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Abstract

Much data from spotted microarrays remain unused because obtained with different pro-

tocols, platforms or designs, making comparisons across experiments impossible. We have

developed a model-based method, which provides absolute transcript levels. Transcript levels

are universal, and can be included in further analyses with similar estimates obtained with dif-

ferent techniques in other laboratories. It is a first step both towards genuine meta-analyses,

including comparisons across different organisms, and the building of data bases of transcript

levels in cells. Our method is based on statistical modelling incorporating all available informa-

tion about the experiment, from target preparation to image analysis, coherently propagating

uncertainties from data to estimates. It requires some genes spotted in replicates, their num-

ber being related to the levels of experimental factors included in the model, but not to the

number of spotted genes. No uncertainty in the estimates caused by decimated data sets,

indirect comparisons, normalisation or imputation of missing values, is introduced, leading to

a far more precise analysis of microarray data than provided by conventional methods. Using

a flexible Bayesian technique we estimate the highly multivariate joint posterior distribution of

all transcripts, which enables extended exploitation of the data. In the present work we show

that the estimated transcript concentrations are accurate and reproducible, and demonstrate

improved statistical tools for selecting genes based on their concentration in highly unbalanced

experimental settings.

2



Efficient production of spotted glass-slide arrays has made the microarray technology to a

widespread technique, and improved methods to extract and summarise useful information are

needed (1; 2; 3). The basic elements are normalised intensity ratios between two biological

samples, hybridised together in a single experiment. To allow comparative analysis, the exper-

imental design is transitive, often with a loop or a common reference sample (4; 5; 6). Such

design requirements and the need for stable references impose serious constraints on data use.

Methods assessing absolute rather than relative transcript measures would enable integration

of data from different sources in global analyses, independent on experimental protocol, design

and microarray platform (cDNA and oligonucleotides). Such methods are a principle goal if

durable compendia of gene expressions in terms of transcripts per cell, analogous to DNA

sequence database information, are to be achieved (1; 7).

Extraction of absolute transcript levels from spotted microarray data is complicated due

to significant experimental variation and noise originating in the production and hybridisation

processes (2; 3; 4). Normalised intensity ratios reduce the influence of systematic effects in the

data, though biological information might be lost (8; 9). Model-based analysis opens for use of

experimental and biological information to increase the accuracy of calculated transcript levels.

Linear statistical models have proven successful for identification of differentially expressed

genes but absolute transcript levels cannot be obtained (9; 10; 11).

We have developed a new model based on a radically different principle that enables es-

timation of absolute transcript levels, thus allowing extended exploitation of microarray data.

Experimental information associated with array-, cDNA synthesis-, hybridisation-, and scan-

ning characteristics was incorporated. The model follows the different steps of the microarray

experiment. Our method also constitutes an improved analysis tool. We compute the joint

posterior distributions of either the absolute or relative transcript levels and reveal dependen-

cies between genes, both within and between individual samples. Uncertainties from sample

preparation to imaging have been coherently propagated in a global statistical approach.

Our method was validated on a dataset with known mRNA concentrations. On a second

dataset we demonstrate Bayesian analysis. We show that significant results can be obtained

from data with limited repetitions. The model can handle experiments based on amplified

as well as nonamplified material. The results are based on spotted cDNA microarrays, which

feature particularly large experimental variation, but our model can directly be applied to

spotted oligoarrays.
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Methods

Principles. The idea is to follow conceptually the mRNA molecules through the microarray

experiment, from cDNA synthesis to hybridisation and subsequent washing (Fig. 1). We

modelled the process as a stepwise selection, where each molecule had a certain probability of

being kept in the experiment. This probability depended on known experimental covariates, like

mRNA purity, array, pen, gene, and probe identification, replication, length and quantity. We

treated scanning and image analysis as an integral part of the experiment and used associated

covariates, such as dye, scanner setting and spot size. Also a scanner and a hybridisation-

technique specific characteristic were included: The scanner amplification factor was needed

to account for differences in the intensity response among scanner types; the hybridisation

factor identified the absolute scale of the estimates. Both were determined in two off-line

calibration experiments.

Basic data are the average fluorescence intensities of each spot and their standard de-

viations, for each experiment. No transformation nor normalisation should be done. Non-

transitive data sets are allowed as long as the design includes at least one loop, like a self-self

or dye-swap hybridisation. Some genes must be spotted at least in duplicates, their number

being independent on the number of genes in the analysis, but related to identifiability of pen

effects. In our case, 50 duplicates were enough to identify effects of the six pens used. Ex-

periments with amplified material are handled like those with nonamplified one, but estimates

are transformed back to original scale (11).

We performed Bayesian inference and calculated the posterior joint distribution of all un-

known parameters using MCMC (12). We estimated the number of transcripts for each gene

in each sample together with their uncertainty, described by 95% credibility intervals. The

posterior joint distribution reflects biological dependency between the number of transcripts,

inferred from the data, which cannot be attributed to the experiment. The posterior joint dis-

tribution is needed to compute interesting probabilities, such as the probability for a transcript

of being among those with highest (or lowest) concentrations.

Covariates. The steps of the microarray experiment were modelled as a binomial selection

process, incorporating covariates associated with cDNA synthesis, dye labelling, purification,

hybridisation, washing (Fig. 1 and Supporting Methods 1). The corresponding covariates were

array, pen, gene, probe replication (RID), probe identification (PID), probe length, and probe

quantity. Replicated genes had PID and RID effects: PID accounted for different probes, and

RID for replications of equal probe. The number of base pairs in the probe sequence was used

as probe length. A test slide of each printing series was stained for single stranded DNA by
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use of SYBR green II (Molecular Probes). The mean spot fluorescence intensities were used

as measures of probe quantity. Probe quantity was included since hybridization efficiency of

high density probes may be reduced (13).

Covariates associated with scanning were dye, PMT voltage and the scanner amplification

factor. The dye covariate represented the dye effect in both labelling and scanning. The

amplification factor is a measure of the increase in intensity per unit of increase in PMT

voltage. The factor was determined once for each dye and scanner as the slope in log-linear

plots of intensity versus PMT voltage (14). A covariates associated with image analysis is

the hybridisation factor, used to scale the estimated values to the true number of transcripts.

It was determined using two control samples with transcripts at known concentrations, with

weighted linear regression of estimates versus true values. Under ordinary stable experimental

settings it is sufficient to determine the factor once for each hybridisation method, for example

for manual hybridisation and for each type of hybridisation machine.

Statistical Methods. Consider several biological samples. The known quantity of material

for sample t on array a is denoted as qt,a, for example the weight of mRNA after amplification.

For each gene g, let Kt
g denote the unknown number of transcripts per weight unit present in

sample t (Fig. 1). Let Lt,a
j,s be the measured intensity for sample t in pixel j in spot s on array

a. The hierarchical, non-linear model that relates these data to the number of transcripts,

consists of three layers: (i) a model for the selection process, describing the proportion of target

molecules (from the original qt,a ·Kt
g) that have survived the several steps of the experiment

until washing of the hybridised slides; (ii) a model for the scanning process of the hybridised

slides; (iii) a model for measurement and residual errors.

In (i), the qt,a · Kt
g molecules undergo a series of processes from cDNA synthesis to

hybridisation and washing (Fig. 1). Let na
s be the number of pixels in spot s on array a

and na
g the total number of pixels in all spots related to gene g on array a. After successful

cDNA synthesis, labelling and purification, a proportion c · na
g of the qt,a · Kt

g molecules

candidates to reach the correct spots for hybridisation. Here c is the hybridisation factor per

pixel. Each of these c ·na
s ·q

t,a ·Kt
g molecules has a success probability pt,a

s to hybridise and to

remain fixed after subsequent washing, independently of other molecules. This independency

corresponds to the usual probe in excess assumption. As discussed in Supporting Methods 1,

pt,a
s also accounts for successful cDNA synthesis, dye labelling and purification and it depends

on biological and experimental conditions described by covariates. Let H t,a
s be the unknown

number of molecules in sample t that succeeds in hybridising on spot s on array a, resists
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subsequent washing, thus being available for imaging. Then

Ht,a
s ∼ Binomial(c · na

s · qt,a · Kt
g, pt,a

s ),

where g is the gene spotted in spot s on array a and

pt,a
s = max[1, exp{β0 + βe + βa + βp + βg + βRID + βPID (1)

+βl · [probe length] + βq · [probe quantity] + βm · [purityt]}].

The β’s represent effects of the various covariates for spot s on array a (βa array, βp pen,

βg gene, βPID probe identification, βRID probe replication), [probe length] is the number of

base pairs of the probe in spot s, [probe quantity] is the SYBR green intensity, [purityt] is the

purity of sample t. exp (β0) is the global baseline selection probability. When non-transitive

data sets are analysed jointly, an effect βe is required for each transitive subset. Identifiability

is assured, see Supporting Methods 2.

In (ii), the expected scanned intensity on spot s, array a, is modelled as

µt,a
s = 2fdye·PMTt,a

Ht,a
s αdye, (2)

where PMTt,a is the PMT-voltage used during scanning of sample t on array a, fCy3 or fCy5

are the known scanner amplification factors, while αCy3 and αCy5 are unknown chemical and

optical dye effects.

In (iii), we assume for the pixel-wise intensity measurement Lt,a
j,s

Lt,a
j,s =

µt,a
s

na
s

+ εt,a
j,s , (3)

where εt,a
j,s is a normally distributed error term with a spot varying variance (σt,a

s )2. By

conditional independence of the pixel-wise intensities, only the spot-wise mean intensity is

required in computations. εt,a
j,s is estimated directly from the intensities as their sample variance

in each spot. Background correction can be included at this level, but was not in our examples.

