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Abstract

Archaeological sites are sometimes visible in satellite images as soil or crop marks.

At best, the marks are distinct, but they tend to have less contrast with the back-

ground than many other patterns in the images. Consequently, reliable automated

detection based on pattern recognition is very difficult.

Our method detects circle shaped soil and crop marks in the panchromatic band

of high-resolution satellite images of agricultural fields. Such circular marks may be

caused by burial mounds.

In our approach, local contrast enhancement is applied in order to make weak

marks more distinct. The image is then convolved with ring templates of varying

sizes, giving high absolute values at candidate circular mark locations. Each candidate

mark is presented to an operator, who may reject it.

We tested our method on Quickbird images from south-east Norway. The num-

ber of detected candidate marks could be varied by changing a threshold value. A

reasonable compromise between not detecting too many false rings and at the same

time detecting as many true rings as possible, might be when the number of false

detections is approximately seven times the number of true detections. In this case,

11 out of 15, or 73%, of the strong rings were detected, and 5 out of 10, or 50%, of

the fairly strong rings were detected. This is 16 out of 25 of the strong and fairly

strong rings, or 64%.

Archaeologists state that the software tool we develop will be helpful for locating

potential cultural heritage sites. Although it makes many false detections, it will

relieve the operators from time consuming manual inspection of entire images.

Keywords Pattern recognition, soil marks, crop marks, Quickbird, contrast enhance-

ment, remote sensing.
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1 Introduction

The increasingly intensive use and modification of the landscape resulting from modern

demands for efficient infrastructure and land use (agricultural production, mining, energy

sources, leisure/tourism facilities, etc.) exert growing pressure on cultural heritage in the

landscape. In order to match the political intentions of updated and sustainable cultural

heritage management, it is necessary to develop a cost effective method for locating and

monitoring cultural heritage sites. Given the enormous costs of surveying the areas in

question by traditional fieldwork, alternatives must be sought. The use of modern support

technologies is imperative, if such rapid changes are to be balanced against the sustainable

management of this resource.

Aerial photographs have been used for many years to identify archaeological sites,

both visible and buried (Wilson, 1982); for recent research, see, e.g., (Campana et al.,

2006; Musson et al., 2006). Many sites manifest themselves as soil marks, crop marks,

shadow marks or frost marks (Wilson, 1982). These marks may be visible in the images

as contrasts in spectral reflectance to the surroundings.

In addition to airborne multispectral imaging, recent advances in airborne LIDAR are

also promising (e.g., see Devereux et al., 2008; Risbøl et al., 2006; Sittler and Schellberg,

2006). To collect airborne imagery and LIDAR is nevertheless both time consuming and

costly, thus it imposes severe limitations on the size of the areas that can be investigated.

In this respect, multispectral and panchromatic images from sun-synchronous earth

observing satellites provide a complementary source of image data. Panchromatic images

have ground pixel sizes varying from 15 m (Landsat 7, since 1999), 10 m (Spot, since 1986)

to 1.0 m (Ikonos, since 1999), 0.6 m (Quickbird, since 2001), and 0.5 m (Worldview, since
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October 2007). Multispectral images have ground pixel sizes of 30 m (Landsat), 20 m

(Spot), 4 m (Ikonos) and 2.4 m (Quickbird) (Cracknell and Hayes, 2007). These have

been used for manual and automated detection of archaeological sites by several research

groups (see below). Despite coarser resolution than aerial images, digital satellite images

are attractive due to global coverage and a simpler viewing geometry because of the

long distance between the sensor and the target. Pattern recognition methods have been

applied successfully on high resolution satellite images in other research areas, such as

automatic detection of vehicles (Larsen et al., 2008a), vehicles and roads (Oostdijk et al.,

2008), and buildings (Sumer and Turker, 2008). It should be noted that prior to 1999,

10 m ground resolution was the best available from satellites, with the majority of the

research devoted to classification of multispectral pixels, mainly for land use assessment.

So, pattern recognition of human made structures in high resolution satellite images is a

relatively new research field in general.

