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1 Introduction.

Optimal or Bayesian filtering in state space models is a question of comput-
ing series of linked numerical integrals where output from one is input to the
other (Bucy and Senne 1971). Particle filtering can be regarded as techniques
where these integrals are solved by replacing the complicated posterior densi-
ties involved by discrete approximations, based on particles (Kitagawa 1996).
There is evidence that the numerical errors as the process is iterated often sta-
bilize or at least do not accumulate sharply (see section 2.5). Such filters can
be constructed in many ways. Most of the contributions to this volume em-
ploy Monte Carlo designs (see also Doucet (1998) and the references therein).
Particles are then random drawings of state vectors under the current pos-
terior. This amounts to Monte Carlo evaluations of integrals. Numerically
inaccurate, but often easy to implement and practical, general methods to
run the sampling have been developed. Alternatively, particles can be laid
out through a deterministic plan, using more sophisticated and more accurate
numerical integration techniques. This approach has been discussed in Kita-
gawa (1987), Pole and West (1988) and Pole and West (1990), but recently
most work has been based on Monte Carlo methods. To some extent Monte
Carlo and deterministic particle filters are complementary approaches, and
one may also wonder whether they may be usefully combined (see Monahan
and Genz (1997) for such a combination in a non-dynamic setting). Emphasis
in this paper is on deterministic filtering. A general framework can be found
in the above mentioned references and in West and Harrison (1997)[Section
13.5]. We shall present a common perspective in the next section, where our
contribution will be on design issues.

Deterministic filtering could be the method of choice when the state process
has low dimension and high numerical accuracy is wanted. Our applications,
which are a group of statistical problems from population biology, is of that
type. The biological signals in some of the examples in Section 3 are ex-
tremely weak, yet governed by well-defined stochastic models coming from
basic theory on fluctuations of animal populations. The scientific objective is
understanding the underlying mechanisms. This means model identification,



and in a frequency context, computation and maximization of likelihood func-
tions. Filtering is then a mean to compute such quantities rather than an end
in itself, but the computational problems remain much the same as in engi-
neering where the interest is usually the filtering estimates. Even though our
statistical applications are off-line, computer speed is still highly important,
since the computations are often repeated many times to estimate uncertainty
through bootstrapping. One difference from engineering, however, may be the
attitude towards Monte Carlo error. In ad-hoc situations where a filtered es-
timate is used for, say guidance or control, added uncertainty that is a small
fraction of the total may not matter much. In a context of basic science,
as in Section 3, this could be different, and Monte Carlo error in likelihood
evaluations can be awkward if the function is to be maximized. Various types
of computing likelihoods will be compared in Section 3.

2 General 1ssues.

2.1 Model and exact filter.

We are dealing with a discrete time vectorial process {x;} in R"*, observed
indirectly through another process {y:} in R™. The framework is a Markov
model for {x,} based on (possibly time-varying) transition densities p(x;|x;_1)
and conditionally independent observations {y;} given {x;}. The latter usu-
ally means that the conditional density of the vector y;. 2 (¥1,--.,¥¢) given
the corresponding x; 2 (x1,...,%;) factors into p(y1.4|x1:) = Hizl p(ys]xs),
where p(y|x;) is the density of y, given x,. The letter p will throughout
be used to designate density functions of various kinds, for example in addi-
tion to those above, p(yi.) for the density function of yi... These functions
may depend on ¢ themselves, say p;(y1.) or ps(ys|xs) rather than p(yq.) or
p(ys|xs), but it is not necessary to include this in the notation.

The exact filter for {x;} can be written as a set of recursive integration

equations (Bucy and Senne 1971). Start with p(xo) 2 p(x0|yo) as prior for
Xo and calculate recursively

P(Xe|yi:e-1) :/P(Xt|xt—1)P(Xt—1|Y1:t—1)dXt—1 (2.1)
Cy :/p(Yt|Xt)p(Xt|y1:t—1)dXt (2.2)
P(Xe|y1:e) :Ot_IP(Yt|Xt)P(Xt|Y1:t—1), (2.3)

for t = 1,...,T. The normalisation constants {C;} then produce the log-
likelihood function of observations y;.7 through

log{p(yr.r)} = Y _ log(C\). (2.4)



The relationships (2.1-2.4) are well-known and are consequences of {x;} being
a Markov process and {y;} being conditionally independent given {x;}. The
proof is an elementary application of Bayes’ formula.

