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Abstract

We explore data squashing as introduced in DuMouchel et al. (1999) when the
records in the massive data set are iid time series. We focus on autocovariance
estimates and their role the squashing. Our findings imply that the optimization
weights that are used to find the squashed data points should reflect the depen-
dency structure of the time series and that it could be advantageous to change
the objective function that is minimized to find the squashed points.
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1 Introduction

Data squashing was proposed by DuMouchel et al. (1999) as a way of dealing with
massive data sets. Rather than scaling up the computing power and statistical methods,
the data set itself is scaled down. From the massive data set a new and considerably
smaller data set, called the squashed data set, is generated. The size of the squashed
data set is so that any advanced statistical method can be applied. The new data set is
not a subsample of the original data. The idea is to generate a data set that improves
upon sampling with respect to accuracy in inference by finding the new data points so
that a set of empirical moments on the original and squashed data are approximately
equal.

Data squashing makes the assumption that the records of the massive data set
are independent, but makes no assumption on the structure of each data record. In
this paper we are interested in data sets with records of dependent variables. In
particular, we consider data squashing when each record in the massive data set is
a time series. We start by giving a brief review of data squashing. As autocovariances
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are of particular interest for times series data, we explore the role of autocovariance
estimation in data squashing. We find that there are several ways to include information
on autocovariances in the squashing. This leads us to suggest several modifications
of the original approach which are natural for time series. The paper ends with a
discussion of our findings and other issues of relevance for applying data squashing to
time series.

2 Method

We consider a data set with N records X; = (X;1,...,Xig),¢ =1,..., N with N very
large. We assume that all the variables are continuous and that the data set can be
represented as a N x @ matrix X = (Xy,...,Xy)". A data set is often called massive
when N is of the order 10° or 10°. In practice, the size of a data set is always measured
relatively to the statistical methods that we are interested in applying. Hence, a
data set that is small in absolute size, might be “massive” in the sense that it is
computationally infeasible to analyze if the statistical methods we apply are complex
and computationally demanding.

The idea of data squashing is to generate a new and smaller data set of records
Y, = (Yj,...,Y0),j =1,...,M so that M < N. To each record a non-negative
weight w; is associated and the weights are generated so that Z]]Vil w; = N. The
standard way of reducing a large data set, is to generate a subsample using simple
random sampling or another sampling technique. In contrast, the data points generated
by data squashing are new pseudo points on the space spanned by the original data
set, and not sub sampled from the data set itself.

The M(Q + 1) squashed points and weights are regarded as unknown variables
that are to be determined so that K > M(Q + 1) empirical weighted moments on the
squashed data set are equal to, or “match”, the corresponding empirical unweighted
moments on the full data set. Defining an empirical moment about a = (a,...,aq)
through exponent vectors py, ..., px of non-negative integers, the squashed points and
the weights are determined so that
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By letting one exponent vector be a vector of zeros, i.e. p, =0 forone [ € {1,... ,K},

the weights are constrained so that Z]Ail w; = N. This constraint allows us to refer
to (1) as moment matching as the scaling factor that would be present when equating
empirical moments cancels.

DuMouchel et al. (1999) suggest to determine the new points and weights by using



a Newton-Raphson procedure to minimize
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for optimization weights uy, £k = 1, ..., K under the constraint that the weights should
be positive and the points should not extrapolate, i.e. w; > 0, Vj and min; X;; <Y, <
max; Xig, 7 = 1,...,M,q = 1,...,Q. There will rarely be a solution for which (2)
equals zero which implies that the exact matching in (1) is only acheivable in special
cases. In practice, one tends to assign unequal weights so that precision in lower order
moments is preferred.

DuMouchel et al. (1999) derive the moment matching criterion (1) by equating
the Taylor expansion of the data log-likelihood Ef\il log f(x;; @) and the weigthed log-
likelihood Z]Ail wjlog f(y;; @) of the squashed data, assuming the same distribution
f(-,0) for the original and squashed points. The argument shows that the nth order of
the Taylor approximation (includig nth order derivatives) results in (Qt?fl) terms that
are matched in (1). These are all the moments determined by the set of exponents for
which ) 4 Prg = 1. For example, the constant term in the Taylor expansion corresponds
to p1 = 0 in (1) and the first order of the expansion corresponds to py = (Prx—1 =
Lpu=0,l#k—-1),k=2,...,Q + 1 etc.

