
Debugging Method Names

Einar W. Høst and Bjarte M. Østvold

Norwegian Computing Center
{einarwh,bjarte}@nr.no

Abstract. Meaningful method names are crucial for the readability and
maintainability of software. Existing naming conventions focus on syn-
tactic details, leaving programmers with little or no support in assuring
meaningful names. In this paper, we show that naming conventions can
go much further: we can mechanically check whether or not a method
name and implementation are likely to be good matches for each other.
The vast amount of software written in Java defines an implicit conven-
tion for pairing names and implementations. We exploit this to extract
rules for method names, which are used to identify “naming bugs” in
well-known Java applications. We also present an approach for auto-
matic suggestion of more suitable names in the presence of mismatch
between name and implementation.

1 Introduction

It is well-known that maintenance costs dominate — if not the budget — then
the true cost of software [7]. It is also known that code readability is a vital
factor for maintenance [5]: unintelligible software is necessarily hard to modify
and extend. Finally, it has been demonstrated that the quality of identifiers has
a profound effect on program comprehension [14]. We conclude that identifier
quality affects the cost of software! Hence, we would expect programmers to
have powerful analyses and tools available to help assure that identifier quality
is high.

The reality is quite different. While the importance of good names is undis-
puted among leading voices in the industry [2, 18, 19], the analyses and tools are
lacking. Programmer guidance is limited to naming convention documents such
as those provided by Sun Microsystems for Java. The following quote is typical
for the kind of advice given by such documents: “Except for variables, all in-
stance, class, and class constants are in mixed case with a lowercase first letter”1.
In other words, the documents mandate a certain uniformity of lexical syntax.
Since such uniformity is easily checked mechanically, there are tools available
to check for violations against these rules. While this is certainly useful, it does
little to ensure meaningful identifiers. (Arguably, syntactic uniformity helps re-
duce the cost of “human parsing” of identifiers, but not the interpretation.) Since
identifiers clearly must be meaningful to be of high quality, current tool-support
must be considered unsatisfactory.
1 http://java.sun.com/docs/codeconv/html/CodeConventions.doc8.html

This begs the question what meaningful identifiers really are. Consider what
an identifier is used for: it represents some program entity, and allows us to refer
to that entity by means of the identifier alone. In other words, the identifier is
an abstraction, and the meaning relates to the program entity it represents. The
identifier is meaningful if the programmer can interpret it to gain an understand-
ing of the program entity without looking at the entity itself. Intuitively, we also
demand that the abstraction be sound: we must agree that the identifier is a
suitable replacement for the entity. Hence, what we really require are identifiers
that are both meaningful and appropriate.

In this work, we consider only method names. Methods are the smallest
named units of aggregated behaviour in most conventional programming lan-
guages, and hence a cornerstone of abstraction. A method name is meaningful
and appropriate if it adequately describes the implementation of the method.
Naming is non-trivial because there is a potential for conflict between names and
implementations: we might choose an inappropriate name for an implementation,
or provide an inappropriate implementation for a name. The label appropriate is
not really a binary decision: there is a sliding scale from the highly appropriate
to the utterly inappropriate. Inappropriate or even meaningless identifiers are
obviously bad, but subtle mistakes in naming can be as confusing or worse. Since
the programmer is less likely to note the subtle mistake, a misconception of the
code’s behaviour can be carried for a long time.

Consider the following example, taken from AspectJ 1.5.3, where the method
name has been replaced by underscores:

/**

* @return field object with given name, or null

*/

public Field ___(String name) {

for (Iterator e = this.field_vec.iterator(); e.hasNext();) {

Field f = (Field) e.next();

if (f.getName().equals(name))

return f;

}

return null;

}

Most Java programmers will find it easy to come up with a name for this
method: clearly, this is a find method! More precisely, we would probably name
this method findField; a suitable description for a method that indeed tries
to find a Field. The name used in AspectJ, however, is containsField. We
consider this to be a naming bug, since the name indicates a question to the
object warranting a boolean reply (“Do you contain a field with this name?”)
rather than an instruction to return an object (“Find me the field with this
name!”). In this paper, we show how to derive rules for implementations of con-
tains methods, find methods and other methods with common names, allowing
us to identify this naming bug and many others. We also present an approach for

automatic correction of faulty names that successfully suggests using the verb
find rather than contains for the code above.

It is useful to speak of method names in slightly abstract terms; for instance,
we speak of find methods, encompassing concrete method names like findField
and findElementByID. We have previously introduced the term method phrase
for this perspective [12]. Typically, the rules uncovered by our analysis will refer
to method phrases rather than concrete method names. This is because method
phrases allow us to focus on essential similarities between method names, while
ignoring arbitrary differences.

The main contributions of this paper are as follows:

– A formal definition of a naming bug (Sect. 3.1).
– An approach for encoding the semantics of methods (Sect. 3.3), building on

our previous work [12, 11].
– An approach for extracting name-specific implementation rules for methods

(Sect. 3.4).
– An automatically generated “rule book” containing implementation rules for

the most common method names used in Java programming (Sect. 3.4).
– An approach for automatic suggestion of a more suitable name in the case

of mismatch between the name and implementation of a method (Sect. 3.6).

We demonstrate the usefulness of our analysis by finding genuine naming
bugs in well-known Java applications (Sect. 5.2).

2 Motivation

Our goal is to exploit the vast amount of software written in Java to derive
name-specific implementation rules for methods. Our approach is to compare the
names and implementations of methods in a large corpus of well-known open-
source Java applications. In this section, we motivate our approach, based on
philosophical considerations about the meaning of natural language expressions.

2.1 The Java Language Game

We have previously argued that method identifiers act as hosts for expressions in
a natural language we named Programmer English [12]. Inspired by Wittgenstein
and Frege, we take a pragmatic view of how meaning is constructed in natural
language. According to Wittgenstein, “the meaning of a word is its use in the
language” [27]. In other words, the meaning is simply the sum of all the uses
we find of the word — there is no “objective” definition apart from this sum.
It follows that meaning is not static, since new examples of use will skew the
meaning in their own direction. Also, any attempt at providing a definition for
a word (for instance in a dictionary, or our own phrase book for Java [12]) is
necessarily an imperfect approximation of the meaning.

Wittgenstein used the term language game (Sprachspiel) to designate sim-
ple forms of language, “consisting of language and the actions into which it is

woven” [27]. Intuitively, a language game should be understood as interplay be-
tween natural language expressions and behaviours. Hence, our object of inquiry
is really the Java language game, where the language expressions are encoded in
method identifiers and the actions are encoded in method bodies.

In discussing the meaning of symbolic language expressions, Frege [9] in-
troduces the terms sign, reference and sense. The sign is the name itself, or a
combination of words. The reference is the object to which the sign refers. The
sense is our collective understanding of the reference. In the context of Java
programming, we take the sign to be the method phrase, the reference to be
the “true meaning” indicated by that phrase (that Wittgenstein would claim is
illusory), and the sense to be the Java community’s collective understanding of
what the phrase means. Of course, the collective understanding is really unavail-
able to us: we are left with our own subjective and imperfect understanding of
the sign. This is what Frege refers to as the individual’s idea. Depending on our
level of insight, that idea may be in various degrees of harmony or conflict with
the actual sense.

Interestingly, when analysing Java methods, we do have direct access to a
manifestation of the programmer’s idea of the method name’s sense: the method
body. By collecting and analysing a large number of such ideas, we can approx-
imate the sense of the name. This, in turn, allows us to identify naming bugs:
ideas that are in conflict with the approximated sense.