2.2 Particle filters.

Computation of the posterior densities p(x¢|yi.) and the log likelihood func-
tion p(y1.r) is an exercise in high-dimensional numerical integration. General
purpose integration methods are bound to be inefficient, and it seems better
to design iterative schemes imitating the exact one (2.1-2.3). Particle filters
proceed in this manner through discrete approximations to the exact posterior
distributions. Let p(x;|y1.:) be some discrete analogue to the exact density
p(x¢|y1+). The points XELZ) on which p(x;) assigns positive probabilities are
known as the particles. Their number N; may vary. Suppose a reasonable
approximation ps_i(X;—1|y1:¢—1) is available at time ¢ — 1. When inserted for
the exact density p(x;—1|y1:.—1) on the right in (2.1), we obtain

Ni_q

Bxelyreet) = Y p(xelx)px, [yracs). (2.5)

i=1

The main point of the design is to ensure that this is a good approximation
to the exact predictive density p(x:|y1+-1). When (2.5) replaces its exact
counterpart in (2.3), we immediately have

p(xelyie) = 7 p(yelxe) (el yriemr), (C; a constant), (2.6)

as approximate update density. To complete the recursion, (2.6) must be
replaced by a particle approximation p(x;|y1.:). Filters proposed in the liter-
ature vary in how this step is carried out. Most of the papers of this volume
use Monte Carlo sampling. If the particles XELZ) are drawn randomly from (2.6),
the probabilities become ﬁ(Xgi)|Y1:t) = N;'. We may enhance numerical ac-
curacy by importance sampling (Doucet 1998), the probabilities are then the
importance weights. Many tricks have in recent years been invented to obtain
computationally fast sampling.

Stochastic generation of particles corresponds to Monte Carlo evaluations
of integrals. An alternative is to use other, more accurate integration meth-
ods. This raises, as we shall see in Section 3, various issues regarding design,
but to understand this, we first review elements of the theory of numerical
integration.

2.3 Gaussian quadrature.

Consider the case of a scalar process x;, denoted = in this sequel. The in-
tegrands in (2.1) and (2.2) are of the form h(x)p(z) with h some function



and p a density. Evaluations of integrals are often efficiently carried out by
Gaussian quadrature. The simplest among these rules is the Gauss-Legendre
method. The standard form is

[ baptaris = 3 AOnEpeR) + 6 (2.7

where the abscissas €1, ..., €0 and the positive weights v, ... ~(™) are
tabulated in numerical literature; see also Press, Teukolsky, Vetterling and
Flannery (1992) for a simple computer program. For a general interval (2.7)
changes into

B m
[ baptade = Y w0 pa) + &, (2.5)
where
20 = %(A B4 (B—AED), ol = %(B —ARD.(2.9)

The error term & is
(m!)*
{(2m)!1}3(2m + 1)

where (ph)(?™)(w) is the derivative of order 2m of ph at some w € (A, B).
The error term thus vanishes if the integrand is a polynomial of degree < 2m,

€= (B Ay (ph) ™) (), (2.10)

and the accuracy is almost startling otherwise. Assuming B — A = 10, £
being of order 107'° times the derivative for m = 10 and of 1073? for m = 20

for B— A =10 (but higher order derivatives often grows!).

The integral approximation (2.8-2.9) has a probabilistic interpretation.
Suppose the probability mass of p is negligible outside the interval (A, B).
Define

f)(:r:l) = w(i)p(:r:(i)) (2.11)

and insert ~ = 1 in (2.8). Then

m B
> i)~ [ pleyde 1,
=1

A

so that p(z™M), ..., p(z(™) is almost a proper probability vector. Normali-
sation is usually not worth the bother. Let p be the distribution assigning
these probabilities to z(), i = 1,...,m. Then (2.8) expresses that p is an
approximation to p in the sense that the expectation of h(z) for any smooth
function A is almost equal for the two distributions. Note that p(z(?) and
p(z)) deviate.



Other quadrature rules produce similar particle approximations through
an idea similar to importance sampling. Choose some density ¢ and note

that [hp = [ hRy where R = p/t. Quadrature with ¢ as a weight function
yields

[ #wtade = [Ma)R@)eE) = 31O RE) L (212

where abscissas ) and weights v(, which depend on 1, differ from those
in (2.7). The error term now vanishes if AR is polynomial of degree less that
2m. The particle approximation (similar to (2.11)) becomes () = ¢ and

() = 4Op(a) /i al9).