In the statistical analysis of several arrays and samples, many of the unknown parameters

are shared, like array, dye, pen, gene and probe related effects; all data involving sample t

contribute information on the unknowns K t
g. To assure statistical identifiability, some genes

must be spotted at least in duplicate. The number of replicated genes is independent on the

total number of spotted genes, since replicates are used to estimate the common parameters.

The whole data set must include at least one loop, i.e. a self-self array or a dye swap or a

longer chain, necessary to identify the relative dye effect αCy3/αCy5. Beyond this, we do

not require a transitive design. To facilitate estimation, the model is reparametrised, so that

the baseline β0, βe, βg, βm and αCy5 are estimated only on the basis of the variances in the

6



Binomials. Data relative to non-duplicated genes and samples hybridised only once are not

used to estimate variances (Supporting Methods 2). MCMC was implemented to compute

the joint and marginal posterior distributions of unknowns of interest (Supporting Methods

3). The joint distribution describes dependencies between unknowns, for example between

Kt
g’s for various genes and samples. A priori nothing is assumed on the number of transcripts.

The model introduces dependency, through shared experimental factors, so that the quantities

Ht,a
s are dependent. Dependencies in the data are then attributed backwards in part to this

experimental dynamics, and to the posterior joint distribution of the K t
g’s. Estimates of

parameters are marginal posterior modes with 95% symmetric credibility intervals.

Materials

Human cDNA microarray slides were printed with 32 pens. Probe length ranged from 525

to more than 2000 base pairs. For validation of our method, 17 DNA control samples were

printed in equal amount on six subarrays. We used two control samples, each containing 17

different mRNA sequences, pre-mixed at specific concentrations. 0.5 µl of each sample was

used, corresponding to a number of transcripts in the range of 5.8 × 105 − 5.8 × 109. The

concentration ratios achieved when hybridising the two samples together were 1:1, 1:3, 3:1,

1:10, and 10:1 at high and low level concentrations. The labelled samples were hybridized

together in a dye-swap design. In a second experiment, two tumour biopsies (A, B) and a

reference sample (Ref) of total RNA (Stratagene) were used. The biopsies were from two

different locations in a human cervical tumour. Biopsy B was divided into two pieces (B1,

B2). Total RNA was isolated (50 to 60 µg) and used to produce labelled cDNA. The samples

were hybridized in a loop design (Table 1). RNA purity was optimal and equal for all samples

in our experiments and was therefore not used. The slides were imaged at a resolution of 10

µm using an Agilent G2565BA scanner (Agilent Technologies) for slides with control samples

and a ScanArray4000 scanner (GSI Lumonics) for slides with biopsies and reference. A laser

power of 100% was used. The PMT voltage was adjusted for the red and green channel

individually (14). See Supporting Materials for details.

Results

Validation of the methodology. To validate our method we used dye-swap experiments with

control samples at known concentrations. The spot intensities covered the whole detection

range, from near background values to saturation. There was a good accordance between the
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true and estimated number of mRNA molecules (Fig. 2A), but the lowest numbers (below

106) were overestimated, consistent with other studies (15; 16; 17), possibly because low

intensity spots had more noise. Background correction improved estimates (data not shown).

The uncertainty of our estimates increased for the most abundant molecules with numbers

above 109. The hybridisation factor was 0.001. Ratios between numbers of molecules per

gene in the two samples were also well estimated (Supporting Figure 7).

We analysed a second, independent experiment, with identical design and protocol (Fig.

2B) using the hybridisation factor 0.001. There was again good accordance between true

and estimated values with a systematic underestimation of log10-concentrations by 0.1, small

enough not to influence the estimated values significantly, since log
10

-concentrations were in

the range 6 to 10. The hybridisation factor based on the second experiment was 0.0008. The

difference between the two hybridisation factors was small.

To illustrate meta-analysis, two non-transitive dye-swap experiments were analysed: sam-

ples A and B for the first experiment (Fig. 2A) and samples C and D for the second (Fig.

2B). Here, A = C, B = D and each data set was analysed separately, with hybridisation

factor 0.001; the model had no knowledge that samples in the first experiment were repeated

in the second one. Since the estimates in Fig. 2A and B were almost equal, we concluded that

meta-analysis was successful. The estimated numbers of mRNA molecules for each sample

are directly comparable and can be used in further analysis.

Tools for data analysis. In the second experiment, four arrays were hybridised in a loop

design with three samples (A, B1, B2) from a human cervical tumour and a reference sample

(Ref) (Table 1). It is not clear how to compare optimally the measured intensity ratios

with standard methods (4). We considered 100 genes on 158 spots of each array; 27 genes

were duplicated with different probe sequences, 31 genes were duplicated with identical probe

sequences, 42 genes were singles. Five different pens were used. This design is unbalanced.

Although only a limited number of genes were considered here for illustrative purposes, our

method can be equally used for larger data sets of thousands of genes and many samples.

To provide concentrations, the estimated numbers of transcripts were related to the known

weight of the total RNA.

Estimated concentrations for individual genes were reliable, as pairwise scatterplots (Sup-

porting Figure 8), and correlations show (Supporting Table 3). Results were consistent with

A, B1 and B2 originating from the same tumour and B1 and B2 originating from the same

location within the tumour. We investigated reproducibility of our result by splitting the data

into two sets of two arrays each, (Ref-B1, B1-B2) and (B2-A, A-Ref). We analysed these

separately, pretending samples were not shared. The estimated numbers of transcripts were
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very similar for the identical samples, B2 and Ref, showing high reproducibility in our results

(Fig. 3). This similarity supports our claim that estimated numbers of transcripts of different

samples can be compared and combined, also when originating from separate experimen-

tal schemes, with no transitive design. For example we can compare directly the transcript

concentrations in sample A and B1 though the design did not link them transitively.

In experiments based on total RNA it can be investigated if the proportion of mRNA in

total RNA is equal for all samples by comparing the sum of all estimated numbers of transcripts

in each sample. For the present data with 100 genes, we obtained the sum 5.97·107 for sample

B1, 5.96 · 107 for B2, 6.17 · 107 for A and 4.49 · 107 for the reference. The similarity of these

values for the three tumour samples is consistent with these originating from the same tissue.

We estimated experimental and probe related factors, describing to what extend they

influence selection probabilities (Supporting Table 4). In the second experiment, the four array

effects βa were −0.54,−0.04, 0.18, 0.40. This indicated differences in hybridisation efficiency

between the four arrays due to non-modelled factors influencing the entire arrays, for example

during array production (humidity, temperature). The probe length effect βl was −0.17, as

important as the array effect. The negative sign means that probes with short length have a

higher probability to retain molecules for imaging, after hybridisation and washing. Estimated

effects can be further used to improve protocols, identifing sources of experimental variation.

Many studies investigate the characteristic gene expressions of a population with a certain

trait, using a set of biological samples. We can estimate the characteristic mRNA concen-

tration for each gene of such a population. In the context of the present data set, we first

computed the mean of the estimated concentrations of the three tumour samples for each

of the 100 genes. The probability densities of mean concentration were often non-normal

and skewed (Supporting Figure 9). Second, we computed for each gene the probability that

its mean concentration was among the n highest (Fig. 4). This involves a 100-dimensional

integration of the posterior joint distribution performed with MCMC. The steepness of the

curve describes the level of concentration of a gene compared to others.

We show two probabilistic gene selection methods: in the first, ranking occurs on the basis

of absolute concentrations; the second method requires a threshold on concentrations or on

folds of concentration ratios.

First, we evaluated the probability that any single gene in turn had a mean concentration

among the highest (or lowest) 10. We then ranked all genes according to this probability

(Fig. 5). Low mRNA concentrations are associated with more uncertainty than high ones,

resulting in less candidate genes with low concentration (15). This ranking is independent of

any chosen reference sample.

9



For the second selection method, we considered estimated ratios of mean concentrations

in the tumour vs. reference. Suppose we ordered the genes according to a certain criterion,

but we only wanted to select those genes that were with high probability at least k-fold

expressed. Using the joint distribution, we require that all genes in the selected set are at least

k-fold expressed, jointly. Alternatively, we can relax our request and allow m errors (falsely

k-fold expressed). Hence, we computed the probability that all but m genes were at least

k-fold expressed, and ordered the genes according to the probability that their concentration

ratio was among the ten highest or lowest (Fig. 6). Seven genes would be selected, when

allowing no errors (m = 0) and requiring 2-fold expression (k = 2) with 95% joint probability.

Alternatively, one may fix the probability (to say 0.95) and the accepted number of errors m

and then study the number of selected genes as function of the fold k (Supporting Figure

10). These plots help choosing candidate genes. The first selection method is useful for

concentrations, for which there is no natural cut-off value and we use a probability to rank

genes. When natural thresholds are available, like folds of ratios, the second method is useful,

since it explicitly controls the joint probability level.

Discussion

We have proposed a new method for estimating precisely the transcript level of individual

genes from spotted microarray intensity data and obtained the joint distribution of absolute

(or relative) transcript levels, which portraits the dependencies between absolute (or relative)

mRNA concentrations. Once the transcript levels have been estimated, radically new anal-

yses are possible, including within sample comparison, merging of data sets with a design

lacking transitivity or based on amplified and non-amplified starting materials, cross-platform

and cross-species comparisons and more general meta-analysis. This may open for novel ap-

proaches in the study of several biological processes, including signal transduction pathways.

Our method is based on four main ideas: we incorporate an extended number of covariates

compared to other models (2); we treat unequal number of replicates per gene; we use the

binomial process, which better depicts experimental dynamics and allows for estimation of the

critical parameters β0, βg, and αCy3/Cy5; we avoid normalisation and imputation of missing

values and build a bottom-to-top coherent stochastic model, fully propagating uncertainty.