Satellite image based location, surveillance and monitoring of cultural heritage sites

has been the subject of some recent research. Trelogan et al. (1999) and Carter et

al. (2000) used maximum likelihood classification of two Landsat TM images, acquired in

1988 and 1992, to automatically detect urban development surrounding an archaeologi-

cal site. Blom et al. (1997; 2000) used Landsat images in combination with other remote

sensing sources to visually locate sites. Aminzadeh and Samani (2006) used various image

enhancement methods on Landsat ETM+ images to assist visual interpretation, including

various band ratios, spectral principal component analysis, edge detection, and high-pass

filtering. This resulted in different false-color images that could be used for visual inspec-

tion and detection. Goossens et al. (2006) and Fowler and Fowler (2005) used historic

images from the former Corona military reconnaissance satellite (operated from 1960 to
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1972; 2 m pixel size) for visual inspection. Lasaponara and Masini (2007) used pan-

sharpened multispectral Quickbird images to detect crop marks, and found that the near

infrared band was better for crop marks in dry vegetation, and the normalized difference

vegetation index (NDVI) was better for green vegetation. Based on this, edge detection in

the near infrared band or the NDVI image was used to automatically identify candidate

crop marks. This was followed by manual line extraction. De Laet et al. (2007) compared

three different methods to automatically detect above ground sites in pan-sharpened mul-

tispectral Ikonos images: (1) edge enhancement (least successful), (2) maximum likelihood

classification of pixels, and (3) segmentation followed by nearest-neighbour classification.

All the methods were able to extract some archaeological objects, but also had major

limitations, due to large variations in shape and color.

Earlier work at our institute (Aurdal et al., 2006) focused on detecting crop and soil

marks of arbitrary shape, but recent experiments on the current data set gave inconclusive

results. Further, archaeologists have identified several circular crop and soil marks in the

data, which led us to consider methods tailored to detecting circular marks. Lemmens

et al (1993) used edge detection to find circular objects in a scanned aerial image from

Oxfordshire. From each circle center candidate, a search was made in eight directions (0◦,

45◦, 90◦, ...) to simultaneously locate edges of the correct direction at the same radius.

Partly occluded circles were allowed by accepting fewer than eight simultaneous matches.

However, in our data, the rings are often weak, and a method based on edge detection

would not be successful.

The rest of the paper is organized as follows. Section 2 outlines the background for the

CultSearcher prototype system. Section 3 describes the experimental data set. Section 4

describes the various methods we have attempted to use, and summarizes the chosen
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algorithm. Experimental results are described in Section 5, and discussed in Section 6.

Finally, conclusions are given in Section 7. Preliminary results from this work have been

presented at international conferences (Larsen et al., 2008b; Trier et al., 2008b).

2 The CultSearcher prototype system

The Norwegian Directorate for Cultural Heritage, in collaboration with the Norwegian

Computing Center, the Norwegian Institute for Cultural Heritage Research, the Museum

of Cultural History at the University of Oslo, and Vestfold County Administration, started

in 2003 a project with the overall aim of developing a cost effective method for surveying

and monitoring cultural heritage sites on a regional and national scale. The Norwegian

Computing Center has been responsible for developing the automatic detection method-

ology and implementing this into a prototype software system, CultSearcher.

A main objective of the study presented here was to analyze the utility of satellite

images for archaeological mapping. It was partly motivated by the fact that mapping on

a national scale is cheaper with satellite imagery than with aerial images. It was also

motivated by the fact that geometrical effects, like radial distortion, are much smaller in

satellite images that aerial images.

CultSearcher is currently analyzing soil marked and crop marked patterns. Soil

marked sites are typically the remains of ditches or pits, buried walls, etc. Crop marks

are an indirect effect of buried archaeological structures.

The aim of CultSearcher is to provide computerized assistance to the operator in

the analysis of satellite images. In particular, the software identifies potential sites, for

further inspection by an archaeologist. This means that the archaeologist may concentrate
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on analyzing the identified sites rather than the entire image. Note that the system is

designed to detect candidate sites and that no claim is made that these candidates are

true cultural heritage sites. Even human specialists cannot make such an assertion based

on satellite imagery alone. The verification of a potential site always depends on some

kind of field inspection.

3 Experimental data set

The data set cosists of two Quickbird images (Figure 1). Image ’Laagen’ was acquried on

April 27, 2005 at 10:45AM, from the valley L̊agendalen between Kongsberg and Larvik.