2.4 Quadrature filters.

Quadrature filters are constructed by replacing the density p(x:|y1..—1) in (2.6)
by a particle approximation based on the quadrature formulas in Section 2.3.
This leads to the following recursive scheme, where

Ni_1
PO lyra-1) =Y pxt X p(x, 1) (2.13)
7=1
Nt . . .
Co =" plyexi)wl x|y 1) (2.14)
=1
px Ny 1) =C7 p(ye i) p(x) |y 1), (2.15)

fori=1,..., N;. Implementing the scheme (2.13-2.15) when n, > 1 raises a
number of problems. The pretty mathematical theory of Gaussian quadrature
described above is inherently one-dimensional and must be applied sequen-
tially, one state variable at a time. The weights w(? in (2.14) and (2.15) will
then be products of weights from each of the n, variables; see Section 3.2
for details. This also suggests that the computational requirements will grow
rapidly with n,. The number of operations in quadrature filtering is propor-
tional to N? for each step of the recursion. When n, = 1, as in the example,
N; equaled the order m of the quadrature rule. But if n, abscissas are used
for each variable of the state vector, then N, = m”"*  easily a huge number.
A particle representation of n, independent variables needs actually such a
large N; to be accurate, but if there are correlations, it may be possible to
cut it down.



2.5 Numerical error.

It is possible to gain some insight into how numerical error propagates by
elementary methods. Let

1t i
8 =log{p(y1:)} — log{p(y1:)} = > logCs — Y log C, (2.16)
s=1 s=1

be the accumulated error in the log-likelihood function, and define

€(Xt|Y1:t—1) = GXP(5t—1)ﬁ(Xt|Y1:t—1) - P(Xt|Y1:t—1) (2-17)

as an indicator of numerical error present in p(x;|y1..—1). The factor exp(d;—1)
is to avoid normalisations in the recursion (2.18) below.

By elementary manipulations it is easily proved (see appendix) that

€(Xt+1|y'1:t) = Ct_l /P(Xt+1|Xt)P(Yt|Xt)€(Xt|Y1:t—1)dXt + U(Xt+1), (2-18)

where

n(Xi41) = exp(cst)[zp(xtﬂ|x£“>ﬁ<x£“|yt> - / (et [xe) (e |y 1:6)dxe].
Z (2.19)

If we insert (2.3) into (2.1) it emerges that the sequence of posterior densities
{p(x¢]y:=1)} themselves satisfy exactly the same recursion (2.18) but for the
term 7(x;41) which signifies the contribution of the numerical error at time
t. Suppose now that r; is the smallest real number for which

|le(x¢|y1:0-1)| < rep(Xe|yiie-1) (2.20)

so that r, controls the relative error in p(x;|yi4—1). Then, by inserting (2.20)
in the integrand (2.18) it follows that

41 S ry + f](XH_l), (221)

where

N(Xeg1) = N(Xeg1)/P(Xeg1 Y1) (2.22)

is the relative numerical error introduced at time ¢.

Relative error in the approximations diminishes through the next step of
the scheme. New error is brought, as well, but the old relative error does not
blow up as the recursion is progressed.



It is for Gaussian quadrature filters possible to give a rigorous error state-
ment. Suppose we have been able to find approximations so that
Ni_1
1w p(x1x ) p(x, [y 1) = P yemn)] < ep(xPyiany)  (2.23)
j=1

for all 7,¢. Note that this condition is for p(XEj)b’l:t) known and for a finite

set of XEQI values, which is always possible to obtain my choosing N; large
enough. It is then proved in the appendix that

repr < ri(l+¢)' +e. (2.24)
which implies that
re < (1+¢) - 1. (2.25)
By defining
e(yielyrie—1) = exp(de—1)p(ye|y1:-1) — p(¥e|yra-1) (2.26)

and replacing condition (2.23) with

N
S w0l pye ) p(x [y e-1) — p(yelye-i)] < epxPlyia)  (2:27)
=1

for all ¢, it is by similar arguments possible to show that

le(yelyre—1)| < [re(1 +¢) + elp(yelyi:e-1) (2.28)
But

e(yilyra-1) = exp(8,1)Cy — Cy = [exp(8r) — 1]p(yily1-1)
which results in that
lexp(6:) — 1] <r(1+e)+e < (1+e)t =1 (2.29)
and consequently that
§ < (t+1)log(1 +¢), (2.30)

that is, the error is approximately linear in ¢. This shows that although
the error will increase with time, it will not accumulate sharply. Note that
in general, a better limit for the error in the likelihood evaluation is not
possible. This can be seen by considering the situation where all observations
are independent, where it is straightforward to show that the error involved
in the computation of the log-likelihood is the sum of errors at each time
point.