The accuracy of our estimates was better than in Dudley et al. (16), especially at medium

and low concentrations, and in fact comparable to that achieved from methods based on in

situ synthesized arrays (15; 17), despite this technology uses standardised manufacturing and

hybridisation, so that probe specific biases are highly reproducible and predictable (18).
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There are limitations of our methodology. Cross-hybridisation and unspecific binding are

not taken into account, and possible splice-variants for some of the genes are not considered.

Currently, no analysis tools for microarray data are addressing these aspects. Other covariates

could easily be included in our model when available, such as target length and labelling effi-

ciency, probably leading to higher accuracy in the estimates. The MCMC algorithm converges

slowly. Results can require up to a few days of computation time.

Few methods estimating absolute transcript levels from spotted microarray data have been

developed so far. The method by Dudley et al. (16) requires hybridisation of each sample

with a reference of known concentration, imposing serious restrictions. Other methods rely on

calibration of each array with additional techniques, such as serial analysis of gene expression

(SAGE) (19). The present method is the first quantifying absolute transcript levels from

spotted microarray data without the need for calibration of each sample individually. Moreover,

it can be used to estimate absolute concentrations from one or multi-color experiments, and it

can directly be applied to data from spotted oligoarrays, using base composition of the probes

as covariates rather than the probe length. The hierarchical structure of our model enables

integration of biological information about the samples, such as patient survival data, and

known dependencies between genes, in a coherent Bayesian setting. If the mRNA weight is

not available and significant variability in the proportion of mRNA in total RNA is suspected,

or if the hybridisation factor is not available, it is possible to scale each sample so that the sum

of estimated transcripts are equal. Comparison of such scaled concentrations is still possible

between samples, but the interpretation as absolute concentrations is lost.

We estimated concentration ratios more accurately than concentrations themselves, be-

cause the uncertainty in the intercept β0 influences only the absolute numbers and not the

ratios. We obtain ratios of concentrations, while usually intensity ratios are compared, whose

fold changes can be misleading since they might not correspond to fold changes of actual

transcript concentrations (9). In addition our method provides for the first time highly reliable

ratios between concentrations of different genes in the same sample.

With our method few constraints are imposed on the experimental design and no normal-

isation and imputation of missing values is needed. The common reference design requires

stable reference samples, uselessly measured many times (6). A balanced design is required to

apply linear mixed effect models in practice (9). Thus our method opens for new possibilities

of meta-analyses (7). Such analyses are currently built on top of statistical tests to detect

differential expressions (20; 21). Since the result of these tests may depend on experimental

protocol and microarray platform, bias may lead to wrong conclusions. With our method,

data from different studies can be combined at the basic level of transcript concentrations
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or concentration ratios, regardless of whether studies use amplified or non-amplified starting

material, cDNA or oligonucleotide platforms. Available data can therefore be re-used in new

investigations, leading to a better exploitation of the data and more precise results.

In our model, normalisation is performed unsupervised, as in ANOVA based methods (9);

we incorporate explicitly more sources of variability, including scanning. Current normalisa-

tion methods are often platform dependent and based on hypothesis on the gene expressions

difficult to test. Misuse of normalisation is rather common in practice (22). The need for

balanced designs often leads to discarding genes or requires imputation of missing values.

Current methods for imputation fail if the missing mechanism is not at random or if the level

of missing exceeds 20% (23).

To identify significantly differentially expressed genes, statistical tests are commonly per-

formed based on normalised intensity ratios (24; 25) or on estimated effects (9). Normal

distributions cannot be assumed, so that bootstrap and permutation tests are used, requir-

ing a relatively large number of replicates (5). Our method naturally describes dependencies

and does not assume normality. Our ranking schemes and selection criteria are based on the

joint distribution of concentrations or concentration ratios. Bayesian assessment of global

significance can be easily implemented in our context (26). Dependencies between genes

can be revealed from the joint distribution and graphically represented as a network (27).

Since the main experimental factors are corrected for, estimated posterior dependencies can

be interpreted as principally of biological origin.
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Figure Legends

Figure 1: Illustration of the microarray experiment. The various steps of the experiment

and the corresponding covariates used in the model are listed with their symbols. The model

consists of three levels: (i) selection, (ii) scanning and (iii) measurement.

In (i), K1

g and K2

g mRNA molecules for gene g present in sample 1 and 2 undergo a

selection process. Each molecule succeeds or fails in each of the experimental steps: cDNA

synthesis, dye labelling, purification, hybridisation and washing. Success for each molecule

is modelled as a Bernoulli coin toss. The success probability depends on properties of the

molecule and of the experiment (covariates). Molecules of the same gene can have different

covariates, for example if they hybridise on different spots with different probes. If probe is

in excess, molecules can be modelled as independent variables and the number of remaining

molecules after each step is Binomially distributed. The probability of successfully passing

through the entire experiment is the product of the probabilities of surviving each individual

step. Nested Binomial variables are Binomial and the final number of molecules ready for

being scanned is Binomial with two parameters: the unknown original number of transcripts

per gene in each sample and the selection probability, modelled as in equation (2). Level (ii)

describes the translation of the bound molecules remaining after washing (H t,a
s , on array a,

spot s, for sample t = 1, 2) into fluorescence intensities, as in equation (2). Measurement

error (iii) of pixelwise intensities Lt,a
j,s (on array a, pixel j on spot s for sample t = 1, 2) is

assumed to be normally distributed as in equation (3). This model allows to obtain estimates of

absolute concentrations K1

g and K2

g together with their posterior marginal probability density,

as sketched at the bottom.

Figure 2: Validation of the methodology to estimate absolute numbers of transcripts. Control

samples with 17 genes of known mRNA concentrations were used, each printed on six spots

with six different pens. The inset in panel a shows the posterior probability density of the

number of transcripts for a gene with estimated 5.8 · 107 mRNA molecules (mode) and its

95% credibility interval. There was lack of symmetry in the densities. Panel a and b show

estimated numbers of mRNA molecules (y-axis) and true ones (x-axis) in log10-scale. Positions

on the x-axis are slightly shifted to facilitate visualisation. Diagonal lines are shown; the fit

is good when the line passes through the credibility interval. The data in panel A and B

are based on two different dye-swap experiments. Analysis of the data in panel B, using the

hybridisation factor from the data in panel A (0.001), showed a strong concordance between

the two estimates, although the numbers of transcripts were slightly underestimated.

Figure 3: Comparison of the absolute transcript levels in a reference and a human cervical
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tumour sample, estimated from two different experiments. The data in Table 1 were split

into two sets of two arrays each and analysed separately, pretending no sample was shared.

Estimated mRNA concentrations (number of mRNA molecules per µg of total RNA; posterior

modes) are plotted for each gene and sample. Diagonal lines are shown. The two independently

estimated concentrations Ref1 and Ref2 for the reference and B21 and B22 for sample B2

were similar and highly correlated. A small difference was observed for both samples, 0.188 in

log10-scale for Ref and 0.231 for B2. This difference originated from the uncertainty in the

estimation of β0, a difficult task with just two arrays.

Figure 4: Probability of the four genes (see also Supporting Figure 9) to be among the n

genes with the highest (red curve) or lowest (green curve) mRNA concentration (number of

mRNA molecules per µg of total RNA). The plots clearly indicate if a gene is among those

with high (gene 46), intermediate (genes 13 and 33) or low (gene 91) concentration.

Figure 5: Probabilities of genes to be among the 10 ones with the highest (red) and lowest

(green) mRNA concentrations (number of mRNA molecules per µg of total RNA). See Sup-

porting Table 2 for gene symbols. There are six genes with probability larger than 0.90 to have

mRNA concentration among the 10 highest, and two genes to have concentrations among the

10 lowest ones. The value of the selection probability (here chosen as 0.90) should be as high

as possible, but still such that enough genes are selected for the purpose of the study.

Figure 6: For a given group of genes, probability that all but m ratios of mRNA concentrations

(number of mRNA molecules per µg of total RNA) in a human cervical tumour vs. reference

are at least equal to k. The genes were ordered according to the probability that their ratio

was among the ten highest, decreasingly. Gene 90 had highest probability. Up-regulated genes

are indicated with ”up”, down-regulated with ”do”. We considered then all ordered subsets,

following the given ranking: {90}, {90, 82}, {90, 82, 11}, and so on. For each such increasing

subset of genes we computed the posterior probability that all but m ratios were at least k.

Four curves are plotted, for various combinations of m and k. The more genes were included

in the selected set, the smaller the probability became. The best set of genes with ratio

at least two (k=2) and with at most one error (m=1) with 0.95 joint probability was the

set {90, 82, 11, 14, 93, 25, 57, 34, 12, 60}. The larger the fold k and the smaller the accepted

number of errors m, the more rapidly the probabilities decreased.
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from spotted microarray data.
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1 Model building

The experimental steps of the microarray experiment (Fig. 1 in the paper), seen from a
statistical modelling point of view, are now discussed in turn.

cDNA synthesis and dye labelling.

Dye labelled cDNAs are achieved by incorporation of Cy3-dUTP and Cy5-dUTP during or
after cDNA synthesis. The amount of dye and nucleotides are assumed to be in excess, so that
all mRNA molecules can in principle be reverse transcribed and labelled. We assume that
the expected number of actually bound Cy3- or Cy5-dUTP’s is the same for all transcripts of
all genes, since the number of binding sites, though different, is always large enough to allow
for such a geometric approximation. The expected number of actually bound CyX-dUTP’s
does however depend on dye, i.e. there is a chemical dye effect. This effect will be important
in the imaging step described below.

