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Terminology

• P is a finite set of possible plaintexts
• C is a finite set of possible cryptotexts
• K is a finite set of possible keys

(keyspace)

• For each k∈K there is an encryption 
function ek: P → C, and a corresponding 
decryption function dk : C → P such that 
dk(ek(x))=x for every plaintext x∈P
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Security characteristics

• Perfect Secrecy (or unconditional 
security):
– The system is unbreakable even with infinite 

computational resources

• Computational Security:
– The perceived level of computation required to 

break the security exceeds, by a comfortable 
margin, the computational resources of the 
adversary
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Perfect secrecy

• A cryptosystem has perfect secrecy if 
pP(x|y) = pP(x) for all x∈P

• In other words: The a posteriori
probability that the plaintext is x, given 
that the ciphertext y is observed, is 
identical to the a priori probability that the 
plaintext is x

• It follows that not even exhaustive search 
through the entire keyspace will give any 
knowledge of the plaintext or the key

• Disadvantage: The amount of key 
needed is at least as big as the amount 
of plaintext
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One-time pad

• The one-time pad is the only known 
cryptoalgorithm that achieves perfect 
secrecy

• Let P = C = K = (  2)n, 
– plaintext x = (x1,x2,x3,…,xn),

– key k = (k1,k2,k3,…,kn), must be truly random!
– cryptotext y = (y1,y2,y3,…,yn)

Encryption:
ek(x)= (x1⊕k1, x2⊕k2, x3⊕k3,…, xn⊕kn)

Decryption:
dk(y)= (y1⊕k1, y2⊕k2, y3⊕k3,…, yn⊕kn)
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Confusion and diffusion

• A good algorithm should ensure a high 
level of confusion and diffusion.

Confusion:
– Relationship between key and ciphertext is as 

complex as possible.
– One bit change in the key should result in 

change in approximately half of the ciphertext
bits.

Diffusion:
– Redundancy of the plaintext is spread out 

over the ciphertext.
– One bit change in the plaintext should result in 

change in approximately half of the ciphertext
bits.
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Symmetric crypto algorithms

• The same key is used for encryption and 
decryption.

• The keys must be secret and shared in 
advance (off-line or by some key 
exchange mechanism)

• Symmetric cryptoalgorithms are used 
mainly to ensure
– Confidentiality (conceal contents of data)
– Integrity (protect data from change)

Encrypt Decrypt
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Stream ciphers

plaintext mi
ciphertext ci
key k
keystream zi

mi

Keystream
generator

zik ci

Properties of a stream cipher:

– encrypts individual characters, one at a time
– the encryption transformation varies with time
– usually fast and simple in hardware
– no need for buffering plaintext or cryptotext
– limited or no error propagation
– much of the theory dates back to around 

World War II and is extensively analysed
– few algorithms published in the open literature
– widely used in telecommunications, radios 

and military communication equipment
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LFSR -
Linear Feedback Shift Register

State polynomial: a1 x9 + a2 x8 +a3 x7 +a4 x6 +a5 x5 +a6 x4 +a7 x3 +a8 x2 +a9 x+ a10

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

• Corresponds to the connection polynomial
x10 + x6 + 1

• If the polynomial is primitive, the LFSR will have 
its maximum possible period 2n-1, where n is the 
length of the LFSR

• Stepping the LFSR once corresponds to 
multiplying the state polynomial with x and 
reducing modulo the connection polynomial

• LFSRs are very often used as parts of a stream 
cipher
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GSM cipher - A5/1
R1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

key
stream

R2

R3

• A register is clocked if its clocking tap
(marked grey) agrees with the majority of 
the three clocking taps.
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Cryptanalysis of A5/1

• 64-bit keys, but in all implementations 10 
bits are set to zero

• Anderson and Roe, 1994
– Guess R1 and R2 (41 bits) and derive R3 

from the output, complexity about O(245)

• Time/memory trade-off (Babbage 1995, 
Golic 1997)
– Complexity O(222) with 64TB diskspace, or

– Complexity O(228) with 862GB diskspace

• Best attack known : Alex Biryukov, Adi 
Shamir and David Wagner, 1999-2000
– Preparation: 248 (carried out only once)

– 2 min known plaintext: key computed in 1 sec.

– 2 sec known plaintext: key computed in a few 
minutes

– Question: How to get hold of the plaintext?
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Block ciphers

Properties of a block cipher:

– maps n-bit plaintext blocks to n-bit ciphertext
blocks

– pure block ciphers are memoryless
– many algorithms in the open literature that 

have been extensively analysed (DES, IDEA, 
AES, etc.)