3 Analysis of Methods

We turn our understanding of how meaning is constructed into a practical ap-
proach for approximating the meaning of method names in Java. This approxi-
mation is then used to create rules for method implementations. Finally, these
rules help us identify naming bugs. Fig. 1 provides an overview of the approach.
The analysis consists of three major phases: data preparation, mining of imple-
mentation rules, and identification of naming bugs.

In the data preparation phase, we transform our corpus of Java applications
into an idealised corpus of methods. The transformation entails analysing each
Java method in two ways. On the one hand, we perform a natural language
analysis on the method name (Sect. 3.2). This involves decomposing the name
into individual words and performing part-of-speech tagging of those words.
The tags allow us to form abstract phrases from the concrete method names.
On the other hand, we analyse the signature and Java bytecode of the method
implementation, deriving a semantic profile for each implementation (Sect. 3.3).

This sets us up to investigate the semantics of methods that share the same
abstract phrase. We start with very abstract phrases that we gradually refine
into more concrete phrases, more closely matching the actual method names.
If a given phrase fulfils certain criteria pertaining to prevalence, we derive a
corresponding set of implementation rules (Sect. 3.4) that all methods whose
names match the phrase must obey. Failure to obey an implementation rule is
considered a naming bug (Sects. 3.5 and 3.6).

CodeName Phrase
Corpus

SemanticsPhrase
Derive
Rules

Prepare Generate

semantic
abstraction

grammatical
analysis refinequalifies?

Identify

SemanticsPhrase

Rules

lookup check

Software
Corpus

Method
Corpus

Rule
Book

Naming
Bugs

Fig. 1: Overview of the approach.

3.1 Definitions

In the following, please refer to Fig. 2 for an overview of the relationships between
the introduced terms.

Phrase Name

Method

Rule Set Semantic
Profile

belongs to

has aapplies to

is in corpus of

is associated with

checks

captures

refines

Fig. 2: Conceptual model of phrase terms.

We define a method m as a tuple consisting of a unique fingerprint u, a name
n, and a semantic profile JmK. The unique fingerprints prevent set elements from
collapsing into one; hence, a set made from arbitrary methods m1, . . . ,mk will
always have k elements. The name n is a non-empty list of fragments f . Each
fragment is annotated with a tag t.

The semantic profile JmK for a method m is defined in terms of attributes.
We define a set A of attributes {a1, . . . , ak}, and let a denote an attribute from
A. Given a method m and an attribute a, the expression check(m,a) is a binary
value b ∈ {0, 1}. Intuitively, check determines whether or not m fulfils the predi-
cate defined by a. We then define JmK as the list [check(m,a1), . . . , check(m,ak)].
It follows that there are at most 2|A| distinct semantic profiles. The rank of a
semantic profile in a corpus is the proportion of methods that have that semantic
profile.

A phrase p is a non-empty list of parts ρ; its purpose is to abstract over
method names. A part ρ may be a fragment f , a tag t, or a special wildcard
symbol ∗. The wildcard symbol may only appear as the last part of a phrase. A
phrase that consists solely of fragments is concrete; all other phrases are abstract.

A phrase captures a name if each individual part of the phrase captures
each fragment of the name, in order from first to last. A fragment part cap-
tures a fragment if they are equal. A tag part captures a fragment if it is equal
to the fragment’s tag. A wildcard part captures any remaining fragments in a
name, including zero fragments. A concrete phrase can only capture a single
name, whereas an abstract phrase can capture multiple names. For instance,
the abstract phrase is-〈adjective〉-* captures names like is-empty, is-valid-
signature and so forth.

A corpus C is a set of methods. Implicitly, C defines a set N , consisting of
the names of the methods m ∈ C. A name corpus Cn is the subset of C with
the name n. Similarly, a phrase corpus Cp is the subset of C whose names are
captured by the phrase p. The frequency value ξa(C) for an attribute a given a
corpus C is defined as:

ξa(C) def=
∑

m∈C check(m,a)
|C|

The semantics of a corpus C is defined as the list [ξa1(C), . . . , ξak
(C)]. We write

JpKC for the semantics of a phrase in corpus C, and define it as the semantics of
the corresponding phrase corpus. The subscript will be omitted when there can
be no confusion as to which corpus we refer to.

We introduce a subsetAo ⊂ A of orthogonal attributes. Two attributes a1 and
a2 are considered orthogonal if check(m,a1) does not determine check(m,a2) or
vice versa for any method m. We define the semantic distance d(p1, p2) between
two phrases p1 and p2 as the vector distance

d(p1, p2)
def=

∑
a∈Ao

(
ξa(Cp1)− ξa(Cp2)

)2

A rule r is a tuple consisting of an attribute a, a trigger condition c and
a severity s. The trigger condition c is a binary value, indicating whether the
rule is triggered when the function check evaluates to 0 or to 1. The severity
s is defined as s ∈ {forbidden, inappropriate, reconsider}. For example, the rule
r = (areads field , 1, inappropriate) indicates that it is considered inappropriate for
the reads field attribute to evaluate to 1. Applied to a method implementation,

the rule states that the implementation should not read field values. In practice,
rules are relevant for specific phrases. Hence, we associate with each phrase p a
set of rules Rp that apply to the methods m ∈ Cp.

Finally, we define a boolean function bug(r, m) def= check(m,a) = c that
evaluates to true when the rule r = (a, c, s) is triggered by method m.

3.2 Analysing Method Names

Far from being arbitrary labels, method names act as hosts for meaningful
phrases. This is the premise we rely on when we state that it is possible to define
name-specific rules for the implementation of methods. According to Liblit [15],
“[method] names exhibit regularities derived from the grammars of natural lan-
guages, allowing them to combine together to form larger pseudo-grammatical
phrases that convey additional meaning about the code”. To reconstruct these
phrases, we decompose the method names into individual fragments, and ap-
ply a natural language processing technique called part-of-speech tagging [17] to
identify their grammatical structure.

Decomposition. By convention, Java programmers use “camel case” when
forming method names that consist of multiple fragments (“words”). A camel
case method name uses capitalised fragments to compensate for the lack of
whitespace in identifiers. For instance, instead of writing create new instance
(which would be illegal), Java programmers write createNewInstance. To re-
cover the individual fragments, we reverse the process, using capital characters
as an indicator to split the name, with special treatment of uppercase acronyms.
For instance, we decompose parseXMLNode into parse XML node as one would
expect. Some programmers use underscore as delimiter instead of case-switching;
however, we have previously noted that this is quite rare [12]. For simplicity, we
therefore choose to omit such methods from the analysis.

Part-of-speech Tagging. Informally, part-of-speech tagging refers to the pro-
cess of tagging each word in a natural language expression with information
about its the grammatical role in the expression. In our scenario, this trans-
lates to tagging each fragment in the decomposed method name. We consider a
decomposed method name to be an untagged method phrase.

An overview of the tagging process is shown in Fig. 3. First, we use the
tags verb, noun, adjective, adverb, pronoun, preposition, conjunction,
article, number, type and unknown to tag each fragment in the phrase. In
other words, apart from the special tags number, type and unknown, we use
the basic word classes. The number tag is used for numeric fragments like 1.
The type tag is used when we identify a fragment as the name of a type in scope
of the method. Fragments that we fail to tag default to the unknown tag.

We make three attempts at finding suitable tags for a fragment. First, we use
WordNet [8], a large lexical database of English, to find verbs, nouns, adjectives

Ambiguous
Tagged
Phrase

WordNet
+

Extension

Finder

Untagged
Phrase

Generic
Word Class
Recognizer

Hand-made
Computing
Dictionary

Selector Tagged
Phrase

Fig. 3: Part-of-speech tagging for method phrases.

and adverbs. We augment the results given by WordNet with lists of pronouns,
prepositions, conjunctions and articles. If we fail to find any tags, we use a
mechanism for identifying invented words. Programmers sometimes derive nouns
and adjectives from verbs (for instance, handler from handle and foldable
from fold), or verbs from nouns (for instance, tokenize from token). If we can
discover such derivations, we tag the fragment accordingly. Finally, we resort to
a manual list of tags for commonly used programming terms.