We assume the qt,a ·Kt
g molecules to be reverse transcribed and labelled independently of each

other with probability mt,a
g . Then, M t,a

g , the resulting number of labelled cDNA molecules
(or target molecules) for sample t, gene g and array a, follows the binomial distribution with
parameters qt,a · Kt

g and success probability mt,a
g . The probability mt,a

g can depend on gene
and sample specific covariates (like purity of the sample).

Purification.

The two samples are mixed. Excessive CyX-dUTP molecules are washed away. During this
process also some of the target molecules will be lost. Let V t,a

g be the number of molecules,
each independently remaining with probability vt,a

g in the solution after purification, for sam-
ple t, gene g and array a. Then V t,a

g is binomial with parameters M t,a
g and vt,a

g . We expect that
vt,a
g depends on the target sequence length of gene g, since target length possibly influences

purification as longer molecules are less likely to be mistakenly washed away. After purifica-
tion, the solution will still contain some remaining free CyX-dUTP’s that will be washed away
after hybridisation. Target length has not been included directly in the current model because
target length information was not available. Differences in the v t,a

g ’s specifically caused by
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target length will instead be absorbed in the gene specific covariate (βg).

Hybridisation.

The variability of probe material and microarray production modulates the probability of
successful hybridisation. For a certain spot the microarray, the pen and the probe used
influence this probability. Consequently, both array and pen are included as covariates in the
model, in addition to probe quantity and quality dependent covariates. Because each of the
pens is used on a specific subgrid of the microarray, the pen effect may be confounded with
spatial effects.

Quantity of the probe material may vary. A test slide of each printing batch is stained with
SYBR green, a fluorophore with specific affinity for ssDNA, (1). The fluorescence intensity is
used as an estimate of probe quantity of each spot of the arrays and is included as a covariate
in the model. We do not distinguish here between spot center and periphery, assuming for
simplicity that each part of a spot is equally covered by probe. Quality of the probe material
may also vary. We distinguish two probe quality related covariates; the probe identification
(PID) and the replication identification (RID). PID and RID distinguish genes replicated with
equal or different probe sequence. PID accounts specifically for the effect of different probes,
and RID for replications of equal probe.

We assume that the target is homogeneous, i.e. the spatial distribution of each target molecule
is uniform over the slide and target molecules do not cluster nor repulse. Let gene(s) be the
gene spotted in spot s. A proportion c · na

s of V t,a

gene(s) reaches the correct spot to candidate

for hybridisation. Let Qt,a
s be the number of gene(s) molecules of sample t succeeding in

hybridising to spot s, in array a. Each target molecule has a probability q t,a
s to independently

hybridise. Then Qt,a
s is binomial with parameters c · na

s · V t,a

gene(s) and qt,a
s . The success

probability qt,a
s depends on probe properties and technical experimental conditions as well as

on target properties. The first two classes include probe quantity, probe length, PID, RID,
pen and array. Target length influences the diffusion coefficient of target molecules and could
have been included here also, if available. Hybridisation is assumed to be dye independent
(2) and the hybridisation probability is assumed to be constant in time. The model does not
include cross-hybridisation.

Washing.

We assume that all non-hybridised material, including unbound CyX-dUTPs, is removed
during microarray washing. Again we assume that the number of remaining molecules H t,a

s

is binomial with parameters Qt,a
s and success probability ht,a

s , which may depend on probe
length, reflecting the binding strength, and on microarray effects. H t,a

s is the number of
gene(s) molecules of sample t hybridised in spot s in array a, participating in the imaging
process.

Scanning and image analysis.

The image achieved during scanning is gridded and segmented into spots. Each measured
pixel intensity, Lt,a

j,s, for sample t, array a and pixel j of spot s depends on H t,a
s , on the PMT

voltage used during scanning and on a known scanner dependent amplification factor. In
addition the measured intensity depends on whether sample t was labelled with Cy3- and
Cy5-dUTP’s. This dye dependency has both chemical and optical reasons. As described
previously, the expected number of actually bound CyX-dUTP’s might be different for Cy3-
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or Cy5-dUTP’s, i.e. there is a chemical dye effect. The optical dye effect is present because
of different optical characteristics of the two dyes.

The model.

Nesting all bionomial variables results in the bionomial model presented in the paper. The
success probabilities depend on covariates from all the steps mentioned above. All effects are
estimated together with the unknown K t

g’s and H t,a
s ’s.

2 Reparametrisation of the model, identifiability, constraints

and hyper-priors

Recall the four levels of our model:

Ht,a
s ∼ Binomial(c · na

s · q
t,a · Kt

g, p
t,a
s ),

pt,a
s = max[1, exp{β0 + βe + βa + βp + βg + βRID + βPID

+βl · [probe length] + βq · [probe quantity] + βm · [purityt]}],

µt,a
s = 2fdye PMTt,a

Ht,a
s αdye,

Lt,a
j,s =

µt,a
s

na
s

+ εt,a
j,s, εt,a

j,s ∼ Normal(0, (σt,a
s )2).

Introduce

β̄Xa
s = βa + βp + βRID + βPID + βl · [probe length] + βq · [probe quantity],

so that
pt,a

s = max[1, exp{β0 + βe + βg + βm · [purityt] + β̄Xa
s }].

In a classical likelihood context all parameters must be identifiable, while in the Bayesian
setting flat posterior densities correspond to model misspecification or lack of information in
the data on parameters. MCMC convergence is then particularly slow. We require classical
identifiability of the parameters and discuss now how the parameters can be estimated within
our framework. We will show identifiability under the relaxed inverse link function exp(x)
instead of max(1, exp(x)), which is used in practice, and assuming all parameters are fixed.
This is allowed, because the censored inverse link function that we use and non-flat priors on
the fixed effects (which is the Bayesian way of introducing a random effect) only restrict the
size of the parameter space.

For computational purposes, it is useful to approximate binomials with normal densities:

Ht,a
s ∼ Normal

(

c · na
s · q

t,a · Kt
g · p

t,a
s , c · na

s · q
t,a · Kt

g · p
t,a
s · (1 − pt,a

s )
)

.

Next, we reparameterise in such a way that parameters not estimable based on the mean
alone do not occur in the mean, but only in the variance. We have

E[Lt,a
j,s] = E[µt,a

s ]/na
s = Ct,a · Kt

g · αdye exp(β0 + βe + βg + βm · [purityt]) exp(β̄Xa
s ),

where C t,a is a product of known constants. Then, let

αdye = α′

dyeα
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where α′

Cy5 = 1, and α′

Cy3 and α are the new parameters to be estimated, replacing αCy3 and

αCy5. In addition H̃’s and K̃’s replace the H’s and K’s, where the H̃’s and K̃’s are defined
as follows

H̃t,a
s = Ht,a

s · α

K̃t
g = Kt

g · α exp(β0 + βe + βg + βm · [purityt]).

Then, we observe that

H̃t,a
s ∼ Normal

(

c · na
s · q

t,a · K̃t
g · exp(β̄Xa

s ),

c · na
s · q

t,a · K̃t
g exp(β̄Xa

s )
(

1 − exp(β0 + βe + βg + βm · [purityt] + β̄Xa
s )

)

· α

)

.

Since E[Lt,a
j,s] = Ct,a · K̃t

gα
′

dye exp(β̄Xa
s ), all parameters except β0, βe, βm, the βg’s and α are

estimable based on the mean pixel-wise values with the described reparametrisation, when
the regression of this mean on the covariates Xa

s is identifiable. This can be guaranteed by
some constratints (see below) and with a design which has the following characteritics: some
genes must be spotted at least in duplicate, with different pens for some of these replicates,
and the whole data set must include at least one loop, i.e. a self-self array or a dye swap or
a longer chain, to identify the parameters α′

dye, βa and βp.

The parameters β0, βe, βm, α and the βg are estimable from the variances and none of these
occur in the expressions for the mean. Some care is required to handle the special situation
of samples hybridised only once on one array. This happens for example in reference designed
studies. Since there is just one piece of data relative to such samples for non-repeated genes,
these data must be excluded when inference on variance related parameters is perfomed,
since otherwise estimated uncertainties of the concentrations will be shrinked. We operate
as follows: First we exclude all such single data points and estimate all parameters on the
rest of the data. In a reference design, this corresponds to using all data of the reference and
all data from the samples for repeated genes. We then use the posterior distribution of all
parameters as prior in the second phase, where we consider only the rest of the data, those
corresponding to samples and genes measured only ones. We thus obtain the correct estimates
for all concentrations, equipped with the coherently propagated uncertainty. In practice, all
is performed within MCMC: sampled values from the posterior distribution of all parameters
given the repeatedly observed samples are used in the model for the uniquely observed data.
This second phase is not necessary in loop designs or when dye swaps are included. Finally,
transcript concentration K t

g is estimated using the estimates of K̃t
g, β0, βe, βm, α and βg by

inverting the formula above.

We need to constrain the categorical parameters for identifiability. In order to assure identifi-
ability of the pen parameters, we use the constraint

∑

βp = 0, where the summation runs over
the P different values βp may attain, when P different pens are used. A similar constraint is
used for the parameter βe describing the effect of different non-transitive experiments and the
gene related parameters βg (to ensure identifiability together with β0). For each set of exper-
iments e,

∑

βa = 0, where the sum runs over all arrays of the transitive set e. Moreover, we
restrict the mean effect of all probes per gene to be zero which is achieved by applying the con-
straints

∑

βPID = 0, for all genes, where summation runs over all probes in the probe set of
the particular gene. Similarly, we constrain

∑

βRID = 0, for all probes, where summation runs
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over all replicates for the particular probe. In addition to these constraints we consider exper-
iment (βe), array (βa), pen (βp), gene-dependent selection (βg), probe identification (βPID)
and replication identification (βRID) as random effects. Then, we have βe ∼ Normal(0, (σe)

2),
βa ∼ Normal(0, (σa)

2), βp ∼ Normal(0, (σp)
2) and βg ∼ Normal(0, (σg)

2). Since the number
of probe products per gene is usually small, we do not use separate random effects for each
gene, but instead we have βPID ∼ Normal(0, (σPID)2) for all probe sequences. Similarly, we
have βRID ∼ Normal(0, (σRID)2) for all replications of probe. Otherwise, all hyper-parameters
are equipped with flat improper non-informative priors.