Matching the empirical moments on the original and the squashed data set can also
be motivated by considering the associated theoretical moments. Each column ¢ in
the massive data set can be regarded as N independent observations of a stochastic
variable X9 g = 1,..., Q. These stochastic variables need not be independent and are
distributed according to individual distributions that can be characterized by moments
E(X? — a)* while the covariances F(X? — a,)(X9* — a 1) describe the relationshipe
between the variables. In doing moment matching we require the squashed data set to
provide approximately the same estimates of these theoretical moments as the massive
data set.

An important feature of data squashing is that the massive data set can be grouped
into regions and data squashing preformed independently for each region. Grouping is
advantageous because it allows to match a smaller number of moments to obtain the
same number of squashed point. To generate M squashed points with no grouping, we
could match K = M(Q+ 1) moments. If the data is grouped into R regions with M /R
records in each, it sufficies to match K /R moments within each region. Hence, there
are less unknowns to be determined which generally facilitates optimization. In terms
of the Taylor expansion argument, it is easy to see that the approximation is improved
for smaller regions compared to the full domain. Moreover, grouping opens for parallel
computing. Observe that when regions are employed, the weights within each region
are constrained so that they sum to the number of original points in each region.



DuMouchel et al. (1999) suggest to group the data in hyper-rectangles or data
spheres. By independently splitting each column in the data set into r bins, a total
of 79 hyper-rectangles are generated. Data spheres (DuMouchel et al., 1999; Johnson
and Dasu, 1998) are generated by partitioning the data set into [ layers according to
the distance from the points to some center. The data set is also partitioned into
2(@) pyramids denoted P, and P,_,q = 1,...Q. A record X; belongs to pyramid P,
if X;, = max{|Xu|,...|Xig|} and s = sign(X,,). The data are usually standardized
before the data spheres are found. In combination the layers and pyramids define 2Q!
data spheres.

In summary data squashing consists of three steps: (i) grouping the data into
regions and determining the number of squashed points that is to be found for each
region, (ii) calculation of empirical moments for the massive data sets and (iii) the
optimization where the squashed points and weights are found for each region. The
generated squashed data set is then used for inference.

3 Autocovariances in Data Squashing

In DuMouchel et al. (1999) the records of the massive data set are assumed to be iid,
while no assumptions are made on the structure of each data record X;,2 =1,...,N.
In their application of the data squashing the variables X;,, ¢ = 1, ... @ are explanatory
variables.

A common source of massive data sets is the collection of data describing customer
behaviour such as monetary transactions, purchases or telephone calls or data that arise
from industrial production monitoring. Each record in the massive data set presents
one data generating item, i.e. a customer or production unit. When the data are
collected over a certain time period, there will often be horizontal dependencies and
trends in the data.

To gain insight to data squashing for dependent data, we will consider the simplified
situation where X;,7 = 1,..., N are iid time series of length (). Without loss of
generality we will assume that the times series have zero mean, so that E(X;,) =
0,vi,Vq.

For time series autocorrelations or autocovariances are of particular interest. For
a stationary time series X; = (X1, ..., X,g) with zero mean the lag k£ autocovariance
can be estimated by

Q—k
q=1
When we have N iid time series Xy,..., Xy the lag k& autocovariance may also be

estimated by the covariance across the records of a pair of columns that are lag k



apart, i.e. by

Z Xiqi/N, a=1,...,Q— k. (4)

Both the estimate (3) and (4) are sub-optimal in the sense that the do not use all the
available information in the data, as does the estimate

N Q-k N Q—k
22 Xiqr/(QN) = D A(X)/N =3 0(X)/Q. (5)

We will refer to (3) and (4) as local autocovariance estimates in contrast to the global
estimate (5). For iid time series (Y1,..., Yy ) with associated weights wy, ..., was we
define the corresponding weighted autocovariance estimates

Q—k
Ye(Y;) = ZY}qY;’(quk)/Qa
M
ij Y/ D w; (6)
j=1

and
M Q—k M
(YY) =D D wYYigin/(@Q D w)). (7)
Jj=1 ¢=1 j=1

Suppose that we are to squash a massive data set consisting of NV iid time series by
matching the @ first order and (Q + 1)Q/2 second order moments about zero as well
as the constraint on the weights, a total of (Q + 1)(1 + @/2) terms. According to (2)
the squashed points and the weights are to minimize

(@+1)(1+Q/2)
SY,w)= > Z HX”’” ij HY”’“’
k=1 i=1 ¢g=1
= So(Y, W) + Sl(Y, W) + SQ(Y,W) (8)



with

So(Y,W = u1 Z’w]

M
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The relabeled optimization weights wu},, in (9) depend on the ordering of the exponent
vectors Pg+2,-- -, P(Q+1)(1+Q/2)- The terms in S»(Y,w) are reordered according to
the lags £ = 0,...,Q — 1. From (9) it is clear that since Z]Ail w; = N we are

matching the local autocovariance estimates EZ(X) and ;5\,3 (Y) in (4) and (6) for all lags
k=0,..., —1and all columns ¢ =1,...,Q — k.