– widely used in e-commerce and banking

E

mi

ci

n

n

encryption function E
plaintext mi
ciphertext ci
key k

k
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UMTS cipher - KASUMI

C

Fig. 1: Modified MISTY1
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S-boxes: S7
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Decimal Table:

54 50 62 56 22 34 94 96 38 6 63 93 2 18 123 33

55 113 39 114 21 67 65 12 47 73 46 27 25 111 124 81

53 9 121 79 52 60 58 48 101 127 40 120 104 70 71 43
20 122 72 61 23 109 13 100 77 1 16 7 82 10 105 98

117 116 76 11 89 106 0 125 118 99 86 69 30 57 126 87

112 51 17 5 95 14 90 84 91 8 35 103 32 97 28 66

102 31 26 45 75 4 85 92 37 74 80 49 68 29 115 44

64 107 108 24 110 83 36 78 42 19 15 41 88 119 59 3

S9 is constructed similarly, but with 29 = 512 
entries in the table.



9-Mar-04 Ragni Ryvold Arnesen 16

Norsk Regnesentral
Norwegian Computing Center

Key schedule
Secret Key

K 128 bit

Subkey

Ki  (1 <= i <= 8) 16 bit K = K1 || K2 || K3 || ...... || K8
Ki’ (1 <= i <= 8) 16 bit Ki’ = Ki XOR Ci

Key Symbols

KLi   (1 <= i <= 8) 32 bit KLi = KLi1 || KLi2
KLij  (1 <= i <= 8) 16 bit
         (1 <= j <= 2)

KOi   (1 <= i <= 8) 48 bit KOi = KOi1 || KOi2 || KOi3
KOij  (1 <= i <= 8) 16 bit
          (1 <= j <= 3)

KIi     (1 <= i <= 8) 48 bit KIi = KIi1 || KIi2 || KIi3
KIij    (1 <= i <= 8) 16 bit KIi = KIij1 || KIij2
          (1 <= j <= 3)
KIij1  (1 <= i <= 8) 9 bit
          (1 <= j <= 3)
KIij2  (1 <= i <= 8) 7 bit
          (1 <= j <= 3)

Subkey – KeySymbol Relation

i = 1          i = 2          i = 3          i = 4          i = 5          i = 6           i = 7           i = 8
KLi1 K1<<<1   K2<<<1    K3<<<1    K4<<<1    K5<<<1    K6<<<1    K7<<<1     K8<<<1
KLi2 K3’           K4’            K5’           K6’           K7’            K8’           K1’            K2’

KOi1 K2<<<5    K3<<<5    K4<<<5    K5<<<5    K6<<<5    K7<<<5    K8<<<5    K1<<<5
KOi2 K6<<<8    K7<<<8    K8<<<8    K1<<<8    K2<<<8    K3<<<8    K4<<<8    K5<<<8
KOi3 K7<<<13  K7<<<13  K7<<<13  K7<<<13  K7<<<13  K7<<<13  K7<<<13  K7<<<13

KIi1 K5’           K6’            K7’           K8’            K1’           K2’            K3’            K4’
KIi2 K4’           K5’            K6’           K7’            K8’           K1’            K2’            K3’
KIi3 K8’           K1’            K2’           K3’            K4’           K5’            K6’            K7’

Constant Values

C1 = 0x0123
C2 = 0x4567
C3 = 0x89ab
C4 = 0xcdef
C5 = 0xfedc
C6 = 0xba98
C7 = 0x7654
C8 = 0x3210
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Modes of use

• A block cipher is seldom used in its pure 
form (n bits plaintext in, n bits plaintext 
out)

• Instead it is used in one of several 
possible modes depending on the 
objectives:
– Confidentiality protection
– Integrity protection
– Key generation
– Key exchange
– Challenge-response protocol
– etc.
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UMTS Confidentiality algorithm - f8
Parameters

COUNT
BEARER
DIRECTION
BLKCTR
LENGTH
CK
{PTi}i=0,1,1,…,LENGTH-1
{CTi}i=0,1,1,…,LENGTH-1
{KSi}i=0,1,1,…,LENGTH-1

32 bits
5 bits
1 bit
64 bits
? bits
128 bits

time dependent input
bearer identity
direction of transmission
block counter
length of key stream
cipher key
plaintext bit sequence
ciphertext bit sequence
output key stream

KASUMICK

COUNT || BEARER || DIRECTION || 0...0

CKCKCK

KS[0] ... KS[63] KS[64] ... KS[127] KS[128] ... KS[191]