The identifiability of all parameters, including the transcript concentrations K t
g, assures that

two experiments that both satisfy the identifiability conditions above can be combined, even

when they do not share a sample and hence non-transitive designs are allowed.

On the link function We have discussed reparametrisation and identifiability under the
inverse link exp(x). Within an MCMC context this can easily be adapted to a censored inverse
link by not accepting proposals for which exp(β0+βe+βg+βm·[purityt]+β̄Xa

s

)

> 1. One might
be inclined to use the proportional, non-censored inverse link instead of the censored inverse
link. However, use of the censored inverse link conserves the complicated non-proportional
effects of factors. We know that these exist in the original formulation with an intercept,
because mapping a linear combination of factors to a number between 0 and 1 implies non-
proportionality.

Overdispersion The covariates in the model should explain the selection probability as
good as possible. However, some explanatory factors might be missing from the model.
Moreover, individual molecules may not have completely identical selection probabilities due
to differences on a molecular level. We can allow for overdispersion by adding variability
to the selection probability using a spot, array and sample varying random model error εt,a

s

with distribution Normal(0, σ2). We note, however, that estimation of σ2 together with the
other variance related parameters may lead to slow convergence of the MCMC. In the human
cervical tumour study we included overdispersion in order to confirm that identifiability is
maintained also in this case. In the validation example no overdispersion was included.

Competition We have not included competition among molecules in our model for hy-
bridisation. This is possible to do in terms of density dependence, for example by adding the
term βK t

gene(s) in the log-probability. Then, we expect β to be negative: the larger K t
gene(s),

the more competition and hence the smaller the probability to hybridise.

Other Bayesesian microarray studies For more examples of Bayesian inference for sta-
tistical models of gene expression data we refer to Baldi and Hatfield (3) and references
therein. None of these deal with absolute concentrations.

3 Initial values and proposal functions: Details on MCMC

The marginal posteriors of interest are not available in closed form and so we use Markov
Chain Monte Carlo to sample from the posterior model. Specifically, we implement a single-
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update random-walk Metropolis-Hastings sampler. Convergence is difficult to monitor (4)
and we used very long chains, started after burn-in with different random seeds, and observed
convergence to the same posterior parameter densities. A block-updating strategy might
improve convergence. For all the model parameters we use a uniform proposal. More precisely,
let v be the current value of the parameter p for which a new value will be proposed, and let
cp,0 and cp,1 be two constants. If the parameter is not restricted to be positive, draw from

U [v − cp,1σp, v + cp,1σp]

if the prior for the parameter is Normal(0, σ2
p), otherwise draw from

U [v − (cp,1|v| + cp,0), v + (cp,1|v| + cp,0)].

If the parameter is restricted to be positive, draw the logarithm of the parameter from

U [log(v) − (cp,1log(v) + cp,0), log(v) + (cp,1log(v) + cp,0)].

The two constants for each parameter p, cp,0 and cp,1, were tuned such that reasonable
acceptance rates were obtained, between 0.2 and 0.5. After reparametrisation the parameters
to be estimated are α′

Cy3, α, the β’s, the overdispersion ε’s, σ, variances of the random

effects, the H̃’s and the K̃’s. Initial parameter estimates for α′

Cy3, the β’s (except for β0,
βm, the βe’s and the βg’s), the overdispersion ε’s and σ are found from the data using linear
regression. The variances of the random effects, the H̃’s and the K̃’s are then computed from
these estimates. In the computations of all these initial estimates we use formulas where all
random variables are set equal to their expectations. The parameters β0, βm, βe’s and the
βg’s are initialised such that for each gene g, the geometric mean of the selection probabilities
pt,a

s becomes 0.5. Finally, α is set equal to the geometric mean of

(H̃t,a
s − c · na

s · q
t,a · K̃t

g · exp(β̄Xa
s ))2/(c · na

s · q
t,a · K̃t

g · exp(β̄Xa
s ) · (1 − pt,a

s )).

Details on the MCMC, such as the number of iterations, are available here:

http://www.nr.no/pages/samba/area emr smbi transcount.
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Supporting Materials

Array Slides. cDNA microarray slides were produced at the cDNA Microarray Facility at
The Norwegian Radium Hospital (http://www.mikromatrise.no). The probes were human
cDNA clones, derived from the I.M.A.G.E. Consortium (http://image.llnl.gov) or locally pre-
pared, amplified by PCR and printed to Corning CMT GAPS slides (Corning) by using a
Microgrid II printing robot (BioRobotics) with 32 pens. Each array contained 18432 spots
printed in 32 subarrays. Some probes were printed in duplicate with different pens, and
some probes with different cDNA sequence representing the same genes. Probe length ranged
from 525 to over 2000 base pairs; in this latter case, 2000 was used as covariate value in our
models. Furthermore, for validation of our method, seventeen DNA control samples (Lucidea
Universal ScoreCard, Amersham Biosciences) were printed in equal amount on six of the
subarrays.

Sample Preparation and Hybridisation. Validation was performed adding two control
samples, each containing 17 different mRNA sequences, pre-mixed at specific concentrations
(Lucidea Universal ScoreCard). 0.5 µl of each sample was used, corresponding to a number
of transcripts in the range of 5.8 × 105 − 5.8 × 109. The concentration ratios achieved when
hybridising the two samples together were 1:1, 1:3, 3:1, 1:10, and 10:1 at high and low level
concentrations. The control samples were prepared as described by the manufacturer and
subjected to cDNA synthesis and dye labelling as described below. The labelled samples
were hybridized together in a dye-swap design. Hybridisation was performed overnight at
65oC by use of Genetac hybridisation station (Perkin Elmer).

Furthermore, two tumour biopsies (A, B) and a reference sample (Ref) of total RNA (Strata-
gene) were used. The reference sample was pooled from ten human cell lines. The biopsies,
(5 mm)3 in size, were from two different locations in a human cervical tumour. Biopsy B was
divided into two pieces (B1, B2) before isolation of total RNA. Total RNA was isolated from
the biopsies using Trizol reagent (Invitrogen) and the recommended protocol. Fifty to sixty
µg of total RNA were used to produce labelled cDNA by anchored oligo(dT)-primed reverse
transcription, using SuperScript II reverse transcriptase (Invitrogen) and either Cy3-dUTP
or Cy5-dUTP (Amersham Pharmacia). The labeled samples were hybridized in a loop design
overnight in water bath at 65oC (Table 1). Purity was optimal and equal for all samples in
our experiments and was therefore not used in our models.

Scanning and Image Analysis. The slides were imaged at a resolution of 10 µm using
an Agilent G2565BA scanner (Agilent Technologies) for slides with control samples and a
ScanArray4000 scanner (GSI Lumonics) for slides with biopsies and reference. A laser power
of 100% was used. The PMT voltage was adjusted for the red and green channel individually
to ensure that the intensity of the weakest spots and background segments were within the
linear range of the scanner. Saturated spot intensities were corrected using the algorithm
described previously in Lyng et al (2004)(reference (15) in the paper). The GenePix 3.0
image analysis software (Axon Instruments) was used for spot segmentation and intensity
calculation. Bad spots and regions with high unspecific binding of dye were manually flagged
and excluded from the analysis.
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Supporting Table 2: Parameter estimates

We considered 100 genes in 158 spots of each array. Totally, there are 127 βPID’s, since 27
genes were duplicated with different probe sequence. Because of the contraints put on the
βPID’s 73 of these are set to zero. The other 54 are divided into pairs which are constrained
such that the sum of the βPID’s for each pair is zero. In the table the estimate for one
βPID from each of the 27 pairs is given. Similarly, there are 158 βRID’s, since 58 genes
were duplicated either with different (27) or with equal (31) probe sequence. Because of the
contraints put on the βRID’s 96 of these are set to zero. The other 62 are divided into pairs
which are constrained such that the sum of the βRID’s for each pair is zero. In the table the
estimate for one βRID from each of the 31 pairs is given. In the paper the probe length effect
was discussed. We see that it is in the same scale as the array effect and hence contributes
similarly to the selection probability. The probe lengths have been scaled to zero mean and
standard deviation one, making the β’s comparable. βm has not been included in the model
because purity was optimal and equal for all samples. There is no experiment effect, βe = 0,
since this experiment was transitive.
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Para- Mode 95% Credibility Para- Mode 95% Credibility Para- Mode 95% Credibility
meter Interval meter Interval meter Interval

β0 -2.343 (2.614, -2.074) βg , 47 0.002 (-0.301, 0.341) βPID, 6 -0.149 (-0.48, 0.143)
α 1.589 (1.195, 2.102) 48 0.004 (-0.345, 0.322) 7 -1.604 (-1.938, -1.226)

α′

Cy3
0.365 (0.355, 0.383 ) 49 0.01 (-0.352, 0.336) 8 0.199 (-0.262, 0.629)

βl -0.17 (-0.335, 0.036) 50 -0.01 (-0.32, 0.287) 9 -0.266 (-0.614, 0.169)
βq 0.254 (0.106, 0.431) 51 -0.009 (-0.167, 0.617) 10 0.172 (-0.07, 0.481)