Image ’Gardermoen’ was acquried on July 29, 2003 at 10:23 AM, from an area surround-

ing, but not including, the Oslo Gardermoen airport. Both images consist of a four-band

multispectral image and a single-band panchromatic image. The panchromatic image has

0.6 m ground pixel size, and covers the 450-900 nm wavelengths. The multispectral image

has 2.4 m pixels, and the four bands are: blue (450-520 nm), green (520-600 nm), red

(630-690 nm), and near-infrared (760-900 nm).

There have been numerous archaeological investigations in both test areas, and the

areas are known for their relatively high density of archaeological sites.

The Gardermoen area is an undulating glacial landscape consisting mainly of well-

drained sandy soils cut by an intricate system of ravines. This fertile area has many

agricultural fields in which crop marks have previously been reported. The image acqui-

sition date should be ideal for detection of crop marks, since this is the time of the year

when the crops are in the process of ripening and thus turning yellow.

The L̊agendalen area is a distinct u-valley in which the river L̊agen has eroded its
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meandering way through a thick layer of marine clay. The area now consists of agricultural

fields and forest. The area includes a known Iron Age grave field at Odberg farm. The

date of this image is too early for crop marks to have been fully developed, but soil marks

could be expected.

Further understanding of the optimal time and optimal conditions for soil and crop

marks is important for large-scale use of satellite images for archaeological mapping. This

would require an extensive data set acquired over several years (due to the cloud conditions

in Norway), and is intended to be carried out in a future study.

Archaeologists have identified many circular patterns that are clearly visible in the

panchromatic images (Figure 2a), but can hardly be seen in the multispectral images

(Figure 2b–2c). These are believed to be the remains of burial mounds. The mound itself

has been destroyed, but the circular ditch often remains. Recently, other research groups

have used multispectral Quickbird (Lasaponara and Masini, 2007) or Ikonos (De Laet

et al., 2007) images to locate cultural heritage sites, but the objects they were looking for

were much larger than the circular marks in the present work. Since the circular patterns

are difficult to spot visually in the multispectral bands, this might indicate that the lower

resolution multispectral bands will not contribute significantly. However, it would have

been interesting to perform experiments where the multispectral information was used as

well, and we plan to do so in a future study.

In the two Quickbird images, archaeologists have identified 35 locations with ring

marks that they would like the system to recognize. We have visually classified 15 of

these as ’strong’, 10 as ’fair’ and 10 as ’weak’ (Figure 3). At a few of the locations, there

are two rings located only a few meters apart; these are counted as one ring only, with the

understanding that if one is correctly located, then the archaeologist has been directed
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to an interesting site, and whether one or two rings are marked by the program is not

important. 11 subimages of 4096×4096 pixels were extracted for the experiments. These

subimages included all 35 ring mark locations.

4 Methods for detecting ring marks

As noted in Section 3, the remains of burial mounds are often visible as ring marks in the

images.

In order to detect as many ring marks as possible, while at the same time keeping the

number of false positives at a minimum, variations of the following sequence of methods

have been tried out:

1. low pass-, band pass- or high pass-filtering in the frequency domain;

2. local contrast enhancement;

3. template matching;

4. feature extraction; and

5. decision tree-based classification.

Each of these will be discussed below. Both the various approaches tested and the

chosen methods are described.

4.1 Filtering in the frequency domain

Since the ring marks are relatively weak in the images, we wanted to remove image

information not related to the ring marks, including plow furrows. We investigated if this
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could be done in the frequency domain by use of the fast Fourier transform followed by

low pass, band pass or high pass filtering.

The filter that seemed to preserve the rings best and at the same time suppress as

much other information as possible, was the band pass filter with cut-off radii 100 and

800. We verified visually that there was no trace of the rings in the information that was

removed, by using a band cut filter. This was double-checked by using a low pass and a

high pass filter. A lot of low- and high-frequency information was removed. However, the

plow furrows were too close in frequency to the rings to be removed. The plow furrows

were only slightly reduced in strength.

