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Abstract

We derive and analyse a penalty method for solving American
multi-asset option problems. A small, non-linear penalty term is added
to the Black-Scholes equation. This approach gives a fixed solution do-
main, removing the free and moving boundary imposed by the early
exercise feature of the contract. Explicit, implicit and semi-implicit
finite difference schemes are derived, and in the case of independent
assets, we prove that the approximate option prices satisfy some basic
properties of the American option problem. Several numerical exper-
iments are carried out in order to investigate the performance of the
schemes. We give examples indicating that our results are sharp. Fi-
nally, experiments indicate that in the case of correlated underlying
assets, the same properties are valid as in the independent case.

1 Introduction

American derivatives are popular trading instruments in todays financial
markets. We consider American put options where the payoff depends on
more than one underlying. Such option prices can be modelled by higher
dimensional generalisations of the original Black-Scholes equation [2]. The
purpose of this paper is to extend the penalty method discussed in [11] to
multi-asset American put option problems.

Various numerical techniques can be applied to price multi-variate deriva-
tives. Higher dimensional generalisations of lattice binomial methods can
be used, c.f. [3], where European options based on three underlying options
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are solved numerically. Another way of pricing multi-asset derivatives is
by Monte-Carlo simulation techniques, c.f. [1]. In a wide range of scien-
tific fields, finite element and finite volume methods (FEM and FDM) are
popular. For studies of FEM and FDM for numerical valuation of financial
derivatives, c.f. [17, 8, 5]. Finite difference methods are also commonly used
for solving the Black-Scholes equation in higher dimensions, c.f. [15] for a
study of the singularity-separating method for two factor models, utilising
a finite difference approach.

The idea behind the penalty method for multi-asset option models is
similar to the method described in [11]. American put options can be exer-
cised at any time before expiry. This introduces a free and moving boundary
problem. By adding a certain penalty term to the Black-Scholes equation,
we extend the solution to a fixed domain. As the solution approaches the
payoff function at expiry, the penalty term forces the solution to stay above
it. When the solution is far from the barrier, the term is small and thus the
Black-Scholes equation is approximatively satisfied in this region.

A similar approach was introduced by Forsyth and Vetzal in [16] for
American options with stochastic volatility. In their work they add a source
term to the discrete equations. Our method represents a refinement of their
work in the sense that the penalty term is added to the continuous equation.
For independent underlying assets, this leads to restrictions regarding the
magnitude of the penalty term as well as conditions for the discretization
parameters. Also, by choosing a semi-implicit finite difference discretiza-
tion, we avoid solving nonlinear algebraic equations and thereby enhance
the overall computational efficiency.

We present numerical experiments illustrating the properties of the schemes.
In the case of correlated underlying assets, we have been unable to derive
proper bounds on the numerical solutions. However, numerical experiments
indicate that similar properties are present in such cases.

This paper is organised as follows: In Section 2 we describe the multi-
asset Black-Scholes equation, together with the penalty formulation of the
problem. The boundary conditions corresponding to zero values of the
underlying assets are obtained by solving lower dimensional Black-Scholes
equations. In Section 4, numerical schemes for the two-factor model prob-
lem are derived, starting by specifying the two-factor model problem. First,
an explicit scheme is presented, and then both a semi-implicit and a fully
implicit scheme are defined. Analysis of these schemes are carried out in
Section 4, under the assumption that the underlying assets are indepen-
dent. Restrictions regarding the time step size and the penalty term are
then provided for all three schemes. In the last section of this paper, we
present a series of numerical experiments, starting by comparing the fully
implicit and the semi-implicit scheme with respect to computational effi-
ciency. In Section 5, we show that numerical experiments indicate that for
our model data, the restrictions derived in Section 4 for independent assets



are valid also when the underlying assets are correlated. Finally, we make
some conclusive remarks in Section 6.

2 American multi-asset option problems

The multi-dimensional version of the Black-Scholes equation takes the form
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see e.g. [7], [10] or [13]. Here, P is the value of the contract, S; is the value
of the ith underlying asset, n is the number of underlying assets, p; ; is the
correlation between asset ¢+ and asset j, r is the risk free interest rate and
D; is the dividend yield paid by the ith asset.

For a majority of multi-asset option models the payoff function at expiry
can be written on the form

¢(Sla"' 7STL) = max (E - Zn:alsz’()) ’ (1)
i=1

where E and ay,... ,a, are given constants, see [10]. We will in this paper
consider put options, i.e.