2.6 A small illustrative example

In order to compare the quadrature filter with the Monte Carlo filter, we
will consider the following one-dimensional nonlinear reference model (Doucet

1998):

T =520 T 25@ + 8cos(1.2t) + e (2.31)
i
) =2 + o, (2.32)

where zq ~ N(0,5), e; and v; are mutually independent white Gaussian
noises, e; ~ N(0,02) and e, ~ N(0,0?) with 6> = 10 and o? = 1. Data were
simulated according to this model for ¢t = 1,...,T = 100. The quadrature
filter was implemented as described in Section 2.4, while rejection sampling
with the predictive distribution as a proposal was used for the Monte Carlo
filter. Although more effective Monte Carlo filters could be used, our main
issue here is to compare the variability in the result, making the choice of
Monte Carlo filter less important.

The filters were first run with a large number of particles (N, = N = 500
for the quadrature filter and N, = N = 2000 for the Monte Carlo filter). The
results from the two filters agreed in this case, giving us the “true” posterior
as a reference. In Figure 1 the estimates of the predictive density p(xiy1|y1.¢)
for t = 100 are displayed. For both filters, N = 50 were used. The true
density is given by the solid curve. The Monte Carlo filter (long dashed
curve) is able to find the two modes of the density, but is somewhat wrong
on the weights on these modes. The quadrature filter (dotted) curve, on the
other hand, is able to obtain the true density very well on almost all parts.

—zo ~10o o 1o =o

Figure 1: True and estimated predictive density p(x101|y1:100) for the reference
model. The true densily is given as a solid curve, the Monte Carlo filter
estimate is given as a long dashed curve, while the quadrature estimate is
given by dotted curve.



3 Case studies from ecology

3.1 Problem area and models.

Population biology is an area where optimal filtering is likely to reap sub-
stantial benefits, and we shall in this section indicate what can be achieved
with such methods. It is generally recognized that animal populations oscil-
lates stationary due to feedback links between predator and prey and interac-
tions with environment. A reasonable mathematical framework, see Royama
(1992), Stenseth, Bjgrnstad and Falck (1996), is to impose non-linear autore-
gressive models of low order on logarithms of abundance. Parameters of the
models, influenced by vegetation and climatic conditions, might vary between
sites. There is a chronic shortage of data. The usual type are the number of
animals caught in traps annually or seasonly, sometimes gathered by scientific
experiments, sometimes through proxies like the number of skins delivered to
a company. The famous lynx series, used in countless textbooks on statistical
time series analysis (for example Tong (1990)) are of the latter type.

The traditional approach in ecology (Stenseth, Bjgrnstad and Saitoh 1996,
Stenseth, Falck, Bjgrnstad and Krebs 1997, Stenseth, Falck, Chain, Bjgrnstad,
Donoghue and Tong 1998)) is to identify the data with the animal popula-
tion, but it is clearly more correct to regard data and population as different
entities and employ a state model. This yields a more realistic picture of
statistical uncertainties, deal with zero observations and open for the utiliza-
tion of sources of data that have traditionally not been used scientifically; see
below. Populations are, on first approximation, described by linear autore-
gressive models on log-scale, say

Ty = 1Ty F ... ATy + €4y (3.1)

where {e;} is independent noise with zero mean and constant variance. The
mean of z; 1s not estimable under the measurement models introduced below
and has been subtracted out. Thus, in (3.1) x4 is the difference from the long
term average. Interest is directed towards the period (i.e. the location of
the maximum of the spectral density), the autoregressive coefficients (which
have ecological interpretations) and the order ¢ of the series (which relates to
ecological hypotheses).

The linear model (3.1) is useful, but it fails to deal with the hypothesis that
the built-up phase of animal abundance tends to be slower than when the
population is on the decline. There is for the lynx empirical evidence support-
ing such an hypothesis; see Stenseth et al. (1997). One possibility, utilised by
these authors, is to impose a TAR (truncated autoregressive) model of the
type outlined in Tong (1990). The single autoregressive relationship is then



split into two separate ones, i.e.

] (3.2)
by + ... bz e, il xi_g>0.