4.2 Local contrast enhancement

Even the most distinct rings in the test images have relatively low contrast with their

surroundings. In order to be able to detect any rings at all, the local contrast has to

be more or less constant over the entire image. This can be achieved by, for each pixel,

computing the local mean gray level and associated standard deviation in an N × N

square neighbourhood centered on the pixel. The pixel value pCE(x, y) in the contrast

enhanced image is computed as

pCE(x, y) =
p(x, y)− µ(x, y,N)

σ(x, y,N)
, (1)

where p(x, y) is the gray level value in the input image, µ(x, y,N) is the mean gray level

value in an N × N neighbourhood centered on (x, y), and σ(x, y,N) is the standard

deviation of the gray level values in the same neighbourhood.

The choice of the neighbourhood size, N , does not seem to be critical. We have chosen

to use N = 21. However, using, say, N = 15 or N = 35 also works quite well. Having a too

small value for N may result in exaggeration of even small local variations in gray level.
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Having a too large value for N may suppress the local contrast needed to identify the

rings. Another undesirable effect is that the local contrast is suppressed when the center

pixel is less than N/2 pixels from a very dark or very bright object in the image. For

example, along a row of trees, the plough furrows have almost been suppressed (Figure 4).

Similarly, in the river, there are bands of almost homogeneous gray values along its banks.

The river is of little concern to us, but the band along tree rows may make it difficult to

detect marks near the borders of fields.

We also tried global contrast enhancement, but this was not useful.

4.3 Template matching

The principle in template matching is to have some predefined ’ideal’ images that we slide

across the image, and for each template and each location, we compute some similarity

measurement. The locations with the highest similarity values are regarded as detections.

We used ring shaped templates with radii in the range from 4.5 m to 9.0 m, with 0.5 m

increment in radius, giving ten different radii in total. We tried different ring thicknesses,

a disk instead of a ring, and also whether the filter boundary should be square or circular.

Each ring filter was convolved with the image, producing a new correlation image,

where the value at each pixel indicate how well the ring filter, when centered on that

pixel location, agrees with the image. A high positive value indicates a bright ring, and

a high negative value a dark ring.

In order to extract ring candidates, a threshold value T is used twice on the correlation

image. First, bright rings are identified at regions with correlation > T . Next, dark rings

are identified at regions with correlation < −T . By selecting a high T , few ring candidates

will be extracted. This will reduce the number of false detections, but may also reduce the
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number of true detections. By selecting a low T , many ring candidates will be detected.

This will increase the number of false detections, but may also increase the number of

true detections.

The threshold value T is the single most sensitive parameter that the user may adjust,

and several values were used in the experiments.

We have experimented with various ring template shapes. A common principle for

all these templates is that they have a mean value of zero. Circular template boundaries

performed better than square ones, a template radius of twice the ring radius worked

best, and disk templates did not appear to offer improvements over ring templates.

The result of the template matching step is a list of ring candidates, each carrying the

following information:

• x- and y-coordinates of the ring center

• ring radius r,

• ring type – dark or bright.

4.4 Feature extraction

The purpose of feature extraction is to measure some qualities of each object. The idea

is that each object is described by its features. Good features are features that will make

the subsequent classification of the objects easy.

To be able to extract feature vectors, subimages of each ring candidate were extracted

as follows. For each ring candidate, a 4r × 4r subimage was extracted, centered on the

ring candidate’s center, where r is the radius found in the template matching step. The

corresponding subimage from the local contrast enhanced image was extracted, and two
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thresholded versions of it were created. For bright rings, the two thresholds were 0.5 and

1.0, and each pixel with a higher value than the threshold resulted in a white pixel in the

corresponding location, otherwise black. For dark rings, the thresholds were -0.5 and -1.0,

and each pixel with a lower value than the threshold resulted in a white pixel, otherwise

black. In addition, all pixels outside a 2r radius from the subimage center were set to

black.

This resulted in four subimages for each ring candidate – two gray level subimages

and two binary subimages.

Note that thresholding the local contrast enhanced image is equivalent to binarizing

the original image with Niblack’s method (Niblack, 1986). The method compares each

pixel value with a local threshold value t(x, y) to decide whether the pixel belongs to an

object or to the background. The threshold value is

t(x, y) = µ(x, y,N) + kσ(x, y,N), (2)

where µ(x, y,N) and σ(x, y,N) are as defined in Section 4.2.