Since a fragment may receive multiple tags (for instance, WordNet considers
object to be both a noun and a verb), the initial tagging leads to an ambiguously
tagged phrase. We then perform a selection of tags that takes into account both
the fragment’s position in the phrase, and the tags of surrounding fragments.
This yields an unambiguously tagged phrase. We have previously estimated the
accuracy of the part-of-speech tagger to be approximately 97% [12].

Method Phrases and Refinement. The decomposed, tagged method names
are concrete method phrases. The tags allow us to form abstract phrases as
well; phrases where concrete fragments have been replaced by tags. Phrases are
written like this: get-〈noun〉-*, where the individual parts are separated by
hyphens, fragments are written straightforwardly: get, tags are written in angle
brackets: 〈noun〉, and the * symbol indicates that the phrase can be further
refined.

Refinement involves reducing the corresponding phrase corpus to a subset.
In general, there are three kinds of refinement:

1. Introduce tag: p-* ⇒ p-〈t〉-*.
For instance, the phrase is-* may be refined to is-〈adjective〉-*. The former
phrase would capture a name like isObject, the latter would not.

2. Remove wildcard: p-* ⇒ p.
For instance, the phrase is-〈adjective〉-* may be refined to is-〈adjective〉.

The former phrase would capture a name like isValidSignature, the latter
would not.

3. Replace tag with fragment: p-〈t〉-* ⇒ p-f-*.
For instance, the phrase is-〈adjective〉-* may be refined to is-empty-*.
The former phrase would capture a name like isValid, the latter would not.

Fig. 4 shows the refinement steps leading from the completely abstract phrase
*, to the concrete phrase is-empty. When we reach a concrete phrase, we at-
tempt a final step of further refinement to annotate the concrete phrase with
information about the types of return value and parameters. Hence we can form
signature-like phrases like boolean is-empty(). This step is not included in the
figure, nor in the list above.

is-* is-<adjective>-* is-empty-* is-empty<verb>-**

Fig. 4: The refinements leading to is-empty.

3.3 Analysing Method Semantics

In any data mining task, the outcome of the analysis depends on the domain
knowledge of the analyst [26]. Hence, we must rely on our knowledge of Java pro-
gramming when modelling the semantics of methods. In particular, we consider
some aspects of the implementation to be important clues as to the behaviour
of methods, whereas others are considered insignificant.

A method m has some basic behaviours pertaining to data flow and control
flow that we would like to capture: 1) read or write fields, 2) create new objects,
3) return a value to the caller, 4) call methods, 5) branch and/or repeat iteration,
and 6) catch and/or throw exceptions. We concretise the basic behaviours by
means of a list of machine-traceable attributes, formally defined as predicates on
Java bytecode. In addition to the attributes stemming from the basic behaviours,
called instruction attributes, we define a list of signature attributes. Table 1 lists
all the attributes, coarsely sorted in groups. Note that some attributes, such
as returns created object really belong to more than one group. Attributes
marked with an asterisk belong to the subset of orthogonal attributes.

Most of the attributes should be fairly self-explanatory; however, the at-
tributes pertaining to object creation warrant further explanation. A regular
object is an object that does not inherit from the type java.lang.Throwable, a
string object is an instance of the type java.lang.String, and a custom object
is one that does not belong to either of the namespaces java.* and javax.*.
Finally, the attribute creates own type objects indicates that the method
creates an instance of the class on which the method is defined.

Table 1: Attributes. Orthogonal attributes marked with an asterisk.

Signature

Returns void* Returns reference
Returns int Returns boolean
Returns string No parameters*
Return type in name Parameter type in name

Data Flow

Reads field* Writes field*
Writes parameter value to field Returns field value
Returns created object Runtime type check*

Object Creation

Creates regular objects* Creates string objects
Creates custom objects Creates own type objects

Control Flow

Contains loop* Contains branch
Multiple return points*

Exception Handling

Throws exceptions* Catches exceptions*
Exposes checked exceptions

Method Call

Recursive call* Same name call*
Same verb call* Method call on field value
Method call on parameter value Parameter value passed to method call

on field value

3.4 Deriving Phrase-Specific Implementation Rules

We derive a set of implementation rules for method phrases that are prevalent in
a large corpus of Java applications. A phrase is considered prevalent if it fulfils a
simple heuristic: it must occur in at least half of the applications in the corpus,
and it must cover at least 100 method instances. While somewhat arbitrary,
this heuristic guards against idiosyncratic naming in any single application, and
ensures a fairly broad basis for the semantics of the phrase. Each prevalent phrase
is included in a conceptual “rule book” derived from the corpus, along with a
corresponding set of rules. Intuitively, all methods captured by a certain phrase
must obey its implementation rules.

We define the implementation rules on the level of individual attributes. To
do so, we consider the frequency values of the attributes for different phrase
corpora. The intuition is that for a given phrase corpus, the frequency value for
an attribute indicates the probability for the attribute’s predicate to be fulfilled
for methods in that corpus. For each attribute a ∈ A, we find that the the
frequency value ξa(Cn) is distributed within the boundaries 0 ≤ ξa(Cn) ≤ 1. We
assume that method names therefore can be used to predict whether or not an
attribute will evaluate to 1: different names lead to different frequency values.
Fig. 5 shows example distributions for the attributes reads field and returns
void for some corpus. We see that the two distributions are quite different.
Both attributes distinguish between names, but returns void is clearly the
most polarising of the two for the corpus in question.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

(a) Reads field

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

160

180

(b) Returns void

Fig. 5: Distribution of frequency values for two attributes.

A frequency value close to 0 indicates that it is rare for methods in the
corresponding corpus to fulfil the predicate defined by the attribute; a value
close to 1 indicates the opposite. We exploit this to define rules. Any method
that deviates from the norm set by the phrase corpus to which it belongs is
suspect. If the norm is polarised (close to 0 or 1), we induce a rule stating that
the attribute should indeed evaluate to only the most common value. Breaking
a rule constitutes a naming bug. Note that there are two kinds of naming bugs,
that we call inclusion bugs and omission bugs. The former refers to methods that

fulfil the predicate of an attribute it should not, the latter to methods that fail
to fulfil a predicate it should. We expect inclusion bugs to be more common (and
arguably more severe) than omission bugs. For instance, it might be reasonable
to refrain from doing anything at all (an empty method) regardless of name,
whereas throwing an exception from a seemingly innocent hasChildren method
is more dubious.

Specifically, we induce rules by defining percentiles on the distribution of fre-
quency values for each attribute a ∈ A. The percentiles are 0.0%, 2.5%, 5.0%,
95.0%, 97.5% and 100.0%, and are associated to a degree of severity when the cor-
responding rules are violated (see Table 3.4). The intuition is that the percentiles
classify the frequency values of different phrases relative to each other. Assume,
for instance, that we have a corpus C and a phrase p with a corresponding cor-
pus Cp ⊂ C of methods yielding a frequency value ξa(Cp) for a certain attribute
a ∈ A. Now assume that the frequency value belongs to the lower 2.5% when
compared to that of other phrases in C. Then we deem it inappropriate for a
method m ∈ Cp to fulfil the predicate defined by a.

Table 2: Percentile groups for frequency values.