βa,1 -0.535 (-0.585, -0.481) 52 -0.024 (-0.353, 0.266) 11 0.141 (-0.214, 0.517)
2 -0.041 (-0.086, 0.005) 53 -0.017 (-0.333, 0.359) 12 0.222 (-0.081, 0.596)
3 0.178 (0.133, 0.227) 54 0.022 (-0.321, 0.326) 13 0.216 (-0.084, 0.623)
4 0.396 (0.347, 0.44) 55 0.014 (-0.346, 0.339) 14 0.206 (-0.083, 0.525)

βp,1 0.011 (-0.066, 0.342) 56 -0.007 (-0.316, 0.321) 15 0.061 (-0.335, 0.414)
2 0.001 (-0.124, 0.309) 57 0.022 (-0.351, 0.316) 16 1.155 (0.789, 1.633)
3 0.001 (-0.253, 0.111) 58 0.003 (-0.281, 0.315) 17 -0.086 (-0.363, 0.27)
4 -0.018 (-0.354, 0.037) 59 0.011 (-0.302, 0.283) 18 -1.366 (-1.607, -1.096)
5 -0.003 (-0.152, 0.128) 60 -0.01 (-0.316, 0.354) 19 0.45 (0.133, 0.763)

βg ,1 -0.012 (-0.374, 0.251) 61 0 (-0.288, 0.337) 20 0.45 (0.177, 0.676)
2 0.003 (-0.295, 0.337) 62 0.022 (-0.305, 0.327) 21 0.159 (-0.253, 0.479)
3 0.013 (-0.363, 0.288) 63 0.015 (-0.293, 0.299) 22 -0.559 (-0.885, -0.195)
4 -0.017 (-0.362, 0.316) 64 0.011 (-0.288, 0.327) 23 -0.475 (-0.817, -0.128)
5 -0.018 (-0.33, 0.385) 65 0.015 (-0.325, 0.35) 24 -0.395 (-0.734, -0.076)
6 -0.03 (-0.35, 0.34) 66 -0.005 (-0.37, 0.36) 25 1.267 (0.958, 1.618)
7 0.011 (-0.35, 0.333) 67 0 (-0.39, 0.284) 26 0.041 (-0.256, 0.351)
8 0.016 (-0.382, 0.327) 68 -0.007 (-0.344, 0.296) 27 -0.233 (-0.544, 0.069)
9 0.008 (-0.363, 0.333) 69 0.008 (-0.326, 0.36) βRID, 1 0.09 (-0.189, 0.348)

10 0.017 (-0.357, 0.327) 70 -0.011 (-0.335, 0.374) 2 0.379 (0.087, 0.676)
11 -0.002 (-0.342, 0.333) 71 0.018 (-0.338, 0.401) 3 -0.127 (-0.364, 0.172)
12 -0.003 (-0.352, 0.302) 72 -0.01 (-0.552, 0.083) 4 0.136 (-0.171, 0.408)
13 -0.009 (-0.36, 0.329) 73 0.016 (-0.367, 0.233) 5 0.199 (-0.054, 0.472)
14 0.003 (-0.315, 0.384) 74 -0.006 (-0.366, 0.3) 6 -0.522 (-0.82, -0.152)
15 -0.016 (-0.309, 0.294) 75 0.008 (-0.295, 0.238) 7 0.569 (0.134, 0.881)
16 -0.014 (-0.319, 0.368) 76 0.028 (-0.391, 0.34) 8 -1.19 (-1.515, -0.75)
17 -0.003 (-0.441, 0.286) 77 0.022 (-0.31, 0.348) 9 0.109 (-0.144, 0.387)
18 0.01 (-0.325, 0.374) 78 0.002 (-0.355, 0.275) 10 -0.356 (-0.72, 0.039)
19 -0.007 (-0.319, 0.354) 79 -0.005 (-0.391, 0.274) 11 -1.022 (-1.342, -0.715)
20 -0.003 (-0.361, 0.252) 80 0.008 (-0.322, 0.34) 12 -0.62 (-0.964, -0.333)
21 -0.024 (-0.344, 0.316) 81 -0.001 (-0.356, 0.385) 13 -0.093 (-0.447, 0.241)
22 -0.011 (-0.36, 0.313) 82 0.003 (-0.376, 0.289) 14 -1.334 (-1.643, -0.978)
23 -0.009 (-0.295, 0.376) 83 -0.013 (-0.33, 0.334) 15 -0.007 (-0.329, 0.368)
24 0.02 (-0.326, 0.331) 84 0.021 (-0.337, 0.354) 16 -0.057 (-0.305, 0.303)
25 -0.004 (-0.134, 0.397) 85 -0.016 (-0.337, 0.319) 17 1.277 (1.036, 1.6)
26 0.014 (-0.308, 0.354) 86 -0.004 (-0.283, 0.353) 18 0.432 (0.13, 0.83)
27 0.014 (-0.315, 0.339) 87 0.026 (-0.358, 0.29) 19 0.462 (0.191, 0.846)
28 -0.019 (-0.354, 0.329) 88 0.015 (-0.356, 0.327) 20 -0.515 (-0.78, -0.087)
29 -0.017 (-0.336, 0.341) 89 0.015 (-0.353, 0.304) 21 0.493 (0.242, 0.765)
30 -0.007 (-0.317, 0.296) 90 0.013 (-0.317, 0.324) 22 0.177 (-0.06, 0.48)
31 0.011 (-0.308, 0.325) 91 -0.014 (-0.375, 0.302) 23 -0.086 (-0.429, 0.181)
32 0.007 (-0.303, 0.371) 92 0.004 (-0.304, 0.233) 24 0.192 (-0.051, 0.526)
33 0.003 (-0.301, 0.356) 93 0.022 (-0.319, 0.358) 25 0.037 (-0.307, 0.319)
34 -0.004 (-0.136, 0.482) 94 0.001 (-0.27, 0.366) 26 0.161 (-0.135, 0.461)
35 -0.015 (-0.352, 0.308) 95 -0.01 (-0.351, 0.369) 27 -0.459 (-0.737, -0.123)
36 -0.019 (-0.311, 0.311) 96 -0.023 (-0.396, 0.317) 28 0.286 (0.06, 0.592)
37 0.017 (-0.339, 0.313) 97 0.003 (-0.342, 0.382) 29 -0.154 (-0.563, 0.214)
38 0.017 (-0.314, 0.314) 98 0.023 (-0.327, 0.321) 30 0.352 (0.024, 0.622)
39 0 (-0.278, 0.253) 99 -0.007 (-0.359, 0.296) 31 0.179 (-0.123, 0.501)
40 -0.019 (-0.324, 0.34) 100 0.02 (-0.262, 0.348) σPID 0.599 (0.53, 0.702)
41 -0.018 (-0.3, 0.291) βPID, 1 -0.057 (-0.321, 0.333) σRID 0.556 (0.485, 0.61)
42 -0.003 (-0.318, 0.373) 2 0.06 (-0.201, 0.323) σp 0.041 (0.011, 0.346)
43 -0.002 (-0.32, 0.325) 3 0.057 (-0.186, 0.275) σa 0.34 (0.2, 1.031)
44 -0.002 (-0.292, 0.363) 4 0.011 (-0.307, 0.418) σg 0.034 (0.011, 0.365)
45 0.009 (-0.354, 0.311) 5 0.561 (0.301, 0.855) σ 0.294 (0.269, 0.321)
46 -0.005 (-0.354, 0.318)
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Supporting Table 3: Correlations between estimated concen-

trations in the second experiment

In the second experiment, four arrays were hybridised in a loop design with three samples
(A, B1, B2) from a human cervical tumour and a reference sample (Ref) (Table 1).

Estimated concentrations for individual genes were reliable, as pairwise scatterplots (Sup-
porting Figure 8), and correlations in the following table show.

Supporting Table 3: Correlation between estimated concentrations

Sample B1 Sample B2 Sample A

Ref 0.258 0.280 0.396

A 0.912 0.928

B2 0.993

These relationships were consistent with A, B1 and B2 originating from the same tumour and
B1 and B2 originating from the same location within the tumour.

10



Supporting Table 4: Estimates of absolute transcript concen-

trations

For the human cervical tumour study we considered 100 genes and four samples; reference,
biopsy B1, biopsy B2 and biopsy A. The estimated number of transcripts for each gene in each
sample is given together with its uncertainty. The estimates are posterior marginal modes
and the uncertainties are described by 95% credibility intervals, lying between the 2.5% and
the 97.5% quantiles.
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Gene Reference Biopsy B1 Biopsy B2 Biopsy A
Number and Mode and 95% credi- Mode and 95% credi- Mode and 95% credi- Mode and 95% credi-

name bility interval (∗106) bility interval (∗106) bility interval (∗106) bility interval (∗106)
1 ABR 0.308 (0.18, 0.718) 0.406 (0.227, 0.862) 0.385 (0.225, 0.858) 0.543 (0.293, 1.122)
2 ARPC2 0.132 (0.063, 0.258) 0.151 (0.082, 0.338) 0.2 (0.112, 0.417) 0.181 (0.098, 0.357)
3 B4GALT1 0.318 (0.145, 0.634) 0.213 (0.118, 0.492) 0.243 (0.118, 0.489) 0.263 (0.125, 0.498)
4 BCL2A1 0.059 (0.031, 0.174) 0.077 (0.03, 0.174) 0.092 (0.053, 0.264) 0.127 (0.057, 0.257)
5 CAPZB 0.095 (0.044, 0.236) 0.093 (0.046, 0.266) 0.087 (0.044, 0.231) 0.085 (0.039, 0.187)
6 CASP3 0.426 (0.176, 1.019) 0.925 (0.393, 2.056) 0.615 (0.282, 1.621) 0.544 (0.265, 1.449)
7 CASP7 1.209 (0.695, 3.054) 1.314 (0.739, 2.884) 1.295 (0.767, 3.33) 1.585 (0.96, 3.691)
8 CCT6A 1.01 (0.511, 1.887) 0.741 (0.399, 1.497) 1.06 (0.578, 2.229) 1.248 (0.644, 2.227)
9 CD34 0.055 (0.024, 0.157) 0.055 (0.026, 0.18) 0.064 (0.03, 0.169) 0.092 (0.042, 0.239)