E a,...,ap > 0.

Notice that the American early exercise feature of the contract imposes the
constraint

P(Si,...,8,,t) > ¢(S1,...,5n)

on the solution for all admissible values of S1,...,S, and t.

In the case of American options the solution domain can be divided into
two parts. In one region the price of the option satisfies the Black-Scholes
equation and in the second subdomain it equals the payoff function ¢. This
leads to the linear complementarity form of the problem. Let £ be the
differential operator

6
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Qi = {(Sla aSi—bOaSi-f-la"' aS’n)a Sj >0 fOI'j?é’L.},
S = (S1,...,5).



If T represents the time of expiration of the contract, then the American
put problem can be written on the form

(P—¢)LP =0 inQ x[0,T7,
LP<0 inQx][0,T],
P(S,t) > ¢(S) in Q x [0,T],
P(S,T)=¢(S) forall S e€Q,
P(S,t) =gi(S,t) forallSe€Q; x[0,T]andi=1,...,n,
lim P(S,t) = Gi(S1,.-- ,Si-1,Sit1s--- ,Sn, 1)
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forall Se Q@ x [0,T] andi=1,...,n,
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and both P and its first derivatives must be continuous. Here g;(-,-) and
Gi(-,-) are given functions providing suitable boundary conditions. Typi-
cally, g;(-,-) is determined by solving the associated n—1 dimensional Ameri-
can put problem and G;(-, -) is identical to zero. Further details can be found
in Section 5. Until then, we will assume that the boundary conditions are
consistent with the constraint imposed by the early exercise feature of the
option, i.e. that g;(-,-) and G;(-,-) are consistent with the constraint (4).

2.1 A penalty method

Define the barrier function,

n
q(S1,...,S) = BE— ) oS
i=1

As for American single-asset option problems, cf. [11], a penalty method for
solving (2)-(7) can defined as follows

BP
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P(S,T) =¢(S) forall S € Q, 9)

P(S,t) = gi(S,t) forallSeQ; x[0,7)andi=1,...,n, (10)
lim P(S t) Gl(Sl, ,Si_1,8i+1,... ,Sn,t) (11)
S;i—oc

foral S € O x [0,7] andi=1,...,n,

where 0 < € € 1 is a small parameter and C is a positive constant. Note
that the penalty term
eC
P+e—q
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is of order € in regions where P(S,t) > ¢(S), and hence the Black-Scholes
equation is approximately satisfied. On the other hand, as P approaches
g this term is approximately equal to C assuring that the early exercise
constraint (4) is not violated. In Section 4 we will prove that for a two-
factor problem, with independent assets, a discrete analogue to (4) holds
provided that C > rE.

3 Discretization

For the sake of simplicity we will define our numerical schemes for a two-
factor model problem and use x and y, instead of the more conventional
notation S7 and Ss, to represent the asset prices. The numerical methods
and analysis presented in this paper can easily be extended to general n-
dimensional American option problems, provided that the payoff function
at expiry is on the form (1).

3.1 A two-factor model problem

We will consider the following penalty formulation of an American put prob-
lem with two underlying assets, i.e. n = 2,

8P+1 26P 1 28P+UU$ o*p (12)
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P(z,y,T) = ( z,y), ,y=0, (13)
(CC,O,t):gl( T, )a xZO,tE[O,T], ( )
P(0,y,t) = g2(y, 1), y >0, ¢€l0,T], (15)
xli_)ngoP(:c,y,t) =Gi(y,t), y>0,tel0,T], (16)
(17)

lim P(z,y,t) = Ga(z,t), z>0,t€]0,T],
y—00

where

Q(may) =FE - (051.’13' + a2y)a ¢(-T,y) = max (Q(CU, y)a 0) . (18)
Let, for given positive integers I, J and N,
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Ar=-—"2_ Ay=-22_ A
TTIyr YT Ui N+1 (19)
—iAz, i=0,... I+1, (20)
t, =nAt, n=0,...,N+1, (22)
¢ =q(zi,y;), 1=0,...,]+1landj=0,...,J+1, (23)



Here 4 and y, are the upper boundaries of the truncated solution domain.
Throughout this paper we will assume that Az = Ay = h.