Percentiles (%) Severity

0.0 Forbidden (if included)
0.0 − 2.5 Inappropriate (if included)
2.5 − 5.0 Reconsider (if included)
5.0 − 95.0 No violation
95.0 − 97.5 Reconsider (if omitted)
97.5 − 100.0 Inappropriate (if omitted)
100.0 Forbidden (if omitted)

3.5 Finding Naming Bugs

Once a set of rules has been obtained for each prevalent phrase in the corpus,
finding naming bugs is trivial. For each of the methods we want to check, we
attempt to find the rule set for the most concrete capturing phrase (see Fig. 2).
In a few cases, the capturing phrase may be fully concrete, so that it perfectly
matches the method name. This is likely to be the case for certain ubiquitous
method names and signatures such as String toString() and int size(),
for instance. In most other cases, we expect the phrase to be more abstract.
For instance, for the method name Element findElement(), the most concrete
capturing phrase might be something like ref find-〈type〉. Failure to find any
capturing phrase at all could be considered a special kind of naming bug; that
the name itself is rather odd.

When we have found the most concrete capturing phrase p, we obtain the
corresponding rule set Rp that applies to the method. For each rule in the rule

set, we pass the rule and the method to the function bug. Whenever bug returns
true, we have a rule violation, and hence a naming bug. Note that a single method
might violate several implementation rules, yielding multiple naming bugs.

3.6 Fixing Naming Bugs

Naming bugs manifest themselves as violations of phrase-specific implementation
rules. A rule violation indicates a conflict between the name and the implemen-
tation of a method. There are two ways to resolve the conflict: either we assume
that the name is correct and the implementation is broken, or vice versa. The
former must be fixed by removing offending or adding missing behaviour. While
it is certainly possible to attempt to automate this procedure, it is likely to yield
unsatisfactory or even wrong results. The programmer should therefore attend
to this manually, based on warnings from the analysis.

We are more likely to succeed, at least partially, in automating the latter. We
propose the following approach to find a suitable replacement name for an im-
plementation that is assumed to be correct. The implementation is represented
by a certain semantic profile. Every prevalent phrase that has been used for
that profile is considered a relevant phrase for replacement. Some of the relevant
phrases may be unsuitable, however, because they have rules that are in conflict
with the semantic profile. We therefore filter the relevant phrases for rule vio-
lations against the semantic profile. The resulting list of phrases are candidates
for replacement. Note that, in some cases, the list may be empty. If so, we deem
the semantic profile to be unnameable.

Finding the best candidate for replacement is a matter of sorting the candi-
date list according to some criterion. We consider three relevant factors: 1) the
rank of the semantic profile in the candidate phrase corpus, 2) the semantic dis-
tance from the inappropriate phrase to the candidate phrase, and 3) the number
of syntactic changes we must apply to the inappropriate phrase to reach the can-
didate phrase. We assume that the optimal sorting function would take all three
factors — and possibly others — into consideration. As a first approximation
to solving the problem, however, we suggest simply sorting the list according
to profile rank and semantic distances separately, and letting the programmer
choose the most appropriate of the two.

4 The Corpus

The main requirements for the corpus are as follows:

– It must be representative of real-world Java programming.
– It must cover a variety of applications and domains.
– It must include most well-known and influential applications.
– It must be large enough to be credible as establishing “canonical” use of

method names.

Table 3 lists the 100 Java applications, frameworks and libraries that consti-
tute our corpus. Building and cleaning a large corpus is time-consuming labour;
hence we use the same corpus that we have used in our previous work [12, 11].
The corpus was constructed to cover a wide range of application domains and
has been carefully pruned for duplicate code. The only alteration we have made
in retrospect is to remove a large number of near-identical code-generated parse
methods from XBeans and Geronimo. The code clones resulted in visibly skewed
results for the parse-* phrase, and proves that code generation is a real problem
for corpus-based data mining.

Some basic numbers about the pruned corpus are listed in Table 4. We omit
methods flagged as synthetic (generated by the compiler) as well as methods
with “non-standard names”. We consider a standard name be at least two char-
acters long, start with a lowercase letter, and not contain any dollar signs or
underscores.

5 Results

Here we present results from applying the extracted implementation rules on
the corpus, as well as a small set of additional Java applications. In general, the
rules can be applied to any Java application or library. For reasons of practicality
and scale, however, we focus primarily on bugs in the corpus itself. We explain
in detail how the analysis automatically identifies and reports a naming bug,
and proceeds to suggest a replacement phrase to use for the method. We then
investigate four rather different kinds of naming bugs revealed by the analysis.
Finally, we present some overall naming bug statistics, and discuss the validity
of the results.

5.1 Name Debugging in Practice

We revisit the example method from the introduction, and explain how the
analysis helps us debug it.

public Field containsField(String name) {

for (Iterator e = this.field_vec.iterator(); e.hasNext();) {

Field f = (Field) e.next();

if (f.getName().equals(name))

return f;

}

return null;

}

Recall that we manually identified this as a naming bug, since we expect
contains-* methods to return boolean values. Intuition tells us that find would
be a more appropriate verb to use.

Table 3: The corpus of Java applications and libraries.

Desktop applications

ArgoUML 0.24 Azureus 2.5.0 BlueJ 2.1.3 Eclipse 3.2.1
JEdit 4.3 LimeWire 4.12.11 NetBeans 5.5 Poseidon CE 5.0.1

Programmer tools

Ant 1.7.0 Cactus 1.7.2 Checkstyle 4.3 Cobertura 1.8
CruiseControl 2.6 Emma 2.0.5312 FitNesse JUnit 4.2
Javassist 3.4 Maven 2.0.4 Velocity 1.4

Languages and language tools

ANTLR 2.7.6 ASM 2.2.3 AspectJ 1.5.3 BSF 2.4.0
BeanShell 2.0b Groovy 1.0 JRuby 0.9.2 JavaCC 4.0
Jython 2.2b1 Kawa 1.9.1 MJC 1.3.2 Polyglot 2.1.0
Rhino 1.6r5

Middleware, frameworks and toolkits

AXIS 1.4 Avalon 4.1.5 Google Web Toolkit 1.3.3 JXTA 2.4.1
JacORB 2.3.0 Java 5 EE SDK Java 6 SDK Jini 2.1
Mule 1.3.3 OpenJMS 0.7.7a PicoContainer 1.3 Spring 2.0.2
Sun WTK 2.5 Struts 2.0.1 Tapestry 4.0.2 WSDL4J 1.6.2

Servers and databases

DB Derby 10.2.2.0 Geronimo 1.1.1 HSQLDB JBoss 4.0.5
JOnAS 4.8.4 James 2.3.0 Jetty 6.1.1 Tomcat 6.0.7b

XML tools

Castor 1.1 Dom4J 1.6.1 JDOM 1.0 Piccolo 1.04
Saxon 8.8 XBean 2.0.0 XOM 1.1 XPP 1.1.3.4
XStream 1.2.1 Xalan-J 2.7.0 Xerces-J 2.9.0

Utilities and libraries

Batik 1.6 BluePrints UI 1.4 c3p0 0.9.1 CGLib 2.1.03
Ganymed ssh b209 Genericra HOWL 1.0.2 Hibernate 3.2.1
JGroups 2.2.8 JarJar Links 0.7 Log4J 1.2.14 MOF
MX4J 3.0.2 OGNL 2.6.9 OpenSAML 1.0.1 Shale Remoting
TranQL 1.3 Trove XML Security 1.3.0

Jakarta commons utilities

Codec 1.3 Collections 3.2 DBCP 1.2.1 Digester 1.8
Discovery 0.4 EL 1.0 FileUpload 1.2 HttpClient 3.0.1
IO 1.3.1 Lang 2.3 Modeler 2.0 Net 1.4.1
Pool 1.3 Validator 1.3.1

Table 4: Basic numbers about the corpus.