A number of feature extraction methods have been suggested in the literature (e.g., see

(Reiss, 1993; Trier et al., 1996)). For ring marks, we wanted to have features that could

describe deviations from the circular shape. In addition, we wanted to have general shape

descriptions that captured the shape differences between ring marks and other locations

where the ring templates gave a good match, e.g., plow furrows (Figure 5). We have tried

the features below on the extracted subimages.

• Ring cover – the amount of overlap between a binary subimage and a binary

version of the ring filter. This is measured as the number of pixels in the intersection
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between the two binary images. This feature indicates how much the binary image

resembles a ring.

• Mean value of binary image. The mean x- and y-coordinates of the binary pixels,

normalized to a value between 0.0 and 1.0. A symmetric image would give 0.5

for both the mean x- and y-coordinates, and a significant deviation from (0.5, 0.5)

indicates a deviation from a ring shape.

• Hu moment invariants (Maitra, 1979). Geometric moments can be regarded as

a way of describing a shape in statistical terms, and the Hu moment invariants are

moment combinations that remain constant even if the shape is rotated, moved or

scaled.

• Real weighted Fourier moments (page 18 in (Reiss, 1993)). These have quite

complicated formulae, based on orthogonal functions, which are used to sample the

image, and result in moments that are themselves invariant to rotation, translation

and scaling.

Ring cover and mean value are measuring directly how well the segmented rings agree

with the ring templates. Hu moment invariants and real weighted Fourier moments are

general shape descriptions that are invariant to translation, rotation, and scale changes.

Ring cover and mean value were only computed from the binary images, whereas the

Hu moments and real weighted Fourier moments were computed for both gray level and

binary subimages.

For details on the computation of Hu moments and real weighted Fourier moments,

see pages 41–43 in (Trier et al., 2008a).
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In order to identify the most promising features, scatter plots were made for all fea-

tures, two features at a time. In the scatter plots, all ’true’ rings from the test images

were included, along with ’false’ rings from one or two test images. If there had been an

individual feature that was able to discriminate between rings and ’no-rings’, then the

two classes would have manifested themselves as two distinct clusters in the correspond-

ing scatter plot. However, the ’best’ features only seemed to have a smaller variance for

rings than for ’no-rings’, and the dark ring and bright ring classes seemed to be contained

within the ’no-ring’ class (Figure 8). Since the number of rings was much smaller than

the number of no-rings, the apparently smaller variance might just be a coincidence.

In principle, the scatter plots could miss a situation where the clusters were apparent

only in a multidimensional feature space. Statistical classification techniques (Duda and

Hart, 1973), e.g., based on the multivariate Gaussian distribution, can be used to reveal

such a situation and build an optimal classifier. However, this requires an extensive

training data set, with a number of ring samples orders of magnitude larger than that we

had available.

4.5 Classification based on a decision tree

Since we had a very limited test data set, containing only 35 identified rings, we could not

train a statistical classifier and get any reliable estimate for a covariance matrix. Instead,

a classifier based on simple if-tests was used. For each selected feature, a lower and an

upper bound for the acceptable values were set. These values were determined from the

scatter plots, thereby training on the test data, giving too optimistic estimates for the

classification results. Even these classification results were not too promising. Depending

on the threshold value of the correlation in the template matching in the segmentation
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step, 10 to 100 times as many false positives as true positives were detected.

4.6 Combinations of the above methods

In order to create the best possible classification performance, we investigated if any

of the methods described in Subsections 4.1–4.5 should be left out. If local contrast

enhancement was skipped, then none of the true rings were detected in the subsequent

template matching, only false detections were made. If the band pass filtering step was

applied, then local contrast enhancement still had to be applied after the band pass

filtering step.

We next investigated feature extraction and classification. The idea is that template

matching could produce a lot of ring candidates, and that the false rings could be removed

by a classifier, based on features with high discriminative power. Although the individual

scatter plots did not identify any features that were clearly able to separate the true rings

from the false rings, some of them seemed to be able to remove a few false rings. For

each such feature, we could set an interval which the feature had to be within. The idea

was that by including all these features and intervals in a decision tree, different rings

would be excluded by different features. Experiments demonstrated that this was indeed

the case, but still many false rings remained. It should be noted that the intervals were

determined from the test set, thereby training on the test set, so the less than promising

results are in fact too optimistic.