The discrete final condition and boundary conditions are defined in a
straight forward manner

Pt = max(g;;,0), i=0,...,]+1andj=0,...,J+1, (25)
Ply=(g1)}, 4=0,....,]+1landn=0,... ,N+1, (26)
Pyi=(g2)}, j=0,...,J+landn=0,... ,N+1, (27)
Py =(G1)i, i=0,....,/+landn=0,...,N+1, (28)
Pl =(Go)y, j=0,....,J+1landn=0,... ,N+1. (29)

Here (g1)7, (92)7, (G1)}, (G2)} are discrete approximations of gi(zi,tn),
QQ(yj,t ) Gl(xu ) G2(y]a )1 respectively. We let (Gl) (GZ)n =Y,
whereas (g1)7 and (g2)] are obtained by solving the correspondlng one-
dimensional Black-Scholes equations.

In order to simplify the notation needed in this paper we introduce the
finite difference operators

_ @y 2Q Q% Q. j1—2Q7 + Qi

waQ Dnyn i = h2 ) (30)
n _QH—I,]—H QZ,]—H._ i+l j+2Q B z—l,] ,_7—1+Qz—1,_7—1 31
Q= - G1)
n n n n
] 17 j Q.7 j .’ j 1 B Q'? j
DxQZj — %’ 'DyQZ]_ — %, (32)
no_onl
D,y = (33)
where {Q}'; }ZI_]HOJ+1 forn=0,...,N + 1, is a discrete function defined on

the mesh defined in equations (19)—(22). Since we use upwind differences
n (32), and a first order approximation of the time derivative in (33), the
truncation error of the resulting scheme is O(h, At). Throughout this paper
we will assume! that

r > D1, Do,

and, hence we use an upwind differencing to discretize the transport terms
n (12), cf. (32).
3.2 An explicit scheme

Assume we know the solution at time step n, and that we wish to to compute
P"~1. Applying the space and time finite difference operators at time step

If » < D1, or r < Ds we preserve upwind differencing by replacing (32) with the
proper finite difference operator.



n, the explicit scheme reads
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+(r = Di)a; Do Pl + (r — D2)yj DyF; —rFj;
eC

+—— =0,
Plite—di
fori=1,...,I,j=1,...,Jand n=N+1,N,...,1. The final condition
and boundary conditions are defined in (25)-(29).

Defining

F(Vi, Vo, V3,Vy, Vs, Ve, Vi, q,1,y) =
e(z,y) Vi + [b(y) — e(z,y)] V2 + [a(z) — e(z,y)] V-
+[1 — 2a(x) — 2b(y) + 2e(z,y) — c(z) — d(y) —rAt] Vy
+a(z) — e(z,y) + c(z)] V5 + [b(y) — e(z,y) +d(y)] Vs + e(z,y) V7

A
_<cat (34)
Vi+e—q
where
1At 1At At
a(r) = §ﬁ0%$2, b(y) = 2722 o3y, c(z)=(r —Dl)TﬂC,
At 1A
d(y) = (r — D2)—vy, e(z,y) = 555 po1027Y, (35)
h 2h
this scheme can be written on the form
Pz'r,bj_l = F(Pz'n—l,j—lapir,bj—lapn lj’Pznjv i+1,50 i?j—l—lﬂpg}kl,j-klaQi,jamiayj)'
(36)

3.3 Semi-implicit and fully implicit schemes

The implicit and semi-implicit method are obtained by applying the spatial
finite difference operators at time step n and the time difference at time step
n+ 1,

1
Dy PZ.”‘;'I + 50%:5% ’DMP” + JQyJ ’Dny + po102;Y; Dzyﬂf‘j
+(’f‘ - Dl)l'i DwIDZT,L] + ( Dg)y] DyIDZ,] rP".

i,J
eC
+Pn+1/2 =0, (37)
ij T
fore =1,...,I,5=1,...,J and n = N,N — ,0, where we define

" in the semi-implicit scheme and P"+ 12 pn iy the fully
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implicit method. As for the explicit scheme, the the final condition and
boundary conditions are defined in equations (25)-(29).