JAR files 1003
Class files 189941
Candidate methods 1226611
Included methods 1090982

Finding the Bug. The analysis successfully identifies this as a naming bug, in
the following way. First, we analyse the method. The name is decomposed into
the fragments “contains” and “Field”, which are tagged as verb and type, re-
spectively. From the implementation, we extract a semantic profile that has the
following attributes from Table 1 evaluated to 1, denoting presence: return type
in name, reads field, runtime type-check, contains loop, has branches,
multiple returns, method call on field. The rest of the attributes are eval-
uated to 0, denoting absence. We see that the attributes conspire to form an
abstract description of the salient features of the implementation.

Table 5: Rules for contains-* methods.

Attribute Condition Severity Violation

Returns void 1 Forbidden
Returns boolean 0 Inappropriate Yes
Returns string 1 Inappropriate
Returns reference 1 Reconsider Yes
Return type in name 1 Inappropriate Yes
Parameter type in name 1 Reconsider
Writes field 1 Reconsider
Returns created object 1 Forbidden
Creates own class objects 1 Inappropriate

The most suitable phrase in our automatically generated rule book corre-
sponding to the concrete phrase contains-Field is the abstract phrase contains-
. The rule set for contains- is listed in Table 5, along with the violations for
the semantic profile. The mismatch between the name and implementation in
this case manifests itself as three naming bugs. A contains-* should not re-
turn a reference type (much less echo the name of that type in the name of the
method); rather, it should return a boolean value.

Fixing the Bug. There are two ways to fix a naming bug; either by changing the
implementation, i.e., by returning a boolean value if the Field is found (rather
than the Field itself), or by changing the name. In Sect. 3.6 we describe the
approach for automatic suggestion of bug-free method names, to assist in the
latter scenario.

Consider the top ten candidate replacement phrases listed in Table 6. An
immediate reaction is that the candidates are fairly similar, and that all of them
seem more appropriate than the original. Here we have sorted the list according
to the sum of the orders given by the two ordering metrics semantic distance
and profile rank ; in cases of equal sum, we have arbitrarily given precedence
to the phrase with the highest rank. In this particular example, we see that a
rank ordering gives the better result, by choosing ref find-〈type〉 over the more
generic find-〈noun〉-*.

Table 6: Candidate replacement phrases.

Phrase Distance Rank Sum

find-〈type〉 4 3 7
find-* 2 5 7
ref find-〈type〉 7 1 8
find-〈type〉-* 5 4 9
find-〈adjective〉-* 3 6 9
ref find-〈type〉-* 8 2 10
find-〈noun〉-* 1 9 10
get-〈type〉-*(String...) 6 8 14
ref get-〈type〉-*(String...) 9 7 16
ref get-〈type〉-* 10 10 20

5.2 Notable Naming Bugs

To illustrate the diversity of naming bugs the phrase-specific implementation
rules help us find, we explore a few additional examples of naming bugs found
in the corpus. The four methods shown in Fig. 6 exhibit rather different naming
bugs. Note that since both strategies for choosing replacement phrases yield
similar results, we have included only the top candidate according to profile
rank in the figure.

The first example, taken from Ant 1.7.0, is representative of a fairly com-
mon naming bug: the inappropriately named “boolean setter”. While both Java
convention and the JavaBean specification2 indicate that the verb set should be
used for all methods for writing properties (including boolean ones), program-
mers sometimes use an inappropriate is-* form instead. This mirrors convention
in some other languages such as Objective-C, but yields the wrong expectation
when programming Java. The problem is, of course, that isCaching reads like
a question: “is it true that you are caching?”. We expect the question to be an-
swered. The analysis indicates three rule violations for the method, and suggests
using the phrase set-〈adjective〉-* instead.

The second example, taken from the class Value in JXTA 2.4.1, shows a bro-
ken implementation of an equals method. According to Sun’s documentation,
“The equals method implements an equivalence relation on non-null object refer-
ences”3: it should be reflexive, symmetric, transitive and consistent. It turns out
that this is notoriously hard to implement correctly. An influential book on Java
devotes much attention to the details of fulfilling this contract [3]. The problem
with the implementation from JXTA is that it is not symmetric, and the symp-
tom is the creation of an instance of the type that defines the method. Assume
that we have a Value instance v. The last instruction returns true whenever the
parameter can be serialised to a String that in turn is used to create a Value

2 http://java.sun.com/javase/technologies/desktop/javabeans/docs/spec.

html
3 http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Object.html

!

!"#$%&'()*+,-'."/)

"#$%&'(!)*+,-!.&+$#(!/+#0,-!12&23#$#&!$*!/+#0,!

0',.$&"1)+2."3)-,+)4'356$17"(&'8"95:;)

"#$%&'(!)*+,4!"#5*'(+,#&!+/!+'50%,#,!

"#$%&'(!6**0#2'4!7'288&*8&+2$#!+/!3+((+'9!

12&23#$#&!$*!/+#0,4!7'288&*8&+2$#!+/!+'50%,#,!

// Ant 1.7.0

public void isCaching(boolean value) {

 this.caching = value;

}
<"=.$("#"%&)=>+$3"/!

:(#$;<2,=#5$+)#>;?@!

!"#$%&'()*+,-'."/)

"#$%&'(!6**0#2'-!"%'$+3#!$A8#;5B#5C-!D2(!

6&2'5B#(-!!E%0$+80#!&#$%&'(-!F$#(!	%02&!

*6=#5$(-!F$#(!5%($*3!*6=#5$(-!F$#(!*G'!

502((!*6=#5$(-!H23#!'23#!5200-!E#$B*,!5200!*'!

82&23#$#&!

0',.$&"1)+2."3)-,+)4?,,."$%)"@2$.3AB?7"(&CD)

F$#(!*G'!502((!*6=#5$(4!"#5*'(+,#&!+/!+'50%,#,!

// JXTA 2.4.1

public boolean equals(Object obj) {

 if (this == obj)

 return true;

 if (obj instanceof Value)

 return equals((Value)obj);

 return equals(new Value(obj.toString()));

}
<"=.$("#"%&)=>+$3"/!

;;;!I*'#!;;;!

!"#$%&'()*+,-'."/)

"#$%&'(!&#/#&#'5#-!I*!82&23#$#&(-!"#$%&'!$A8#!

+'!'23#-!"#$%&'(!5$#,!*6=#5$-!F$#(!	%02&!

*6=#5$(-!F$#(!5%($*3!*6=#5$(-!JK8*(#(!5B#5C#,!

#K5#8$+*'(!

0',.$&"1)+2."3)-,+)4+"-)'&"+$&,+ADE)

JK8*(#(!5B#5C#,!#K5#8$+*'(4!I*$+/A!+/!+'50%,#,!

// Java 5 EE SDK

public Iterator iterator()

throws DomainRegistryException {

 return new RegistryIterator(this, this);

}
<"=.$("#"%&)=>+$3"/!

:5$#;<2,=#5$+)#>;<'*%'>@!

!"#$%&'()*+,-'."/)

"#$%&'(!&#/#&#'5#-!"#2,(!/+#0,-!"#$%&'(!5$#,!

*6=#5$-!D2(!6&2'5B#(-!F$#(!	%02&!*6=#5$(-!

JK8*(#(!5B#5C#,!#K5#8$+*'(-!E#$B*,!5200!*'!/+#0,!

0',.$&"1)+2."3)-,+)43"&56$17"(&'8"95:E)

"#$%&'(!5$#,!*6=#5$4!7'288&*8&+2$#!+/!+'50%,#,!

// DB Derby 10.2.2.0

public OutputStream setBinaryStream(long val)

throws SQLException {

 checkValidity();

 synchronized (this.agent_.connection_) {

 // Logging code removed.