Based on this, we concluded that classification based on a decision tree should be

omitted. Consequently, feature extraction is not necessary.

16



4.7 The best ring mark detection approach

The algorithm can be summarized as follows (Figure 6).

1. Define masks of agricultural fields, either by drawing regions of interest, or by

importing a vector file.

2. Perform image processing on subimage, as follows.

(a) Optionally, do band pass filtering in the frequency domain, as follows.

i. Apply the fast Fourier transform on the image.

ii. Apply a band pass filter with cut-off radii 100 and 800, to remove low and

high frequencies that do not contribute to rings.

iii. Apply inverse fast Fourier transform.

(b) Apply local contrast enhancement.

3. Search for rings, as follows.

(a) Construct ring templates of increasing sizes.

(b) Convolve the image with a ring template.

(c) Threshold the convolution result to find bright rings.

(d) Threshold the convolution result to find dark rings.

(e) Remove detections outside masks.

(f) Merge a new ring with an existing one if they are less than 5 pixels apart,

keeping the values of the ring with the higher correlation value.

(g) Repeat b – f for all ring template sizes.

4. Validate ring detection by letting the operator delete false detections (Figure 7).
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5 Experimental results

The algorithm for ring mark detection, as described above in Section 4, was applied to

the entire data set, that is, a collection of 4096× 4096 subimages, which together covered

all the identified true rings. Three parameters were varied:

• The correlation threshold

• Whether band pass filtering in the frequency domain was used or not.

• Whether a normal ring or a thin ring template was used in template matching.

The number of detected false rings varies dramatically with the correlation threshold

(Table 1). If band pass filtering in the frequency domain is used (’band pass’ = ’yes’ in

Table 1), then the correlation threshold should be around 0.04 higher to obtain similar

results as without band pass filtering. With this adjustment, the number of false detec-

tions is of the same order of magnitude regardless of whether band pass filtering is used

or not. When the number of detected true rings is similar, we observe that a few rings

were detected with band pass filtering, but not without, and also vice versa.

If a template with a thinner ring was used, more false detections were made.

A reasonable compromise between not detecting too many false rings and at the

same time detecting as many true rings as possible, might be when the number of false

detections is approximately seven times the number of true detections. In this case, 11

out of 15, or 73%, of the strong rings were detected, and 5 out of 10, or 50%, of the fairly

strong rings were detected. This is 16 out of 25 of the strong and fairly strong rings, or

64%.

The number of false positives can be reduced, at the cost of reducing the number of

true positives as well. For example, by reducing the number of false positives from seven
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times to less than half the number of true positives, the number of detected strong and

fair rings decreased from 64% to 32%. On the other hand, even if the correlation threshold

is set so low that almost 30 times as many false rings as true rings are detected, many of

the strong and fairly strong rings are not detected. Furthermore, none of the weak rings

are detected.

6 Discussion

The experiments demonstrate that the proposed algorithm is able to detect many circular

patterns. Still, many are also missed by the algorithm, and many false detections are

made. If the goal is to detect each and every circular pattern, then the algorithm needs

to be improved to be really useful.

For a thorough search in a limited area, a high number of false positives might be

acceptable. On the other hand, for a massive search through a large number of images,

the number of false positives might be kept at a minimum, as long as some sites are

detected. Some circular patterns may only be visible from time to time. In order to

find these, one may have to process images from, say, a ten year period, and, say, 5-10

images per year. In this perspective, our approach can be used to process large volumes

of satellite images that would otherwise not be inspected, thus detecting many new sites.

In the experiments, we have only used two satellite images, containing 35 identified

ring marks in total. Many more satellite images and identified ring marks are needed to

evaluate the current version of the system, spot weaknesses, and experiment with possible

enhancements.

Regarding ring marks, one may argue that it is rather disappointing that feature
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extraction followed by a decision tree classifier was not able to separate the false rings

from the true rings. On the other hand, we are trying to recognize a rather simple

geometrical shape, which should be well suited for template matching. The better the

template matching result, the less there is to gain from improving feature extraction and

classification.