S {G1$t—1 +.argt ey, ifxi_g <0
;=

This expresses that the population changes into a different phase (i.e. decline)
d time units after the threshold # has been passed. Mathematical properties
of these models are summarised in Tong (1990).

We shall consider three different measurement regimes {y;}. The most
common ones are counts (based on trappings). The natural model for y;
given z; is then

Y

pluden) = Srexp(—A), log(h) = a+ B (33)

£
Note that the parameter 3 influences the distribution of {y;} through Ao,
where o, is the standard deviation of the series {e;} in (3.1) and (3.2). It is

therefore not possible to estimate 3 and o, jointly. The same problem occurs
in the other observation models (3.4) and (3.5) below.

Other types of data are categorical based on judgments by experienced field
observers. These sources of information have never been utilised scientifically,
and it would be a welcome additional source of information in population
biology if they could. One type of assessment is binary, y; being 0 or 1, y; = 0
signifying a population below average and y; = 1 above. Such judgments are
with errors. There can be no precise definition as to what these categories
precisely means. A plausible model is

expla + px
p(ye|xs) = pi* (1 — py)¥, P = p( By)

1+ exp(a + /3:1:,5)’ (3.4)

Here 3 is close to zero for bad observers and very large for good ones. The
other parameter « captures bias in observer evaluation (upwards if & > 0
and downwards if a < 0). Other observations may be in terms of differences
&y — x4 (ratios on the original scale). We shall in the next section discuss an
example where y; € {—1,0,1}, where y; = —1 means decline from one time
point to the next, y; = 0 signifies (at most) moderate changes and y; = 1
growth. A possible model is now

cexp(—an - 5(5171‘ - l’t—l)) ify,=—1
plys|zs) = < ¢ ify=0 (3.5)
cexp(—ay, + B(xy — x4-1)) ifyr = —1,

where ¢ is a constant forcing the three probabilities to sum to one. Interpre-
tations of the three parameters a,, a;, and 3 are similar to those in (3.4).



3.2 Quadrature filters in practice.

Constructing quadrature filters is the question of selecting particles ng) and
their associated weights w,@ in the scheme (2.13-2.15) above. In the present
instance several issues are involved in this: How should joint particle grids in
several variables be defined? How is the discontinuity in the TAR model (3.2)
handled? The process {x;} describing the population is stationary and varies
within a well defined, in practice limited region. Should that be utilised?

It is most convenient, and no loss in ideas, to answer these questions when
the autoregressive processes (3.1) and (3.2) have order ¢ = 2. The state
vector at ¢ is then (x4, z,_1) with state representation

()= 5)Ga)+(5) e

Note the zero noise in the second component. The relation (2.1) of the exact
filter becomes

P(It,ﬂft—1|y1:t—1) :/ P($t|$t—1,$t—2)p($t—1,$t—2|y1:t—1)d$t—2- (3-7)
which is a unidimensional integral in spite of the state vector having two
variables and would have been univariate even for general ¢q. Autoregressive
processes are special in that only one (of ¢) relationships of the state represen-
tation has non-zero noise. This is responsible for the univariate integral (3.7)
and is actually a blessing. A general quadrature filter requires O(N?) opera-
tions for each step ¢ of the recursion, but the constructions below are much
faster.

However, the degenerate noise in (3.6) makes it less clear-cut how the joint
grid for (x4, z;-1) should be constructed. At first glance it may seem natu-
ral to use the version on the left of Figure 2, which utilizes the correlation
structure between z; and x;_;. Skew grids, as in Figure 2 left, follows by
applying univariate particle approximations to the two factors sequentially.
First quadrature abscissas a:gj_)l (needed for later integration) are laid out for
x;_1 and the second approximation is conditioned on the first. The problem
with this design is that the number of particles will grow explosively. Sup-
pose there are N;_; different particles for z;_;. Each of them is unchanged
as it moves ahead and each gives birth to m different particles for x;, making
Ny = mN;_;. One way to keep this under control is to change the grid with
fewer particles before progressing, but that requires the posterior densities to
be interpolated numerically which add to the error and is not cheap compu-
tationally. Interpolation from skew grids, such as that in Figure 2 left, is also
cumbersome to implement, especially in higher dimensions.