10 CD37 0.098 (0.051, 0.33) 0.16 (0.079, 0.468) 0.177 (0.09, 0.528) 0.184 (0.092, 0.54)
11 CD44 3.531 (2.087, 8.298) 0.513 (0.306, 1.255) 0.711 (0.332, 1.428) 1.716 (0.82, 3.614)
12 CD53 0.401 (0.25, 0.977) 0.926 (0.489, 1.837) 1.151 (0.718, 2.729) 1.801 (0.999, 3.757)
13 CDC6 0.528 (0.284, 1.14) 0.289 (0.14, 0.616) 0.279 (0.16, 0.599) 0.329 (0.182, 0.712)
14 CDH13 0.561 (0.326, 1.23) 0.112 (0.064, 0.279) 0.1 (0.063, 0.251) 0.238 (0.122, 0.501)
15 CDK8 0.403 (0.247, 0.905) 0.498 (0.274, 0.944) 0.557 (0.295, 1.003) 0.465 (0.288, 1.008)
16 CDK9 0.06 (0.026, 0.144) 0.043 (0.018, 0.126) 0.047 (0.024, 0.134) 0.045 (0.023, 0.131)
17 CDKN1B 0.269 (0.125, 0.676) 0.453 (0.22, 1.058) 0.337 (0.189, 0.907) 0.412 (0.208, 0.957)
18 CDKN2D 0.243 (0.132, 0.603) 0.262 (0.135, 0.574) 0.289 (0.146, 0.601) 0.297 (0.173, 0.778)
19 CHL1 0.112 (0.067, 0.366) 0.159 (0.085, 0.541) 0.208 (0.112, 0.634) 0.299 (0.171, 0.779)
20 CKS2 0.984 (0.511, 1.838) 0.41 (0.227, 0.819) 0.583 (0.357, 1.301) 0.99 (0.565, 2.116)
21 CLCN3 0.324 (0.154, 0.736) 0.323 (0.159, 0.797) 0.297 (0.133, 0.579) 0.235 (0.106, 0.466)
22 CLDN3 0.106 (0.046, 0.278) 0.096 (0.048, 0.311) 0.113 (0.049, 0.287) 0.062 (0.032, 0.192)
23 CLIC1 0.081 (0.043, 0.186) 0.178 (0.092, 0.407) 0.177 (0.103, 0.431) 0.158 (0.076, 0.309)
24 COL15A1 0.176 (0.098, 0.384) 0.139 (0.07, 0.285) 0.131 (0.076, 0.306) 0.252 (0.148, 0.592)
25 COL1A2 0.26 (0.159, 0.537) 0.933 (0.56, 1.839) 0.73 (0.491, 1.479) 1.123 (0.71, 1.928)
26 COX10 0.172 (0.079, 0.424) 0.124 (0.053, 0.306) 0.142 (0.073, 0.355) 0.135 (0.072, 0.347)
27 COX7C 1.553 (0.864, 3.878) 1.823 (0.976, 4.194) 2.098 (1.075, 4.548) 1.85 (1.037, 4.788)
28 CREG 1.151 (0.615, 2.17) 1.733 (0.98, 3.674) 1.793 (0.894, 3.555) 1.389 (0.828, 3.171)
29 CSK 0.087 (0.046, 0.186) 0.114 (0.059, 0.249) 0.091 (0.05, 0.204) 0.079 (0.041, 0.166)
30 CYP2A7 0.216 (0.124, 0.473) 0.34 (0.186, 0.694) 0.319 (0.172, 0.626) 0.246 (0.111, 0.412)
31 DDX16 0.239 (0.142, 0.561) 0.373 (0.196, 0.754) 0.352 (0.216, 0.785) 0.425 (0.198, 0.737)
32 DUSP5 0.133 (0.065, 0.274) 0.156 (0.086, 0.359) 0.155 (0.094, 0.364) 0.096 (0.052, 0.226)
33 EPHA1 0.157 (0.076, 0.34) 0.187 (0.097, 0.405) 0.219 (0.105, 0.44) 0.206 (0.117, 0.497)
34 ETS2 0.186 (0.114, 0.407) 0.782 (0.459, 1.508) 0.674 (0.345, 1.131) 0.622 (0.345, 1.117)
35 FLJ00023 0.305 (0.185, 0.67) 0.333 (0.188, 0.661) 0.384 (0.229, 0.788) 0.555 (0.287, 1.002)
36 FLJ10701 0.063 (0.029, 0.161) 0.072 (0.033, 0.186) 0.082 (0.043, 0.217) 0.087 (0.043, 0.206)
37 FLJ10871 0.342 (0.16, 0.856) 0.594 (0.288, 1.535) 0.463 (0.255, 1.192) 0.288 (0.159, 0.788)
38 FN1 0.137 (0.064, 0.284) 0.048 (0.026, 0.129) 0.06 (0.027, 0.137) 0.077 (0.041, 0.172)
39 FNTA 0.227 (0.145, 0.467) 0.244 (0.191, 0.596) 0.413 (0.23, 0.758) 0.387 (0.273, 0.728)
40 FY 0.099 (0.049, 0.21) 0.12 (0.074, 0.296) 0.121 (0.061, 0.256) 0.09 (0.053, 0.211)
41 GADD34 0.203 (0.115, 0.514) 0.127 (0.066, 0.351) 0.21 (0.106, 0.496) 0.223 (0.123, 0.546)
42 GAPD 2.253 (1.296, 5.399) 1.31 (0.62, 2.75) 1.599 (0.81, 3.246) 1.89 (1.052, 4.546)
43 GPM6B 0.129 (0.08, 0.28) 0.092 (0.05, 0.218) 0.088 (0.049, 0.203) 0.091 (0.047, 0.177)
44 GSTA2 0.112 (0.057, 0.32) 0.173 (0.085, 0.446) 0.116 (0.054, 0.281) 0.109 (0.046, 0.235)
45 GSTA3 0.084 (0.043, 0.216) 0.066 (0.034, 0.211) 0.065 (0.034, 0.2) 0.049 (0.021, 0.114)
46 GSTP1 1.036 (0.496, 2.789) 2.727 (1.234, 6.845) 2.915 (1.292, 6.885) 2.103 (1.098, 5.482)
47 GSTTLp28 0.56 (0.318, 1.245) 0.665 (0.348, 1.495) 0.604 (0.403, 1.557) 0.763 (0.421, 1.621)
48 HDGF 1.12 (0.564, 2.156) 1.405 (0.702, 2.633) 1.242 (0.659, 2.4) 0.888 (0.521, 2.117)
49 HLA-C 0.528 (0.267, 1.506) 9.238 (3.8, 20.511) 8.572 (4.233, 20.923) 6.456 (2.641, 14.813)
50 HLA-DPB1 0.101 (0.053, 0.255) 3.127 (1.635, 6.909) 3.754 (1.909, 7.065) 4.908 (3.17, 12.066)

Continued on next page
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Gene Reference Biopsy B1 Biopsy B2 Biopsy A
Number and Mode and 95% credi- Mode and 95% credi- Mode and 95% credi- Mode and 95% credi-