Another issue is what information one can hope to extract from rings. Since the

ring shape is used in template matching, one could argue that this shape information is

already used, so features describing the ring shape itself would not represent any new

information. The features we used were (1) measuring the deviations from the circular

shape, and (2) describing the shape. In both cases, the true and false rings appeared to

be drawn from the same population. This may be caused by unsuccessful segmentation.

In the binary images (Figure 5), the true rings often have spurious, small blobs attached

or very close. These are probably adding noise to the feature values. Another kind of

feature that could be used to measure deviations from the circular shape is deformable

templates (e.g., Yuille et al., 1989; Jain et al., 1996).

At the moment, statistical classification is not being used for detecting circular marks,

mainly because we lack a sufficiently large training set. If a large training set could

be produced, then we could investigate if a statistical classifier could obtain acceptable

recognition rates. However, classification performance is highly dependent on whether

features with high discriminatory power have been extracted from the data. One approach

we have not tried is to include multispectral information in the features, either from

the four individual bands, the normalized difference vegetation index (NDVI), or a pan-

sharpened image. If a large training set can not be produced, we could still attempt to

use a decision tree on the new features extracted from the multispectral information.
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At present, only one parameter is varied for the different ring templates, namely the

radius. One could also vary the thickness of the ring, and see if that enables us to use

a high correlation threshold, thus eliminating many of the false detections while at the

same time detecting more true rings.

The main problem when detecting general cultural heritage sites, or amorphous marks,

is their wide range of shapes and sizes. This makes it very hard to select features with

high discriminatory power. Further, a very limited number of identified sites makes it

difficult to both train the system and test its classification performance. Grøn et al. (2004)

attempted to use in situ chemical profiling of potential sites. If successful, this could be

a way of providing ground truth, but no reliable relationship has yet been established.

7 Conclusion

We have presented a method for detecting circular patterns in the panchromatic band

of Quickbird images of agricultural land. These circular patterns are potentially the

remains of burial mounds or other circular archaeological sites. The method is based on

image processing to enhance the appearance of low contrast rings, followed by template

matching. The method has been tested on images from two different areas in Norway,

containing a total of 35 manually identified circular patterns.

The system is currently deployed at three user sites, and feedback from the users on

performance, precision, and usability will provide important information for the further

development of the methods and an efficient graphical user interface. As the interface

and underlying software matures we expect to deploy it to a larger number of user sites.

Archaeologists state that the software tool will be helpful for locating potential cultural
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heritage sites. Although it makes many false detections, it will relieve the operators from

time-consuming manual inspection of entire images.
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Lemmens JPMM, Stančič Z, Verwaal RG. 1993. Automated archaeological feature ex-

traction from digital aerial photographs. In Andresen J, Madsen T, Scollar I, editors,

Proceedings of the 20th CAA conference ’Computing the Past: Computer Applications

and Quantitative Methods in Archaeology’, Aarhus University Press; 45–52.

Niblack W. 1986. An Introduction to Digital Image Processing, Prentice Hall; 115–116.

Maitra S. 1979. Moment invariants. Proceedings of the IEEE, 67(4):697–699.

Musson C, Driver T, Pert T. 2006. Air photo applications in Wales, UK. Exploration,

landscape analysis, conservation and public presentation. In Proceedings of ’From Space

to Place’, 2nd International Conference on Remote Sensing in Archaeology, Rome, Italy,

Dec. 4–7. BAR International Series 1568; 55–60.

Oostdijk A, van Persie M, Noorddbergen HHS, van Rijn JM. 2008. Multi scale object

based detection and classification of roads and vehicles in high resolution optical satellite

imagery. In Proceedings of GEOBIA 2008 – Pixels, Objects, Intelligence: Geographic

Object-Based Image Analysis for the 21st Century, Calgary, Alberta, Canada, August;

356–361.

Reiss TH. 1993. Recognizing planar objects using invariant image features, volume 676 of

Lecture Notes in Computer Science. Springer-Verlag.

Risbøl O, Gjertsen AK, and Skare K. 2006. Airborne laser scanning of cultural remains

in forests: some preliminary results from a Norwegian project. In Proceedings of

25



’From Space to Place’, 2nd International Conference on Remote Sensing in Archae-

ology, Rome, Italy, Dec. 4–7. BAR International Series 1568; 107–112.