The function S(Y,w) has a global minimum of zero exactly at the solution of the
original set of equations (1), prov1ded that such a solutlon exists. If there is such a
solutlon it also holds that Z Zz 1 z(q+k) Z Z =1 W;YjqYj(q+r) for k =

0,...,0Q —1 and hence it follows that Tk (X) (Y). Thls demonstrates that the best
estimate of the autocovariance (5) is only matched with the corresponding weighted
estimate (7) on the squashed data if there is a solution to the original set of equations,
otherwise only the local autocovariance estimates (4) and (6) are matched. When only a
local minimum is found, the local autocovariance estimates are matched approximately,
inducing an approximative match of the global autocovariance estimates.

4 Choice of Optimization Weights

The ordering of the second order terms in (9) arises from the natural ordering of auto-
covariances according to lags. In principle, data squashing imposes no ordering on the
second order terms. In practice, one typically distinguishes between the variance terms
that are often called the pure terms, and the cross terms, that is the autocovariances.
However, for time series it is natural to also classify cross terms according to the lag
they represent. The same argument applies to the optimization weights in (2) and
(9). Apriori, we are free to use any set of optimization weights, keeping in mind that
our choice influences the characteristics of the squashed data set. In the application in
DuMouchel et al. (1999), emphasis is put on matching the means and variances, as well
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as on the constraint on the weights. These terms are assigned indices k = 1,...,2Q0 +1
and given weights u; = 1000. The sum of the optimization weights for the second order
cross terms and higher order terms sum to one, i.e. Z,If:w 4+3ur = 1, with decreasing
weight size for increasing order of the terms.

When X is a time series, then we suggest that all terms representing the same lag
should be assigned equal weight, that is to let uj, = u}, in (9). In Section 3 we showed
that the best estimates of the autocovariance (5) and (7) are matched by matching
separately the estimates (4) and (6) that are based on pairs of columns of the data
set. We are not able to see when assigning different optimization weights to terms
that represent the same lag can be defended as this implies that some column pairs
are considered to be more important than others in describing the autocovariance at
a certain lag. With such a weighting strategy we are further away from matching the
global estimates of the autocovariance than when equal weights is applied within each
lag.

Since the optimization weights determine which moments that are matched most
accurately, the optimization weights can be used to incorporate in the squashing pro-
cedure which moments that are considered to be most crucial for describing the data
set. When we have prior information on the dependency structure of the time series
that indicates that accuracy in matching autocovariances of certain lags is important,
we can give high weight to the terms that represent these lags and smaller weight to
the other lags. When there is no prior information we would tend to let the weights
be decreasing in increasing lags so that uj, = u; and uy > uy > --+ > ug_, in (9).
This way we prefer precision in matching short lags to precision in matching higher lag
autocovariances.

5 An Alternative Objective Function

In Section 3 we showed that in DuMouchel et al. (1999) the squashed data points
are generated by matching the local autocovariance estimates SZ(X) and EZ(Y) for
all lags £k = 0,...,Q — 1 and all time points ¢ = 1,...,Q — k. Provided that the
match is close enough and that the same optimization weights are assigned to all local
estimates representing the same lag, also the the global estimates 7y (X) and (Y, w)
are matched.

Assume now that our primary interest is that the global autocovariance estimate
(Y, w) on the squashed data set match the corresponding quantity on the massive
data set for all lags. Of course, the same argument applies to the terms in S;(Y,w),
rather than matching columnwise means, the overall mean could be matched. As our
interest is in the second order terms, this issue is not considered here. From this



perspective it seems natural to replace Sa(Y,w) by

_ Q-1 Q-k N Q—k M
SV, w) =Y (D) XigXiqrm — D > wi¥Yigin)? (10)
k=0 g=1 =1 g=1 j=1

in (8). When doing this replacement it follows automatically that only one opti-
mization Weight per lag is applied, as suggested in Section 4. Introducing sj(X) =

SN XigXi(gir) and sL(Y) = Z;VII w;Y;qYj(g+k) We have that
Q-1 Q—k
S(Y,w) = Y {3 (1K) — sE(¥)))?
k=0 q=1
Q-1 Q-k
=D u p_(si(X) = sy (Y))?
k=0 g=1
Q-1 Q-k

Here we let uj, = u; also in S3(Y, w) to make the expressions comparable. Observe
that the term R(X,Y,w) is zero ifgg(X) = g,‘i(Y) fork=0,...,Q0—1,q=1,...,Q—k
and is the term that encourages the local structure. By using the expression §2 (Y,w)
we are effectively reducing the number of terms in the outer sum to (). Considering the
original equations in (1) we now have 1+ 2@Q) equations compared to (Q + 1)(1+ Q/2)
when using S2(Y,w).