 BlobOutputStream result = new

 BlobOutputStream(this, val);

 // Logging code removed.

 return result;

 }

}

<"=.$("#"%&)=>+$3"/!

:*8#';?@!

!

!

Fig. 6: Four notable naming bugs from the corpus.

object that is equal to v. For instance, we can get a true return value if we pass
in a suitable String object s. However, if we pass v to the equals method of s,
we will get false. Interestingly, we find no appropriate replacement phrase for
this method. This is good news, since it makes little sense to rename a broken
equals method.

The third example, an iterator method from the class Registry in Java
5 Enterprise Edition, illustrates the problem of overloading and redefining a
well-established method name. The heavily implemented Iterable<T> inter-
face defines a method signature Iterator<T> iterator(). Since the signature
does not include any checked exceptions, the expectation naturally becomes
that iterator methods in general do not expose any checked exceptions — in-
deed, the compiler will stop implementors of Iterable<T> if they try. However,
Registry does not implement Iterable<T>, it simply uses a similar signature.
But it is a bad idea to do so, since violating expectations is bound to cause con-
fusion. It is particularly troublesome that the implementation exposes a checked
exception, since this is something iterator methods practically never do. Note
that the replacement phrase makes perfect sense since the method acts as a
factory that creates new objects.

The final example is a bizarrely named method from DB Derby 10.2.2.0:
clearly this is no setter ! The semantic profile of the method is complicated a bit
by the synchronisation and logging code, but for all intents and purposes, this
is a factory method of sorts. The essential behaviour is that an object is cre-
ated and returned to the caller. Creating and returning objects is inappropriate
behaviour for methods that match the phrase set-〈adjective〉-*; hence we get
a rule violation. The suggested replacement phrase, open-*, is not completely
unreasonable, and certainly better than the original.

5.3 Naming Bug Statistics

We now consider the more general prevalence of naming bugs. Table 7 presents
naming bug statistics for all the applications in the corpus, as well as a small
number of additional applications. The additional applications are placed be-
neath a horizontal line near the bottom of the table. For each application, we list
the number of methods, the percentage of those methods covered by implemen-
tation rules, and the percentage of covered methods violating an implementation
rule. We see that the naming bug rates are fairly similar for applications in and
outside the corpus, suggesting that the rules can meaningfully be applied to any
Java application. It is worth noting that the largest applications (for instance,
Java, Eclipse and NetBeans) to some extent have the power to dictate what
is common usage. At the same time, such applications are developed by many
different programmers over a long period of time, making diversity more likely.

It is important to remember that the numbers really indicate how canonical
the method implementations are with respect to the names used. Herein lies an
element of conformity as well. The downside is that some applications might be
punished for being too “opinionated” about naming. For instance, JUnit 4.2 is
written by programmers who are known to care about naming, yet the reported

naming bug rate, 3.50%, is fairly high. We believe this is due to the tension
between maintaining the status quo and trying to improve it.

Table 7: Naming bug statistics.

Application Methods Covered Buggy Application Methods Covered Buggy

ANTLR 2.7.6 1641 61.66% 1.18% ASM 2.2.3 724 45.30% 0.30%
AXIS 1.4 4290 91.35% 1.65% Ant 1.7.0 7562 89.35% 0.85%
ArgoUML 0.24 13312 81.17% 0.85% AspectJ 1.5.3 24976 74.41% 1.24%
Avalon 4.1.5 280 82.14% 2.17% Azureus 2.5.0 14276 78.32% 1.30%
Batik 1.6 9304 85.90% 0.76% BSF 2.4.0 274 77.37% 0.00%
BeanShell 2.0 Beta 907 74.97% 0.73% BlueJ 2.1.3 3369 82.13% 1.48%
BluePrints UI 1.4 662 89.57% 0.67% C3P0 0.9.1 2374 83.06% 1.52%
CGLib 2.1.03 675 80.29% 1.66% Cactus 1.7.2 3004 87.61% 1.36%
Castor 1.1 5094 91.44% 0.88% Checkstyle 4.3 1350 76.07% 0.09%
Cobertura 1.8 328 82.92% 1.47% Commons Codec 1.3 153 79.08% 0.00%
Commons Collections 3.2 2914 77.93% 1.14% Commons DBCP 1.2.1 823 88.69% 1.09%
Commons Digester 1.8 371 79.24% 0.34% Commons Discovery 0.4 195 92.30% 0.00%
Commons EL 1.0 277 59.20% 4.87% Commons FileUpload 1.2 123 91.86% 0.88%
Commons HttpClient 3.0.1 1071 88.98% 1.46% Commons IO 1.3.1 357 81.23% 5.17%
Commons Lang 2.3 1627 82.72% 1.93% Commons Modeler 2.0 376 93.35% 1.42%
Commons Net 1.4.1 726 69.69% 1.58% Commons Pool 1.3 218 71.55% 0.00%
Commons Validator 1.3.1 443 88.03% 1.02% CruiseControl 2.6 5479 87.18% 0.85%
DB Derby 10.2.2.0 15470 80.08% 2.09% Dom4J 1.6.1 1645 92.15% 0.39%
Eclipse 3.2.1 110904 81.65% 1.03% Emma 2.0.5312 1105 82.62% 0.65%
FitNesse 2819 74.49% 2.14% Ganymed ssh build 209 424 76.65% 1.23%
Genericra 454 86.78% 0.50% Geronimo 1.1.1 26753 85.28% 0.71%
Google WT 1.3.3 4129 73.40% 1.78% Groovy 1.0 10237 76.14% 1.01%
HOWL 1.0.2 173 81.50% 1.41% HSQLDB 3267 86.16% 2.98%
Hibernate 3.2.1 11354 80.47% 2.00% J5EE SDK 148701 83.56% 1.17%
JBoss 4.0.5 34965 84.69% 0.95% JDOM 1.0 144 80.55% 0.86%
JEdit 4.3 3330 80.36% 1.30% JGroups 2.2.8 4165 77.52% 2.04%
JOnAS 4.8.4 30405 81.88% 1.16% JRuby 0.9.2 7748 76.69% 1.27%
JUnit 4.2 365 62.46% 3.50% JXTA 2.4.1 5210 86.96% 1.30%
JacORB 2.3.0 8007 71.01% 1.16% James 2.3.0 2382 79.21% 1.85%
Jar Jar Links 0.7 442 53.84% 0.42% Java 6 SDK 80292 81.03% 1.16%
JavaCC 4.0 370 77.02% 2.80% Javassist 3.4 1842 84.03% 1.42%
Jetty 6.1.1 15177 73.54% 1.06% Jini 2.1 8835 80.00% 1.38%
Jython 2.2b1 3612 72.09% 1.65% Kawa 1.9.1 6309 65.36% 2.01%
Livewire 4.12.11 12212 81.96% 1.15% Log4J 1.2.14 1138 83.39% 0.63%
MJC 1.3.2 4957 73.77% 1.72% MOF 28 100.00% 0.00%
MX4J 3.0.2 1671 85.33% 1.26% Maven 2.0.4 3686 84.69% 0.86%
Mule 1.3.3 4725 86.79% 1.09% NetBeans 5.5 113355 87.60% 0.85%
OGNL 2.6.9 502 88.24% 0.45% OpenJMS 0.7.7 Alpha 3624 85.89% 0.70%
OpenSAML 1.0.1 306 92.48% 1.76% Piccolo 1.04 559 77.10% 0.46%
PicoContainer 1.3 435 67.81% 1.35% Polyglot 2.1.0 3521 67.33% 1.64%
Poseidon CE 5.0.1 25739 77.73% 1.19% Rhino 1.6r5 2238 77.56% 1.67%
Saxon 8.8 6596 73.12% 1.22% Shale Remoting 1.0.3 96 72.91% 0.00%
Spring 2.0.2 8349 88.05% 1.52% Struts 2.0.1 6106 88.97% 1.06%
Sun Wireless Toolkit 2.5 20538 80.37% 1.59% Tapestry 4.0.2 3481 78.71% 0.87%
Tomcat 6.0.7 Beta 5726 88.31% 0.90% TranQL 1.3 1639 77.85% 1.17%
Trove 1.1b4 3164 82.01% 0.23% Velocity 1.4 3635 81.62% 0.67%
WSDL4J 1.6.2 651 94.16% 0.00% XBean 2.0.0 7000 81.10% 1.33%
XML Security 1.3.0 819 86.56% 1.55% XOM 1.1 1399 77.05% 1.85%
XPP 1.1.3.4 426 84.50% 1.38% XStream 1.2.1 916 77.83% 0.84%
Xalan-J 2.7.0 14643 81.38% 1.21% Xerces-J 2.9.0 590 89.15% 0.19%
FindBugs 1.3.6 7688 72.78% 1.42% iText 2.1.4 4643 85.18% 1.54%
Lucene 2.4.0 2965 74.16% 1.50% Mockito 1.6 1408 68.32% 1.35%
ProGuard 4.3 4148 45.34% 2.65% Stripes 1.5 1600 89.31% 2.09%