Some simple algebraic manipulations show that this scheme can be writ-
ten on the form

eij Py j_1 +[bj — il Plj_q +[ai —eij] Ly

—[1 + 2a; + 2bj — 26,',3' +c + dj + ’)"At] P;?J

+Hai —eij+ il By j+ by —eij +dj]l By +ei Pl
eCAt

n+1/2

1,3

— _pnitl _ (38)

+e— ‘Iz,y

where
ai =a(zi), bj=0by;), ¢ =c(zi),
d; =d(y;), eij = e(wi,yj).

n+1/2 _ Pn+1

Note that the semi-implicit scheme, P; gives a system of linear

algebraic equations, whereas the fully 1mphclt scheme PZnJH/ 2= = P; leads
to a system of non-linear equations.

4 Analysis in the case of independent assets

In this section we will prove that our schemes satisfy the early exercise
constraint. Our analysis will only cover the case of independent assets, i.e.
we will assume the

p=0

throughout this section. Unfortunately we have not been able to derive sim-
ilar results in the correlated case. However, such problems will be addressed
by numerical experiments in Section 5.

4.1 Analysis of the explicit scheme

Theorem 1 Assume that p = 0 and that C > rE. Then the approrimate
option values generated by the explicit scheme (36) satisfy

Py > max(q(z,y;),0), i=0,....,]+1,j=0,...,.J+1 (39
andn=N+1,N,...,0, provided that

h2
At < ) 40
o122 + o9yi + (r — D1)hzoo + (r — Do)hyso + Th2 + %hZ (40)




Proof. In the case of independent assets the function F', defined in equation
(36), takes the form

F(V1,Va, V3, V4, V5, V6, V2,q,7,y) =
b(y) V2 + a(z) V3
+[1 — 2a(z) — 2b(y) — c(z) — d(y) — rAt] V4
+a(z) + ()] V5 + [b(y) + d(y)] Vs

eCAt
—_ 41
Vi+e—q’ (41)
ie. e(z,y) =0 for all z,y > 0, see (35). Clearly, for all z,y >0
OF OF OF OF
gL oz T o s 42
BVQ’B%’BV},’an_O’ (42)
and for V, > ¢q
oF
> 4

provided that At satisfies (40).
Assume that the inequality (39) holds at time step t,. From the defini-
tion (36) of our scheme, and inequalities (42) and (43), we find that

-1
P = F(0,P 1, Py, P, Pl js P, 0, 4G Tis yy) - (44)
> F(0,4ij-1,0i-1,j, 9,5 Gi+1,5> Gij+1 0y Qijs Tiy Yj)-

Recall the definition (18) of the payoff function ¢ at time ¢ = T' of the basket
option. Thus,

gij—1 = Gij +agh, ¢i—1;=gqi;+ aih,
Git+1,j = ¢ij — ath, g j11 = qij — ash,

and consequently

prto> bjth + a;a1h + Q. — ’I"Atqi,j — [ai + c,']a1h — [bj + dj]azh

i,j =
eCAt
Qij T €—Gij
= Qij— TAtqz',j — (’F — Dl)%xialh — (’F — DQ)%ijtQh + CAt
= ¢ij— ’I‘Atqi,j — TAt(.’EZ'Oq + ’ijtQ) + D1 Atz;aq + DQAtijZQ
+CAt

Y

95 — ’)"Atqi’j — TAt(E - qi,j) + CAt,
where we have used the definition (18) of ¢q. Therefore, if C > rE then

P> gij+ (C = rE)At > g; .
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Furthermore, from equations (41) and (44) and the assumption that P}

satisfies (39), i.e. P/, > 0 and P[; > ¢; 5, we find that

n—1
Py 20

and, hence the desired result follows by induction. =

4.2 Analysis of the semi-implicit and fully implicit schemes

Theorem 2 For every C > rE the the approximate option prices {PZ”]}
defined by the fully implicit scheme (37) satisfy

P; > max(q(wi,v;),0), i=0,...,7+1,j=0,...,J+1, (45)

andn=N+4+1,N,...,0. Similarly, if C > rE, and in addition
€

At <
t_TE’

(46)

the numerical option prices generated by the semi-implicit version of (37)
satisfy the lower bound (45).