BLKCTR = 0

CT[ i ] = PT[ i ] XOR KS[ i ]

KASUMICK⊕KM

KASUMIKASUMIKASUMI

BLKCTR = 1 BLKCTR = n-1BLKCTR = 2
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Message Authentication Code (MAC)

• Used to ensure integrity of data
• Maps an arbitrary-length message onto a 

fixed-length output (MAC)
– Key dependent
– Often based on a block-cipher

• The MAC is attached to the cryptotext, 
and by verifying it, the receiver knows 
two things:
– the message was produced by the someone 

holding the secret integrity key
– the message has not been changed during 

transmission



9-Mar-04 Ragni Ryvold Arnesen 20

Norsk Regnesentral
Norwegian Computing Center

UMTS Integrity algorithm - f9
Parameters

COUNT
FRESH
DIRECTION
IK
{MESSAGE} i=0,1,1,…,LENGTH-1
MAC-I

32 bits
32 bits
1 bit
128 bits

time dependent input
random number
direction of transmission
integrity key
plaintext bit sequence
message authentication code32 bits

KASUMI KASUMIKASUMI KASUMI

KASUMI

MAC-I (left 32 bits)

Final Message Block
padded with || DIRECTION || 1 || 0 …0

IK⊕KM

IKIK IKIK

MESSAGE[64]
. . . MESSAGE[127]

MESSAGE[0]
. . . MESSAGE[63]COUNT || FRESH
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Asymmetric (public key) 
crypto algorithms

Encrypt Decrypt

Receiver’s
public key

Receiver’s
private 
key

• Encrypt with receiver’s public key
• Receiver decrypts with his private key
• N public keys for N parties (as opposed 

to N(N-1) for symmetric cryptosystems)
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Services

• Confidentiality
– Conceal contents of data

• Integrity
– Detect change of data

• Authentication
– Establish identity of communicating parties
– Establish identity of data origin

• Non-repudiation
– Convince third party that an action

• has been executed by a certain individual
• has been executed at a given point in time
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The integer factorisation problem

• Given a positive integer n, find its prime 
factorisation, i.e. write n = p1

e1p2
e2… pk

ek

where the pi are pairwise distinct primes 
and each ei ≥ 1

• Factoring algorithms:
– Trial division
– Pollard rho method
– Pollard’s p -1 method
– Quadratic sieve
– Lenstra’s elliptic curve method
– Number field sieve
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Number theory

• Definition: 
– Two positive integers x and y are relatively 

prime if they have no common factors, i.e. 
their greatest common divisor is 1.
We write gcd(x, y) = 1.

• Euler phi function: 
– Let n be a positive integer. The Euler phi 

function φ(n) is the number of positive integers 
not exceeding n that are relatively prime to n

• Theorem:
– If p is prime, then φ(p) = p -1

• Theorem:
– Let m and n be relatively prime positive 

integers. Then φ(mn) = φ(m) φ(n) 
• Euler’s theorem: 

– If m is a positive integer and a is an integer 
with gcd(a,m) = 1, then aφ(m) ≡ 1 (mod m)

• Fermat’s theorem:
– Special case of Euler’s theorem: If gcd(a, p) = 

1, then ap-1 ≡ 1 (mod p)
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RSA - key generation

• Each entity A should do the following:
– Generate large primes p and q
– Compute n = pq and φ = (p -1)(q -1)
– Select random integer e, 1 < e < φ, such that 

gcd(e, φ) = 1
– Compute the unique integer d, 1 < d < φ, such 

that ed ≡ 1 (mod φ)
– A’s public key is (n, e), A’s private key is d

• (Note that p, q and φ must also be kept 
secret)

• Conjecture:
– Nobody can compute 

• p, q or φ from knowledge of n, or
• d from knowledge of n and e
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RSA - encryption

mB A

• Encryption. B should do the following:
– Obtain A’s public key (n, e)
– Represent the message as an integer m in the 

interval [0, n -1]
– Compute c = me mod n
– Send the ciphertext c to A

• Decryption. A should do the following
– Use the private key d to recover m = cd mod n
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RSA - proof that decryption works

• ed ≡ 1 (mod φ) ⇒ there exists integer k
such that ed = 1+kφ

• By Euler’s theorem: mφ ≡ 1 (mod n) 
– (This is true only if gcd(m,n) = 1. But if not, 

then we have found a factor of n, and the key 
is broken! The probability for this is extremely 
small.)