Where to draw the line between appropriate and inappropriate usage of
names is a pragmatic choice, and a trade-off between false positives and false
negatives. A narrow range for appropriate usage increases the number of false
positives, a broad range increases the number of false negatives. We are not too
concerned with false negatives, since our focus is on demonstrating the existence
of naming bugs, rather than finding them all. False positives, on the other hand,
could pose a threat to the usefulness of our results.

False positives, i.e., that the analysis reports a naming bug that we intuitively
disagree with, might occur for the following reasons:

– The corpus may contain noise that leads to rules that are not in harmony
with the intuitions of Java programmers.

– Some legitimate sub-use of a commonly used phrase may be deemed inap-
propriate because the sub-use is drowned by the majority. (Arguably a new
phrase should be invented to cover the sub-use.)

– The percentiles used to classify attribute fraction rank (Sect. 3.4) can be
skewed.

Whether or not something classifies as a naming bug is subjective. What is
not subjective, is the fact that all reported issues will be rare, and therefore wor-
thy of reconsideration. To discern false positives from genuine naming bugs, we
must rely on our on best judgement. To get an idea of the severity of the prob-
lem, we manually investigated 50 reported naming bugs chosen at random. We
found that 30% of the reported naming bugs in the sample were false positives,
suggesting that the approach holds promise (even though, due to the limited size
of the sample, the true false positive rate might be significantly higher or lower).
The false positives were primarily getters that were slightly complex, but not
inappropriately so in our eyes, and methods containing logging code.

5.4 Threats to Validity

There are three major threats to the validity of our results:

– Does the pragmatic view of how meaning is constructed apply to Java pro-
gramming?

– Is the corpus representative of real-world Java programming?
– Is the attribute model a suitable approximation of the actual semantics of a

method?

Our basic assumption is that canonical usage of a method name is also mean-
ingful and appropriate usage; this relates to the pragmatic view that meaning
stems from actual use. We establish the meaning of phrases using a crude demo-
cratic process of voting. This approach is not without problems. First, it is
possible for individual idiosyncratic applications to skew the election. In par-
ticular, code generation can lead to problems, since it enables the proliferation
of near-identical clones. While we can spot gross examples of this (see Sect. 4),
code generation on a smaller scale is hard to detect, and can affect the results
for individual phrases. This in turn can corrupt our notion of canonical usage,
leading to corrupt rules and incorrect reports of naming bugs. Second, there
might be individual applications that use a language that is both richer, more
consistent and precise than the one used by the majority. However, the relative
uniformity in the distribution of naming bugs seems to indicate that neither of
these problems are too severe. Despite these problems, therefore, we believe that
the pragmatic view of meaning applies well to Java programming. It is certainly
more reasonable to use the aggregated ideas of many as an approximation of
meaning than to make an arbitrary choice of a single application’s idea.

When aggregating ideas, however, we must assume that the ideas we aggre-
gate are representative. The business journalist Surowiecki argues that diversity
of opinion, independence, decentralisation and an aggregation mechanism are the
prime prerequisites to make good group decisions [25]. The corpus we use was
carefully constructed to contain a wide variety of applications and libraries of
various sizes and from many domains. We therefore believe it to fulfil Surowiecki’s
prerequisites and be reasonably representative of real-world Java programming.

Finally, we consider the suitability of the model for method semantics, which
is a coarse approximation based on our knowledge of Java programming. Using
attributes to characterise methods has several benefits, in particular that it re-
duces the practically endless number of possible implementations to a finite set
of semantic profiles. Furthermore, the validation of a useful model must come in
the form of useful results. As we have seen, the model has helped us identify real
naming bugs with what appears to be a relatively low rate of false positives. We
therefore believe that the model is adequate for the task at hand.

6 Related Work

Micro patterns, introduced by Gil and Maman [10], are a central source of in-
spiration for our work. Micro patterns are machine-traceable patterns on the
level of Java classes. A pattern is machine-traceable if it can be expressed as
a simple formal condition on some aspect of a software module. The presented
micro patterns are hand-crafted by the authors to capture their knowledge of
Java programming.

In our work, we use hand-crafted machine-traceable attributes to model the
semantics of methods rather than classes. The attributes are similar to finger-
prints, a notion used by the Sourcerer code search engine [1]. According to the
Sourcerer website4, the engine supports three kinds of fingerprint-based search,
utilising control flow, Java type and micro pattern information respectively. Ma
et al. [16] provide a different take on the task of searching for a suitable software
artefact. They share our assumption that programmers usually choose appropri-
ate names for their implementations, and therefore use identifier information to
index the Java API for efficient queries.

Overall, there seems to be a growing interest in harnessing the knowledge
embedded in identifiers. Pollock et al. [20] introduce the term Natural Language
Program Analysis (NLPA) to signify program analysis that exploits natural lan-
guage clues. The analysis has been used to develop tools for program navigation
and aspect mining [23, 22]. The tools exploit the relationship between natural
language expressions in source code (identifiers and comments) and information
about the structure of the code.

Singer and Kirkham [24] investigate which type names are used for instances
of micro patterns in a large corpus of Java applications. More precisely, the
suffixes of the actual type names are used (the last fragment of the name in our

4 http://sourcerer.ics.uci.edu/

terminology). The empirical results indicate that type name suffixes are indeed
correlated to the presence of micro patterns in the code.

Caprile and Tonella [4] analyse the structure of function identifiers in C
programs. The identifiers are decomposed into fragments that are then classified
into seven lexical categories. The structure of the function identifiers are further
described by a hand-crafted grammar.

Lawrie et al. [13] study the quality of identifiers in a large corpus of applica-
tions written in several languages. An identifier is assumed to be of high quality
if it can be composed of words from a dictionary and well-known abbreviations.
This is a better quality indicator than mere uniformity of lexical syntax, but
does not address the issue of appropriateness. Deißenböck and Pizka [6] develop
a formal model for identifier quality, based on consistency and conciseness. Un-
fortunately, this model requires an expert to perform manual mapping between
identifiers and domain concepts.

Reiss [21] proposes an automatic approach for finding unusual code. The
assumption is that unusual code is potentially problematic code. The approach
works by mining common syntactic code patterns from a corpus of applications.
Unusual code is code that is not covered by such patterns. Hence we see that
there are similarities to our work, both in the assumption and the approach. A
main difference is that we define unusual code in the context of a given method
phrase.