Proof. In a straight forward manner it follows that the difference
uiy =Pl — @

between the approximate option value P”; and g, used in the payoff function
at expiry (18) and (23), satisfies the equation

[1+42a; + 2bj + ¢; + dj + rAt]u},; =
eCAt

n
i,j+1 T n+1/2

+[b; + dj]u —rAtE,

T €= dij

cf. equation (38) (and recall that p = 0, i.e. e(z,y) =0 for all z,y >=0).
Next, by defining

n __ 3 n
u” = minug;

%]

it follows that

[1-|—2ai+2bj-|-cz~+dj-|—7'At]u" >
uZ’J[l +bju" +a;u” + [a; + ] u"
eCAt

n+1/2
Upy T E— iy

+[bj + dj]u” + — rAtE,
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where k and [ are indices such that uZ’l = u". Hence, we conclude that

CAt
[+ rAfu® > ultl + — — rALE. (47)
) TL+1/2
Upp T E—ij

Having established inequality (47) the result follows exactly as for the
single-asset option problem analysed in [11]. The rest of the proof is therefore
omitted.

|

5 Numerical experiments

In the derivation and analysis of the schemes above we only assumed that
the boundary conditions fulfilled the constraint (4), imposed by the early
exercise feature of the contract. Clearly, in order to perform numerical
experiments we need to fully specify these boundary conditions. Since we
are considering put options the contract gets worthless as the price of either
of the assets tend to infinity, i.e.

see equations (16) and (17). Next, it follows from the lognormal distribution
model of the assets, cf. e.g. [14], that if one of the assets is zero at time ¢*
then the asset will be worthless at any time ¢ > t*. Hence, it follows that
g1 and g9, in equations (14) and (15), are the solutions of the associated
single-asset American put problems,

2

2 28 g1

N o5z
or

0
991

1
5 —i—(r—Dl)x%—Tgl:O forz > z(t) and 0 <t < T,

ox
48

g91(z,T) = max(E — ay2,0) for z >0,

0
S, ) = —ai,

(48)

(49)

(50)
gl(j(t)at) =E- alj(t)a (51)
$lingogl (z,t) =0, (52)
#(T) = E/a, (53)
gi(z,t) = E —ayxz for 0 <z < z(t), (54)
and a similar problem for go. Here Z(¢) represents the free (and moving)
boundary, see e.g. [7], [10] or [14].

In all the experiments below we will apply the penalty method, derived
for single-assets problems in [11], to compute an approximate solution of

11



(48)-(54), i.e. to compute (g1)7 and (g2)} in equations (26) and (27).

The following model parameters are used throughout this section,

r=0.1,

o1 =0.2, o9 = 0.3,
a; = 0.6, as = 0.4,
D, =0.05, Dy =0.01,
E =1.0,

T =1.0.

The correlation parameter p is identical to zero in the independent case,
and p = 0.25, 0.5 and 0.75 in the correlated cases. In order to perform
simulations, we must choose an upper limit for the solution domain, that is
a domain where option values outside are regarded worthless. For our set
of model parameters, we have used T, = Yoo = 4.

The implemetation of the finite difference schemes is done whithin the
Diffpack? framework.

Numerical results for the fully implicit scheme are not provided, based
on the lack of efficiency of the non-linear scheme examined in [11].

In order to illustrate the properties stated in Theorem 1 and Theorem
2, we compute the difference between the numerical solutions and the early
exercise contraint, i.e. we compute

¢ = min(F}; — max(gi;,0)), (55)

. 2,7
Qg

for different values of e.

5.1 Independent assets

We first compare the explicit and semi-implicit schemes with respect to
effieciency, i.e. we compare the CPU time for given spatial resolutions,
choosing time step sizes according to (40) for the explicit scheme and (46)
for the semi-implicit scheme.

The linear system of algebraic equations in the semi-implicit case is solved
with a stable bi-conjugate gradient method, called Bi-CGSTAB c.f. [12], us-
ing the modified incomplete LU factorization, MILU, as preconditioner3. We
have used a relative residual convergence criterion for the iterative solver,
i.e. the iteration process was stopped when ||r¢||/||ro|| < 10, where ry
represents the residual vector at iteration k.

2See [6] for further information regarding the Diffpack library.
3For analytical and numerical studies of preconditioned iterative solvers confer e.g. [4]
and [9].
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Table 1: CPU time comparision of the explicit and semi-implicit schemes.
We choose At to satisfy the bounds given in (40) and (46). We have
uniform mesh size, N = I - I, where I is the number of nodes in each space
direction. In all experiments, ¢ = 0, c.f. equation (55).