name bility interval (∗106) bility interval (∗106) bility interval (∗106) bility interval (∗106)
51 HXB 0.667 (0.396, 1.45) 0.38 (0.229, 0.92) 0.398 (0.212, 0.798) 0.888 (0.594, 2.227)
52 IGF1 0.142 (0.065, 0.343) 0.379 (0.156, 0.787) 0.32 (0.141, 0.654) 0.297 (0.139, 0.657)
53 IGF1R 0.291 (0.138, 0.678) 0.142 (0.064, 0.345) 0.145 (0.08, 0.419) 0.151 (0.073, 0.338)
54 IGHG3 0.138 (0.076, 0.336) 0.187 (0.107, 0.504) 0.204 (0.104, 0.436) 0.184 (0.101, 0.433)
55 IL10RA 0.122 (0.059, 0.315) 0.233 (0.121, 0.542) 0.24 (0.131, 0.608) 0.223 (0.105, 0.509)
56 IL13RA1 0.189 (0.117, 0.582) 0.305 (0.159, 0.844) 0.309 (0.148, 0.833) 0.217 (0.114, 0.621)
57 IL1R2 0.508 (0.22, 1.082) 2.374 (1.05, 4.696) 1.607 (0.71, 3.429) 1.212 (0.63, 2.811)
58 IL1RN 0.093 (0.045, 0.258) 0.09 (0.045, 0.29) 0.08 (0.043, 0.263) 0.075 (0.034, 0.189)
59 IL6 0.113 (0.054, 0.279) 0.331 (0.178, 0.698) 0.263 (0.147, 0.6) 0.249 (0.136, 0.541)
60 IL8 0.088 (0.038, 0.232) 0.194 (0.097, 0.525) 0.219 (0.106, 0.517) 0.413 (0.203, 0.955)
61 IRF1 0.149 (0.088, 0.365) 0.2 (0.116, 0.491) 0.16 (0.105, 0.426) 0.213 (0.106, 0.39)
62 JUN 0.146 (0.066, 0.349) 0.232 (0.12, 0.6) 0.283 (0.142, 0.686) 0.451 (0.232, 1.106)
63 JUNB 0.538 (0.295, 1.256) 2.297 (1.181, 4.826) 1.823 (1.149, 4.443) 1.432 (0.848, 3.214)
64 KIAA1705 0.211 (0.112, 0.461) 0.1 (0.055, 0.244) 0.108 (0.061, 0.277) 0.147 (0.077, 0.308)
65 KLF2 0.117 (0.065, 0.262) 0.138 (0.076, 0.317) 0.105 (0.061, 0.249) 0.105 (0.06, 0.241)
66 LAMB1 0.414 (0.225, 0.812) 0.251 (0.149, 0.574) 0.324 (0.187, 0.665) 0.402 (0.22, 0.747)
67 LMNA 0.465 (0.283, 0.987) 0.388 (0.22, 0.823) 0.461 (0.248, 0.896) 0.427 (0.29, 1.015)
68 LOX 0.094 (0.048, 0.233) 0.045 (0.024, 0.125) 0.057 (0.03, 0.145) 0.125 (0.069, 0.311)
69 MAPK14 0.379 (0.193, 0.904) 0.425 (0.204, 1.015) 0.372 (0.214, 1.028) 0.768 (0.399, 1.946)
70 MCAM 2.323 (1.392, 5.289) 0.51 (0.304, 1.214) 0.598 (0.332, 1.245) 0.76 (0.448, 1.74)
71 MEG3 0.195 (0.108, 0.443) 0.195 (0.102, 0.387) 0.188 (0.114, 0.392) 0.176 (0.111, 0.42)
72 MID1 0.109 (0.064, 0.298) 0.398 (0.211, 0.872) 0.376 (0.276, 0.985) 0.507 (0.293, 1.109)
73 MY014 0.224 (0.116, 0.456) 0.166 (0.071, 0.29) 0.135 (0.076, 0.296) 0.169 (0.085, 0.322)
74 NGFB 0.206 (0.104, 0.464) 0.195 (0.093, 0.423) 0.134 (0.066, 0.292) 0.087 (0.044, 0.219)
75 OAZ1 0.987 (0.704, 2.485) 1.026 (0.652, 2.35) 1.049 (0.721, 2.517) 1.188 (0.731, 2.354)
76 ODC1 3.129 (1.763, 6.841) 0.566 (0.346, 1.249) 0.552 (0.365, 1.388) 0.803 (0.537, 2.061)
77 OSTF1 0.436 (0.259, 0.949) 0.603 (0.33, 1.228) 0.37 (0.241, 0.881) 0.382 (0.215, 0.76)
78 PAPPA 0.112 (0.067, 0.263) 0.071 (0.039, 0.18) 0.061 (0.04, 0.172) 0.119 (0.07, 0.256)
79 PC4 1.628 (0.964, 3.631) 1.704 (1.07, 4.083) 2.195 (1.219, 4.627) 2.183 (1.301, 5.453)
80 PFKM 0.302 (0.177, 0.649) 0.163 (0.083, 0.305) 0.142 (0.09, 0.327) 0.182 (0.098, 0.329)
81 PIM1 0.205 (0.087, 0.494) 0.19 (0.086, 0.504) 0.189 (0.107, 0.599) 0.318 (0.129, 0.62)
82 PLAU 0.232 (0.116, 0.59) 2.35 (1.04, 4.531) 1.878 (1.01, 4.523) 1.458 (0.74, 3.349)
83 PLGL 0.07 (0.031, 0.151) 0.087 (0.047, 0.209) 0.084 (0.035, 0.175) 0.063 (0.028, 0.126)
84 PPP2R1B 0.374 (0.218, 0.752) 0.183 (0.098, 0.392) 0.2 (0.101, 0.373) 0.208 (0.129, 0.477)
85 PSMC4 1.397 (0.873, 2.823) 1.263 (0.742, 2.677) 1.238 (0.643, 2.277) 1.249 (0.791, 2.628)
86 PTE1 0.302 (0.178, 0.606) 0.184 (0.106, 0.448) 0.18 (0.119, 0.447) 0.167 (0.097, 0.331)
87 RAB6A 1.014 (0.514, 1.836) 0.59 (0.298, 1.067) 0.48 (0.269, 0.915) 1.159 (0.666, 2.261)
88 RAF1 0.274 (0.153, 0.653) 0.242 (0.124, 0.518) 0.268 (0.145, 0.62) 0.548 (0.295, 1.137)
89 RI58 0.103 (0.047, 0.248) 0.261 (0.119, 0.506) 0.251 (0.128, 0.576) 0.247 (0.122, 0.581)
90 S100A7 0.047 (0.022, 0.155) 0.679 (0.361, 1.511) 1.035 (0.628, 2.846) 0.255 (0.135, 0.635)
91 SERPINA1 0.128 (0.058, 0.323) 0.052 (0.023, 0.163) 0.046 (0.02, 0.13) 0.045 (0.028, 0.149)
92 SFRS9 0.561 (0.361, 1.224) 0.361 (0.228, 0.814) 0.441 (0.249, 0.929) 0.622 (0.315, 1.112)
93 SLC2A3 0.332 (0.2, 0.812) 0.094 (0.05, 0.23) 0.085 (0.049, 0.202) 0.088 (0.044, 0.2)
94 TM4SF3 0.407 (0.271, 0.924) 0.465 (0.318, 1.053) 0.5 (0.302, 1.018) 0.579 (0.336, 1.127)
95 TP53BP1 0.418 (0.252, 0.915) 0.269 (0.127, 0.515) 0.241 (0.156, 0.594) 0.348 (0.192, 0.656)
96 TRIP7 0.531 (0.318, 1.122) 0.804 (0.44, 1.633) 1.038 (0.576, 2.014) 0.934 (0.522, 1.998)
97 TSC2 0.214 (0.106, 0.443) 0.163 (0.085, 0.37) 0.109 (0.075, 0.285) 0.129 (0.068, 0.274)
98 UFD1L 0.153 (0.081, 0.37) 0.165 (0.081, 0.381) 0.171 (0.088, 0.383) 0.133 (0.08, 0.341)
99 VDR 0.123 (0.064, 0.26) 0.081 (0.041, 0.177) 0.052 (0.028, 0.127) 0.078 (0.042, 0.171)

100 VEGF 1.172 (0.699, 3.381) 1.794 (0.983, 5.296) 1.91 (1.025, 5.029) 1.703 (1.008, 4.766)
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Supporting Figure 7: validation of the methods: Estimated

ratios between numbers of molecules per gene in two samples

with known concentrations

Estimated ratios between numbers of molecules per gene in the two samples were obtained.
The data in Figure 7 are based on the dye-swap experiment presented in Figure 2a in the
paper. Estimated ratios of the numbers of mRNA molecules of the two samples are plotted for
each of the 17 genes, together with their 95% credibility intervals. Horizontal lines represent
true ratios, coloured squares are estimated ratios with a colour for each true ratio. Nine genes
have true ratio 1. True ratios 10, 3, 1, 0.33 and 0.10 are coloured yellow, green, pink, red and
blue respectively. The ratios are sufficiently well estimated; for example, when the true fold is
1, estimates range between 1 and 1.5. One 10-fold is estimated however as a 3-fold. A two- or
three-fold cut-off analysis would correctly deliver 4 overexpressed and 4 underexpressed genes.
Estimated ratios of number of molecules were similar to the ratios of normalised measured
intensities; in both cases folds were sufficiently well estimated to guide a search for differential
expressions.
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Supporting Figure 8: Comparison of absolute transcript levels

in different samples from a human cervical tumour

Comparison of absolute transcript levels in different samples from a human cervical tumour.
The data are based on the experiments listed in Table 1 in the paper. Estimated mRNA
concentrations (number of mRNA molecules per µg of total RNA; posterior modes) are plot-
ted for each gene and sample. Correlation coefficients and diagonal lines are shown. The
remaining two correlation coefficients are 0.280 for reference versus sample B2 and 0.396 for
reference versus sample A. The estimated mRNA concentrations for the tumour samples (A,
B1, B2) showed a much stronger correlation to each other than to the reference sample (Ref).
Moreover, the two samples derived from the same biopsy (B1, B2) were more correlated to
each other than to the sample derived from a different location in the tumour (A). Notice that
the range obtained by multiplying estimated concentrations in the biopsies by the quantity of
total RNA leads to estimated numbers of transcripts, which are within a range comparable
to that of the validation experiment in Figure 2a and 2b in the paper.
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Supporting Figure 9: Estimated probability densities of mRNA

concentration in samples from a human cervical tumour

Estimated probability densities of mRNA concentration (number of mRNA molecules per
µg of total RNA) in a cervical tumour for four typical genes; gene 13, 33, 46, and 91 (see
Supporting Table 2 for the gene symbols of the 100 genes included in the analysis). The
data are based on the experiments listed in Table 1, and represent the distributions of the
mean concentrations of the three tumour samples (A, B1, B2). The width of the credibility
intervals describe the biological variability of the three samples in addition to the uncertainty
of the estimates. Gene 46 had a relatively high mRNA concentration, gene 91 low, while the
other two were intermediate. Different axis scales are used for the different genes.
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Supporting Figure 10: the number of selected genes as function

of the fold k

We plotted the number of selected genes as a function of the fold k, for a given value of the
probability that all but m genes were at least k-fold expressed. We used m = 0 and two
values of the probability, 0.95 (red) and 0.80 (green), for the two curves. This plot helps to
find the required balance between level of differential expression (here the fold k) and the
number of selected genes, for a given level of posterior probability.
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