7 Conclusion

Natural language expressions get their meaning from how and when they are
used in practice. Deviation from normal use of words and phrases leads to mis-
understanding and confusion. In the context of software this is particularly bad,
since precise understanding of the code is paramount for successful development
and maintenance. We have therefore coined the term naming bug to describe un-
usual aspects of implementations for a given method name. We have presented
a practical approach to debugging method names, by offering assistance both
in finding and fixing naming bugs. To find naming bugs, we use name-specific
implementation rules mined from a large corpus of Java applications. Naming
bugs can be fixed either by changing the implementation or by using a different
method name; for the latter task, we have also shown an approach to provide
automatic assistance. To demonstrate that method name debugging is useful,
we have applied the rules to uncover naming bugs both in the corpus itself and
in other applications.

In this and previous work, we have exploited the fact that there is a shared
vocabulary of terms and phrases, Java Programmer English [12], that program-
mers use in method names. In the future, we would like to investigate the ad-
equacy of that vocabulary. In particular, there might be terms or phrases that
are superfluous, while others are missing, at least from the common vocabulary
of Java programmers. We know that there exists verbs (for instance create and
new) that seem to be used almost interchangeably in method names. Our results

reveal hints of this, by finding a shorter semantic distance between phrases that
use such verbs. By analysing the corresponding method implementations, we
could find out whether there are subtle differences in meaning that warrant the
existence of both verbs in Java Programmer English. If not, it would be bene-
ficial for Java programmers to choose one and eliminate or redefine the other.
There are also verbs (and phrases) that are imprecise, in that they are used to
represent many different kinds of implementations. For instance, the ubiquitous
getter is much less homogenous than one might expect [11], indicating that it has
a wide variety of implementations. It would be interesting to see if the verbs are
simply used as easy resorts when labelling more or less random chunks of code,
or if there are legitimate, identifiable sub-uses that would warrant the invention
of new verbs. Or it might be that a minority of the Java community already
has invented the proper verbs, and that they should be more widely adopted to
establish a richer, more expressive language for all Java programmers to use.

Acknowledgements. We thank Jørn Inge Vestg̊arden, Wolfgang Leister and Truls
Fretland for useful comments and discussions, and the anonymous reviewers for
their thoughtful remarks.

References

[1] S. K. Bajracharya, T. C. Ngo, E. Linstead, Y. Dou, P. Rigor, P. Baldi, and C. V.
Lopes. Sourcerer: a search engine for open source code supporting structure-
based search. In P. L. Tarr and W. R. Cook, editors, OOPSLA Companion, pages
681–682. ACM, 2006.

[2] K. Beck. Implementation Patterns. Addison-Wesley Professional, 2007.
[3] J. Bloch. Effective Java. Prentice Hall, 2008.
[4] B. Caprile and P. Tonella. Nomen est omen: Analyzing the language of function

identifiers. In Proceedings of the Sixth Working Conference on Reverse Engi-
neering (WCRE 1999), 6-8 October 1999, Atlanta, Georgia, USA, pages 112–122.
IEEE Computer Society, 1999.

[5] E. Collar and R. Valerdi. Role of software readability on software development
cost. In Proceedings of the 21st Forum on COCOMO and Software Cost Modeling,
October 2006, Herndon, VA., 2006.

[6] F. Deißenböck and M. Pizka. Concise and consistent naming. In Proceedings
of the 13th IEEE International Workshop on Program Comprehension (IWPC
2005), pages 97–106. IEEE Computer Society, 2005.

[7] M. A. Eierman and M. T. Dishaw. The process of software maintenance: a com-
parison of object-oriented and third-generation development languages. Journal
of Software Maintenance and Evolution: Research and Practice, 19(1):33–47, 2007.

[8] C. Fellbaum. WordNet: An Electronic Lexical Database. MIT Press, 1998.
[9] G. Frege. On sense and reference. In P. Geach and M. Black, editors, Translations

from the Philosophical Writings of Gottlob Frege, pages 56–78. Blackwell, 1952.
[10] J. Gil and I. Maman. Micro patterns in Java code. In Proceedings of the 20th

Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA 2005), October 16-20, 2005, San Diego,
CA, USA, pages 97–116. ACM, 2005.

[11] E. W. Høst and B. M. Østvold. The programmer’s lexicon, volume I: The verbs.
In Proceedings of the Seventh IEEE International Working Conference on Source
Code Analysis and Manipulation (SCAM 2007), pages 193–202, Washington, DC,
USA, 2007. IEEE Computer Society.

[12] E. W. Høst and B. M. Østvold. The Java programmer’s phrase book. In Proceed-
ings of the 1st International Conference on Software Language Engineering (SLE
2008). Springer, 2008.

[13] D. Lawrie, H. Feild, and D. Binkley. Quantifying identifier quality: An analysis of
trends. Journal of Empirical Software Engineering, 12(4):359–388, August 2007.

[14] D. Lawrie, C. Morrell, H. Feild, and D. Binkley. What’s in a name? A study
of identifiers. In Proceedings of the 14th International Conference on Program
Comprehension (ICPC 2006), 14-16 June 2006, Athens, Greece, pages 3–12. IEEE
Computer Society, 2006.

[15] B. Liblit, A. Begel, and E. Sweeser. Cognitive perspectives on the role of naming
in computer programs. In Proceedings of the 18th Annual Psychology of Pro-
gramming Workshop, Sussex, United Kingdom, September 2006. Psychology of
Programming Interest Group.

[16] H. Ma, R. Amor, and E. D. Tempero. Indexing the Java API using source code.
In Australian Software Engineering Conference, pages 451–460. IEEE Computer
Society, 2008.

[17] C. D. Manning and H. Schuetze. Foundations of Statistical Natural Language
Processing. MIT Press, 1999.

[18] R. C. Martin. Clean Code. Prentice Hall, 2008.
[19] S. McConnell. Code Complete: A Practical Handbook of Software Construction.

Microsoft Press, 2nd edition, 2004.
[20] L. L. Pollock, K. Vijay-Shanker, D. Shepherd, E. Hill, Z. P. Fry, and K. Mal-

oor. Introducing natural language program analysis. In Proceedings of the 7th
ACM Workshop on Program Analysis for Software Tools and Engineering (PASTE
2007), San Diego, California, USA, June 13-14, 2007, pages 15–16. ACM, 2007.

[21] S. P. Reiss. Finding unusual code. In Proceedings of the 23rd IEEE International
Conference on Software Maintenance (ICSM 2007), pages 34–43. IEEE Computer
Society, 2007.

[22] D. Shepherd, Z. P. Fry, E. Hill, L. Pollock, and K. Vijay-Shanker. Using natural
language program analysis to locate and understand action-oriented concerns.
In Proceedings of the 6th international conference on Aspect-oriented software
development (AOSD 2007), pages 212–224, New York, NY, USA, 2007. ACM.

[23] D. Shepherd, L. L. Pollock, and K. Vijay-Shanker. Towards supporting on-demand
virtual remodularization using program graphs. In Proceedings of the 5th Interna-
tional Conference on Aspect-Oriented Software Development (AOSD 2006), pages
3–14. ACM, 2006.

[24] J. Singer and C. Kirkham. Exploiting the correspondence between micro patterns
and class names. In Proceedings of the Eight IEEE International Working Con-
ference on Source Code Analysis and Manipulation (SCAM 2008), pages 67–76.
IEEE Computer Society, 2008.

[25] J. Surowiecki. The Wisdom of Crowds. Anchor, 2005.
[26] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and

Techniques. Morgan Kaufmann, 2nd edition, 2005.
[27] L. Wittgenstein. Philosophical Investigations. Prentice Hall, 1973.