We have tested such versions, and they certainly work, but for stationary
autoregressive processes we tend to prefer the simpler solution in Figure 2
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Figure 2: Particles for (x;,x¢_1y as Gauss-Legendre abscissas in each dimen-
ston. On the left: Particles constructed by conditioning x; on x,_1, on the
right: particles constructed independently in each direction.

right where the particles have been laid out as quadrature abscissas for the
marginal densities of the two variables. This is less parsimonious as approxi-
mations to the joint distribution, but now the number of particles can be kept
constant as the algorithm progresses without interpolation. In detail these
methods work as follows when based on Gauss-Legendre quadrature:

First a particle approximation to the density p(zo,z_1) is needed as ini-
tialisation. In the linear, Gaussian case the corresponding distribution has
zero means and an easily computable covariance matrix; see Priestley (1981).
If o, is the standard deviation, we may apply (2.9) to each variable with
A = —Byo, and B = Byo, for, say By = 5. The square with edges
(£ Boo,, £ Boo,:) then contains virtually the whole probability mass of the
initial density p(zo,2_1), and the bivariate particle approximation becomes

Initialisation

plag’, ) = plag”, o0 By 04,

Closed form expressions for the joint density p(xo,z_1) is rarely available
other than in the Gaussian, linear case. A technique which works well (and
which was used for the TAR model) is to run the main recursion below a
suitable number of steps without data from a start such as in (3.8). Since {z}
by definition is stationary, the recursion will settle at steady state. For the
TAR model, where simple necessary and sufficient conditions for stationarity
are not available (see Tong (1990)), this is actually a way of checking for
stationarity.

Next comes the main recursive step. When adapting the general scheme
(2.13-2.15) by means of Gauss-Legendre integration we obtain the following
method (with NV; = N for all ¢):



Algorithm 3.1 (Main recursion)
Choose A; and By (see text).

Put
1 .
=5 (At Bit (B = A)¢Y), (3.9)
1 .
w; :§(Bt — At)fy(l). (3.10)

Update the probabilities by

N
z ; k ~ ; k
Pl 2D yrar) Zp<:c£ Na? ) plal?) o)), (3.11)
(28, 2D yr) = (yt|:ct V20 29y )w wl?, (3.12)
ZZ xt 7$t 1|ylt) (3.13)
Z: ]:
Pl 2D yr) =Crti(aD, 2D ys.e), (3.14)

fori,7=1,...,N.

The form of the density functions p(y:|z:, x:—1) (equation (3.12)) will vary for
the different measurements models. Extension to higher order processes is
straightforward. A modification is needed for the TAR model to cope with
the discontinuity at #. The interval (A, B;) must now be split into two pieces,

e. (A4, 0) and (0, B), and the Gauss-Legendre abscissas applied to each part
(if 6 & (A;, By) only one of the pieces is needed). The algorithm is in all other

respects as above.

Several strategies can be used for selecting A; and B;. The simplest is to
keep them unchanged, i.e. A; = Ag and B; = By. The grids are then exactly
the same everywhere, and the first two lines of the al%orlthm disappear. One
advantage is that the transition probabilities p( :z:t |$t 15 :Ct ,) do not change
with ¢ and can be prestored. This is our preferred method when dealing with

the very noisy observations (3.4) and (3.5), but it is a possibility only because
(5 .(9)

{z:} is stationary. In reality many of the particles (x;”,z,”;) have very low
probabilities a priori and can be removed with no noticeable effect. When
g = 3, this trick can lead to huge reductions, up to several hundred times.
When the data is more informative, as under the Poisson model (3.3), this
strategy of fixed particles is not effective, and it is better to adapt (A,, B;) for
each {. There are many ways to do so. A rough way is first to compute, from
the observed y;, an interval where z; is highly likely to be located, then a
similar one from the prediction density p(x:|y1.+—1) and use their intersection
as (As, By). This worked well in all our examples. Note that this must be
done prior to finding updated means and variances of x;, and it is not a good
idea to allow the computer to spend too much time on this detail.



Scenario Population Observations
a ay o. | Type o g T S
I —0.5 —0.5 1.0 | Poisson (3.3) 1.0 1.0 50 1
IT —0.5 —0.5 1.0 | Logistic (3.4) 0.0 2.0 50 1
111 1.5 —0.9 1.0 | Categorical (3.5) —0.8 —0.8 17 100

Table 1: Scenarios for the linear autoregression used in Figure 3. S is the
number of time series and T is the length of each time series.

3.3 Numerical experiments.

Different methods will in this section be used to evaluate likelihoods under
the models in Section 3.1. Results produced by quadrature filters and Monte
Carlo filters will be compared, and we shall for linear autoregression (3.1)
also investigate a simple approximate technique proposed in Schnatter (1992),
which is a special case of the so-called Gaussian sum filter in control engi-
neering (Sorenson and Alspach 1971). Instead of working with particle ap-
proximations in the scheme described in Section 2.2 we then use Gaussian
ones instead; see Schnatter (1992) for details.