Explicit Semi-implicit
h N € CPU-time At CPU-time | At
0.1 | 1681 | 0.01 1.4s 4.5-1073 1.3s 0.1
0.05| 6561 | 0.01 20.4s 1.2-1073 5.3s 0.1

0.01 | 160 901 | 0.01 | 1.28-10%s | 4.8-10~° 157.4s 0.1
0.1 | 1681 |0.001 2.0s 3.2-10°3 11.2s 0.01
0.05 | 6561 |0.001 22.5s 1.1-1073 45.4s 0.01
0.01 | 160 901 | 0.001 | 1.29-10%s | 4.8-107° | 1.2-10%s | 0.01

The result are given in Table 1. We observe that the severe restrictions
on the time step size in the explicit case makes this scheme slow for fine
grained meshes. On the other hand, we experience fast convergance of the
preconditioned iterative solver used in the semi-implicit case. Typically, the
BICGSTAB iteration converges in 5 iterations. Together with the mild re-
striction on the time step size, the latter method is the most attractive as
the mesh is refined.

In Section 4, we showed that when certain conditions on the time step size
and penalty function are satisfied, the early exercise constraint is fulfilled in
a discrete sense. We want to test the sharpness of the properties expressed
in Theorem 1 and Theorem 2 by violating these restrictions, looking for
negative values of ¢.

We start by increasing the time step size by 15% for the explicit scheme.
When € = 0.01, ¢ = —4.8 - 10*® which clearly violates (39).

We also break the milder restriction for the semi-implicit scheme by
choosing At = 1072 and € = 10™%. Again, we experience negative values of
¢, ie. p=—-9.7-1072.

Finally we subtract 10% from the constant C in the penalty term, i.e. we
choose C' = 0.9 - rE, in the semi-implicit case. We use € = 1072, At = 1072
and h = 0.1 in this experiment. Now the penlaty term is weaker, exerting less
force on the solution as it approaches the barrier. We obtain ¢ = —6.7-1074,
thus we are not able to keep the solution on the proper state space.

5.2 Correlated assets

The results in Section 4 are obtained by assuming that the underlying assets
are independent. We provide a range of numerical experiments indicating
that the early exercise constraint is fulfilled in the case of correlated assets
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as well. We choose different values for the correlation parameter p between

Figure 1: A plot of the solution obtained by the semi-implicit scheme, at
time ¢ = 0 of the two-factor model problem with correlation p = 0.5. We
have used € = 1072, Zoo = Yoo = 4.0 and h = At = 10~

assets S1 and So, p = 0.25, 0.5 and 0.75. The experiments given in Table 1
has been run with the new correlation parameter settings, and in all cases
¢ = 0, thus the early exercise constraint is fullfilled for both schemes.

A plot of the numerical solution computed by the semi-implicit scheme
at time £ = 0 for p = 0.5 is given in Figure 1.

Remark

In the case of correlated underlying assets, we can construct a final condition
that satisfies the early exercise contraint, but leads to a solution violating
this constraint at the first time step. To see this we consider (34), and let
g1 :O'QZO',EZ1,(112042:1/2,p:1/2andV1:‘/QZVZLZV'E,:VG:
V7 = 0. We consider a mesh point far away from the barrier, i.e. x = 2F
and y = 3z. Then the function F, defined in equation (34) will be negative
provided that
h2eC

o%(e+3)
However, for the final conditions on the form (9), which makes financial
sense, this behaviour was not experienced in our numerical experiments.

Va > (56)
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For other contracts, this effect might be seen. Further investigations should
be carried out in order to provide further insight into this matter.

6 Conclusion

We have presented a penalty method for solving multi-asset American put
option problems. An explicit, semi-implicit and a fully implicit finite differ-
ence scheme utilising a penalty term have been derived. For independent un-
derlying assets, conditions on the discretization parameters and the penalty
term have been established that assure that the numerical solution satisfies
the constraint arising from the early exercise feature of the contract.

We have run several numerical experiments for the explicit and semi-
implicit schemes. We prefer the semi-implicit scheme to the explicit for
fine grained meshes due to the computational efficiency of the semi-implicit
scheme. Experiments indicate that the constraints derived in Section 4
are sharp. In the case of correlated underlying assets we have not achieved
similar theoretical results. However, experiments indicate that for our model
parameters, the solution of the explicit and semi-implicit schemes satisfy the
early exercise constraint. We finally present an example final condition that
leads to violation of the early exercise constraint for the explicit scheme in
the correlated case.
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