Sittler B, Schellberg S. 2006. The potential of LIDAR in assessing elements of cultural

heritage hidden under woodland canopies. Possibilities and limits in detecting microre-

lief structures for archaeological surveys. In Proceedings of ’From Space to Place’, 2nd

International Conference on Remote Sensing in Archaeology, pages 117–122, Rome,

Italy, Dec. 4–7. BAR International Series 1568; 117–122.

Sumer E, Turker M. 2008. Building detection from high-resolution satellite imagery using

adaptive fuzzy-genetic approach. In Proceedings of GEOBIA 2008 – Pixels, Objects,

Intelligence: Geographic Object-Based Image Analysis for the 21st Century, Calgary,

Alberta, Canada, Aug. 5–8; 87–92.

Trelogan J, Crawford M, Teng L, Kwon O, Carter J. 1999. Mapping the features of the

Chora of Chersonesos via remotely sensed data. In Proceedings of the IEEE Inter-

national Geoscience and Remote Sensing Symposium (IGARSS ’99), volume 5, June

28–July 2; 2569–2571. DOI: 10.1109/IGARSS.1999.771579.

Trier ØD, Jain AK, Taxt T. 1996. Feature extraction methods for character recognition

– a survey. Pattern Recognition, 29(4):641–662. DOI: 10.1016/0031-3203(95)00118-2.

Trier ØD, Larsen SØ, Solberg R. 2008a. Detection of circular patterns in high-resolution

satellite images of agricultural land with CultSearcher. Note SAMBA/16/08, Norwegian

Computing Center. http://publ.nr.no/.

Trier ØD, Loska A, Larsen SØ, Solberg R. 2008b. Detection of burial mounds in high-

resolution satellite images of agricultural land. In Proceedings of the First International

26



Workshop on Advances in Remote Sensing for Archaeology and Cultural Heritage Man-

agement, Rome, Italy, Sep. 30–Oct. 4.

Wilson DR. 1982. Air Photo Interpretation for Archaeologists. St. Martin’s Press, New

York.

Yuille AL, Cohen DS, Hallinan PW. 1989. Feature extraction from faces using de-

formable templates. In Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR ’89), June 4–8; 104–109. DOI:

10.1109/CVPR.1989.37836.

27



Table 1: Ring mark detection results

band corr. strong fair weak true false

pass thres. rings rings rings rings rings

no 0.30 11 5 0 16 450

no 0.33 11 5 0 16 109

no 0.35 10 2 0 12 39

no 0.40 8 0 0 8 3

yes 0.35 12 3 0 15 174

yes 0.38 11 2 0 13 48

yes 0.39 10 2 0 12 31

yes 0.40 9 1 0 10 12

ground truth 15 10 10 35
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(a) (b)

Figure 1: The Quickbird images. (a) “Laagen”, (b) “Gardermoen”
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(a)

(b) (c)

Figure 2: Detail of the image ‘Laagen’. (a) The panchromatic band, with four rings

pointed out; (b) the red, green and blue bands; and (c) the near-infrared band.

30



(a) (b)

(c)

Figure 3: Example ring marks. The contrast has been adjusted in each case to highlight

the rings. (a) strong rings, (b) fairly strong rings, (c) weak rings.
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Figure 4: Result of local contrast enhancement, with N = 21.
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(a) (b) (c) (d)

Figure 5: Subimages used in feature extraction. Top two rows: two of the true rings.

Bottom two rows: two of the false detections. (a) Original; (b) after local contrast

enhancement; binarized with Niblack’s method, with (c) |k| = 0.5, and with (d) |k| = 1.0.
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Figure 6: Flowchart of the algorithm for ring mark detection.
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(a) (b)

Figure 7: Ring validation. (a) All detected rings, with correlation threshold T = 0.325;

(b) validated rings.
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(a) (b)

(c) (d)

Figure 8: Scatterplots of selcted features extracted from the binary subimages of true and

false rings. (a) Ring cover, binarized with Niblack’s method and |k| = 0.5 versus |k| = 1.0;

(b) Difference between mean value and ring center, in x direction versus y direction, both

with |k| = 0.5; (c) the two best Hu moment invariant features, invariant 3 versus invariant

5, both with |k| = 1.0, and (d) the two best real weighted Fourier moments, both with

|k| = 0.5.
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