We have in Figure 3 computed likelihood functions from simulated data
based on the linear model (3.1) under the three scenarios shown in Table 1,
all taken from estimates obtained from real data. All data are annual. Sce-
narios [ and II represent lemmings or other small rodents. The periods of the
population models (corresponding to the maximum of the spectral density
function) is a little over three years and the length of the series (50 years)
representative for real data. The third scenario is constructed from a real ma-
terial for the Canadian snow shoe hare; see Bglviken, Glockner and Stenseth
(1999). The period is now much longer (about 9.6 years), and the research
question is whether it is possible to recover the dynamics of the animal fluc-
tuations from a large number of short series of 17 years.

It is fairly clear that the categorical data must contain information about
the frequencies of oscillations of the underlying populations, but perhaps not
equally obvious that they can recover other information about the dynam-
ics. We have therefore in Figure 3 plotted likelihood profiles along curves
of constant periods in the (a1, az)-space. The values of the nuisance param-
eters in the measurement models (3.3-3.5) are the correct ones, except on
the lower right where the horisontal axis represent variations of 3. The re-
sults are encouraging. In scenario III (lower half of Figure 3) where much
data are behind the computations, it is indicated that the parameters can be
consistently estimated, in accordance with the theoretical results in Bickel,
Ritov and Ryden (1998). The Monte Carlo effects are there much dampened
as averages of 100 independent likelihoods, one for each 17 year series. The
similarity between methods are great in all cases considered, but the Monte
Carlo versions (based on 1000 replications) for scenario I and II are too erratic



Scenario Population
ai az by by o.
r —0.5 0.0 =05 —-0.7 1.0
Inr 1.0 —04 1.0 —-0.9 1.0

Table 2: Scenarios for the TAR autoregression used in Figure 4. S is the
number of time series and 7' is the length of each time series. The observation
models are equal to scenarios I and III in Table 1.

to optimize by numerical software. By contrast the likelihood surfaces for the
two other methods are smooth. The closeness in shape between the results
from the Schnatter approximation and the more accurate quadrature filter is
noteworthy, and very impressive since Schnatter’s method is extremely fast.
However, there are numerical errors in the level of the likelihood curves pro-
duced by her method. If model fit is to be judged through AIC or some
other likelihood-based criterion, her approximation is not good enough. The
quadrature filter were ran with m = 20 abscissas in each direction in scenar-
ios I and II, but in scenario II1, where the parameters are much closer to the
boundary of the stationary region, it was necessary to raise the number to
m = 50. Computing time were for the Poisson case about 14 seconds for each
likelihood evalulation on an Intel Pentium 200MHz MMX running on Linux
2.0.

A second round of experiments are presented for the TAR model (3.2) in
Figure 4 under the scenarios shown in Table 2. Note that the two regimes are
defined at lag d = 2. This is in accordance with empirical studies (Stenseth,
Bjornstad and Falck 1996). For the snowshoe hare (Scenario 11I’) the model
is the superposition of two stationary regimes, corresponding to periods of
about 12 (a-regime) and 6 (b-regime) years. This reflects prevailing ecological
theory, deduced from studies of the lynx, of a slow growth phase and a faster
decline, but no empirical studies of this nature has as yet been undertaken for
the hare itself. The results portrayed in in Figure 4, is however, encouraging
and indicate that statistical studies may be able to estimate underlying non-
linear effects from categorical data.

It should be noted that for likelihood calculations, Monte Carlo estimates
obtained by running the filter independently for each parameter set is prob-
ably not the thing to do. Some reduction in variability is obtained by using
common random numbers, but in our situation this was not enough to give
smooth enough likelihood surfaces. A more promising alternative is the sim-
ulated likelihood ratio method (Billio, Monfort and Robert 1998), in which
the filter (a smoothed version) is only run for one parameter set (the null set)
and the likelihood ratio can be estimated at all other parameter sets by ratios
of full likelihoods (including the underlying state process). Neither this ap-
proach worked satisfactory in that although a smooth surface was obtained,