We think it might be advantageous to use S5(Y, w) rather than S5(Y,w), because
our primary aim is that the squashed data set preserves the global autocovariance
structure of the massive data set. We are less interested in the local features, and it
seems to us unnecessary to use effort to match these. Even if we are increasing the
number of solutions, we hope that Sy(Y,w) will give a smoother objective function
that facilitates the optimization and that the local minimas will be less variable with
respect to inference.

6 Discussion

In this paper we have given a brief review of data squashing and considered application
of it to time series data. In particular, we have focussed on how autocovariances
are estimated and used in the squashing. We have demonstrated that the squashed
points are generated so that local autcovariance estimates that are based on pairs
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of columns are matched, as opposed to matching global estimates that incorporate
all available information. This observation led us to suggest an alternative matching
criterion for the second order moments, in which the autocovariance estimate that uses
all available information for each time lag is matched. Furthermore, we have focussed
on the optimization weights. We argue that the optimization weights should be equal
for terms that represent the same time lag when several local autocovariance estimates
are matched for each lag. Our suggested matching strategy avoids this problem as only
one estimate per lag is matched. The natural ordering and interpretation of the second
order moments that follows when the records are times series also suggest that the
optimization weights could incorporate prior information on the dependency structure
of the time series. By varying the magnitude of the weights, accuracy in matching of
autocovariances at certain important lags are preferred.

It remains to test our suggested guidelines for choosing the optimization weights and
the alternative objective function. The suggested modifications should be compared
to data squashing as outlined in DuMouchel et al. (1999) for a set of simulated time
series data sets.

There are several aspects of data squashing that are of particular importance for
time series data but that are not considered in this paper. The most important of
these concerns the curse of dimensionality associated with time series data. A massive
data set of time series typically has a higher horizontal dimensionality than indicated
in DuMouchel et al. (1999) and the application therein. With the computational ap-
proach suggested in DuMouchel et al. (1999) data squashing does not scale so well
with the dimension of the records (). In their analysis of the computational complex-
ity DuMouchel et al. (1999) found that for the regionalization and computation of
moments, the CPU demand is proportional to N@) and N K respectively, and hence
increase linearly in both N and @ assuming K = M(Q + 1) However, these steps are
minor compared to the computationally much more intensive optimization, in which
each iteration is dominated by evaluations for which the CPU increases linearly in Q).
This implies that data squashing for normal length time series, may require days of
running unless effort is made to improve the optimization for instance by using clever
starting points or finding smoother objective functions. Keeping in mind that data
squashing always competes with using the largest possible sample for which analysis
is feasible, it is clear that unless such efforts are made data squashing will only be the
method of our choice if the gain in accuracy in inference compared to sub sampling
justifies the gross computational expense and long waiting time.

Also the regionalization that is performed prior to finding the squashed points
is affected by an increase in the record dimension. With large () it is not feasible to
generate r? hyper-rectangles. This suggests that we need to use data spheres or another
regionalization technique that does not suffer from the same curse of dimensionality.

Compared to a squashed data set, a sub sampled data set has the advantage that
the records have the same structure as found in the massive data set. For instance, if



the original records are time series with a certain dependency structure, then so are
the records of the reduced set. Therefore, it seems a good idea to combine the idea
of moment matching with sampling to determine weights for a simple random sample.
For a fixed simple random sample Y7,..., Y Owen (1999) suggests to determine the
weights by maximizing || ; w; under the constraint that the weights are positive, sum
to N and that (1) holds for a chosen K. The technique is called empirical likelihood
squashing and seems to us a very appealing idea for time series data.

Data squashing is a new and unexplored. Upon presenting data squashing to new
audiences we have experienced to be met with a skepticism and disbelief as to how
it can improve upon the accuracy of sampling to such a degree that the increased
computational complexity is worthwhile. Application of data squashing to simulated
as well as real data is needed in order to understand and explore the properties of the
method. Also, there are clearly many theoretical aspects of data squashing that are
not yet well enough understood. Some important issues are outlined in Berg et al.
(2000).

[t remains to see if data squashing will become the method of choice when working
with massive data sets. Still, we consider it a good alternative to constantly increasing
computer memory and processing capacity or the very unappealing alternative of set-
tling for poor and insufficient statistical methods. This way data squashing also serves
as a reminder of the usefulness of well established sampling techniques.
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