/, the acceptance probabilities for the
latent variables v in (5) are

7T(]\”ﬁlIi 71117 a) ﬂ-(ﬁlFa 7€[)}
T(NyF,a)  w(yF)

= min{Lexp{ Y [ — )N — (€7 — e )ei exp(a'x])

i:R(i)=l

= i) = (5D = 267 =) DA

ked;

p(,~") = min{1,

For the parameters the probabilities are

7r(N|'yF,&l, o) 7(a, a,)
(Nl”/F a) 7(a)

}

p(ay, &) = min{1,
alm oqzl ! L F F ~ F
= min{1, exp{Z[— it — M%) exp(oc, X, + Vr) + (01 — ar) Niwy ] }}-

Estimation in the claim size model also involves the index parameter v for which the accep-

tance probability is
m(S|N,~5,8,7) q(v|D)
(SIN ¥5, ﬂ, v) q(vlv)
)

}

p(v,v) = min{1,

1/ f [

= min{1, exp{z z/NZ) + N;(log —) — N;(¥ — v)(— log(N;S;) + B'x?

v+ o0, —max{0,v — o, }
v+ o0, —max{0,v —o,}

}’

+ Vi + Si/ exp(B'%F + Vi) =

where o, is the semirange of the uniform proposal density for v.

The prior (4) requires that the parameters ur and oz of the normal prior distribution are
updated in addition to the latent variables and the parameters. For notational convenience
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we introduce 7, = 1/ o2. The acceptance probabilities for the latent variables are now
W(N|:YJIF7 71117 a) ﬂ-(%lFa 7€1|NF7 0-125‘) }
m(NivF, ) 7(¥F|pr,03)
= min{Lexp{ Y [ — 9 )Ni — (€7 — e )ei exp(a'x])
i:R(i)=l

——[(A’F)2 () =26 = 1)}

(7, 7") = min{1,

The acceptance probability for the claim size model changes similarly. Next we give the
acceptance probabilities for yr and 7-. The proposal densities for ur and 75 are also uniform,
centered at the current values for p and 7. For 7 we truncate at zero. The values of
ar,bp,cr and dp are taken to be fixed, for example as in Section 8.3. We obtain

7r(")’Fllfzﬁ“v 012«*) m(lr|lar, br)
7(YF|up, 02) ©(prlap, bF)

p(/ij :U'F) = min{l’

= min{1, exp{——[2 — pir Z’YJ + I(fy — )]

- ﬁ[ﬁi — p — 2ap(fir — pr)]}}

and

7Y e, 52) 7(Feler, de) a(relFe)

7 (Y |z, 02) 7 (Telcr, dr) a(Fe|e)
_ J

:min{l,(T—)J/2+dF Lexp{—(7» —TF)(dF/cF+;Z(7f—uF)2)}
F j=1

p(%’p, TF) = min{].

Te + 07 — max{0, 7 — 0}

2

Tr + 07 —max{0,7p — 0}

where o is the semirange of the proposal for 7.
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