the bias was to high for parameter sets not close to the null set.
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Figure 3: Fstimated profile (log-)likelihood curves for the AR(2) process with
Poisson (upper left), binary (upper right) and categorical (lower left and right)
observations. Scenarios are given in Table 1. The x-axis displays the ay
values used, except for the last plot where the x-axis represents 3-values. The
quadrature filter estimate is given as a solid curve, the estimate based on the
Schnatter filter is given as a solid curve with dots (not given in the last plot).
The three dashed dotted curves are different Monte Carlo estimates.
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Figure 4: FEstimated profile (log-)likelihood curves for the TAR(2) process
with Poisson (left) and categorical (right) observations. Scenarios are given
in Table 2. The x-axis displays the ay (by in right plot) values used. The
quadrature filter estimate is given as a solid curve. The three dashed dotted
curves are different Monte Carlo estimates.



4 Concluding remarks

In this paper we have been concerned with filtering for problems with low-
dimensional state vectors. In such situations, deterministic filters may be
preferable. Some results on the errors involved are given. It is shown that
the errors in likelihood calculations propagate linearly in time. However, since
the errors at each step can be made very small with a moderate number of
particles, the linear increase is in many situations not a problem.

Constructing quadrature filters is the question of selecting particles and
their associated weights. In contrast to Monte Carlo filters, where the par-
ticles are automatically laid out in the high-probable regions, particles now
have to be user-specified. Although many sophisticated designs are possible,
our preference is to select the particles marginally on each variable. This
result in many particles with weights close to zero, but this is outweighed by
a much smaller computational burden and easier implementation. Further,
for situations where the information in the observations is sparse, particles
can successfully be specified directly from properties of the stationary distri-
bution.

Deterministic filters are compared with Monte Carlo filters on some simu-
lated data based on models representing animal populations. For these prob-
lems, likelihood-based inference is the primary concern, and large variabilities
in these functions give problems if the likelihood is to be maximised. In such
situations, deterministic filters are superior because of their high accuracy.

A Derivation of numerical errors

Equation (2.18) is verified by first noting that by (2.5) and (2.19)

exp(ds)p(Xeg1|y1:) = exp(dy) /P(Xt+1|Xt)ﬁ(Xt|Y1:t)dxt + n(Xet1)-
Hence
e(Xeq1|yia) = /P(Xt+1|Xt)[exp(5t)f’(xt|}’1:t) — p(Xe|y1)]dxs + n(Xe1),
or, by using (2.3) and (2.6)
e(Xeq1|yia) =
/P(Xt+1|Xt)P(Yt|Xt)[GXP(5f)6t_lﬁ(Xt|Y1:t—1) — C7 ' p(xelyrie—1)]dxe 4+ n(Xe41)

which reduces to (2.18).
The Proof of (2.25) starts with noting that by using (2.14), we may write
N
e(Xet1]y1:e) = exp(dy) Zp(xt-H|X£i))ﬁ(xgi)|)ﬁ:t) — P(Xe1|y1:t)

=1



which can be rewritten to

e(xipilyre) = Y pOcea [x{)exp(8)p(xlyre) — wip(x{”[y1.)] +

i=1
Zp Xt+1|Xt Xt |Y1 t) P(Xt+1|)’1:t)

Now, by using (2.2) and (2.14), the first term is equal to

ZP Xt+1|xt Yt|Xt ) ()[exp(5 )C (Xt [Yii-1) — Ct_IP(XEi)|Y1:t—1)]
which can be rewritten to
Cr Zp (e (el Yol fexp (8- 1)p (< [y1e-1) — p(x|y1a-1)]

by noting that exp(d;) = eXp((St_l)é\tCt_l. The expression in the bracket is
now equal to e(x;|yi..—1), showing that

€(Xt+1|Y1t C ZP Xt+1|Xt Yt|Xt ) ()€(Xt|Y1:t—1) +

ZP Xl‘+l|xt Xt |y1 1) = P(Xet1]yi:e) (A.1)

By (2.20) an upper limit for the first term on the right side of (A.1) is

N
7Y wl p(oxe ) p(ye ) p(x y1m).

=1

which can be simplified to

thwt P Xt+1|xt ) (Xt 1 t)

using (2.2) again. By (2.23), this is less or equal to r:(1 + €)p(xi41|y1:). By
the same condition, the absolute value of the last two terms on the right
hand side of (A.1) is less or equal to 5p(xt+1|yt) Combining these upper
limits gives

e(Xep1|yre) < [re(1 4 ¢) + e]p(xes1|yie)
showing that
rpr <r(l4e)+e

from which (2.25) can be easily proven by recursion.
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