⇒ mkφ ≡ 1 (mod n) 
⇒ mkφ+1 ≡ m (mod n)
⇒ med ≡ m (mod n)

⇒ cd = (me)d = med ≡ m (mod n)
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Hybrid method

Symmetric
key

De-
crypt

En-
crypt

Receiver’s
private key

De-
crypt

En-
crypt

Receiver’s
public key

• Public key is used to encrypt symmetric 
key
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Hashing

• One-way function:
– A function f such that f(x) is easy to compute 

for each x in the domain of f ; but it is 
computationally infeasible to find any x such 
that f(x) = y, for essentially all y in the range 
of f

• It is not known whether real one-way 
functions exist

• Hash function
– A one-way function where variable-length 

input is mapped to fixed-length output

I, Alice, hereby declare that I will pay Bob $ 10.000.000 when I have received
the following: ...

g[0%hæ*å~gô#fn

hash function
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Security properties for hash functions

• Let h be a hash function with inputs x, x’ 
and outputs y, y’.

• Preimage resistance (or one-way):
– For essentially all pre-specified outputs y, it is 

computationally infeasible to find any 
preimage x’ such that h(x’) = y

• 2nd preimage resistance (or weak 
collision resistance):
– Given x, it is computationally infeasible to find 

any x’ ≠ x such that h(x) = h(x’)
• Collision resistance (strong c.r.):

– It is computationally infeasible to find any two 
distinct inputs x, x’ such that h(x) = h(x’)
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Digital signatures

Hash

• Sign with sender’s private key
• Verify signature with public key

Sender’s 
public key

DecryptEncrypt

Sender’s 
private 
key

==

Hash

Verify
signature
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Digital signatures

• When the receiver has verified the 
signature he knows that:
– the document is really written by the person 

who owns the public key, i.e. the person who 
knows the corresponding private key 
(authentication of data origin)

– the document has not been changed after the 
sender signed it since the hashes match 
(integrity of data)

• And:
– The receiver can convince a third party that 

the contents of the document was really 
written by the sender (non-repudiation)
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RSA signature

• Key generation as for encryption

• Signature generation. A should do the 
following:
– if M is the message, compute m = h(M), an 

integer in the range [0, n -1]
– compute s = md mod n
– A’s signature for M is s

• Verification. B should:
– obtain A’s public key (n, e)
– compute m’ = se mod n and h(M)
– verify that m’ = h(M)

• (h() is a hash function)
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Discrete logarithm problem (DLP)

• The generalised discrete logarithm 
problem is the following:
– Given a finite cyclic group G of order n, a 

generator α of G, and an element β ∈G, find 
the integer x, 0 ≤ x ≤ n -1, such that α x = β

• Algorithms for solving the DLP:
– Exhaustive search
– Baby-step giant-step
– Pollard’s rho algorithm
– Pohlig-Hellman algorithm
– Index calculus algorithms



9-Mar-04 Ragni Ryvold Arnesen 35

Norsk Regnesentral
Norwegian Computing Center

ElGamal - key generation

• Each entity A should do the following:
– Generate a large random prime p and a 

generator α of the multiplicative group   p*

– Select random integer a such that 1 ≤ a ≤ p -2
– Compute y = αa mod p
– A’s public key is (p, α, y), A’s private key is a

• Conjecture:
– Nobody can compute a from knowledge of y

and α
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ElGamal - signature 

• Signature generation. A should do the 
following:
– Select random secret integer k, 1 < k < p -2 

with gcd(k, p -1) = 1
– Compute r = αk mod p
– Compute k-1 mod (p -1)
– Compute s = k-1(h(m) - ar) mod (p -1)
– A’s signature for m is the pair (r, s)

• Verification. B should:
– Obtain A’s authentic public key (p, α, y)
– Verify that 1 ≤ r ≤ p -1; if not, reject signature
– Compute v1 = yr rs mod p
– Compute h(m) and v2 = αh(m) mod p
– Accept the signature if and only if v1 = v2

(h() is a hash function)
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ElGamal -
proof that signature verification works

• Assume (r, s) is a legitimate signature of 
entity A on message m 

⇒ s ≡ k-1(h(m) - ar) (mod p -1) (1)
⇒ h(m) ≡ ar + ks (mod p -1) (2)
⇒ αh(m) ≡ αar+ks ≡ (αa)r rs (mod p) (3)
⇒ v2 = v1

• Between (2) and (3):
– Theorem: Let a, n be relatively prime integers 

and n > 0. Then ai ≡ aj (mod n) where i and j
are positive integers, if and only if i ≡ j (mod
ordn a).

– Here, ordn a is the least positive integer x such 
that ax ≡ 1 (mod n), so if a is a generator of Zp

*

then ordn a = p -1
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