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ABSTRACT/RESUME 

This paper describes a system for co-registration of time series which uses a learning-based 
strategy. During a training phase the system learns to recognize regions in an image suited for 
registration. It also learns the relationship between image characteristics and registration 
performance for a set of different registration algorithms. This enables intelligent selection of 
an appropriate registration algorithm for each region in the image, while regions unsuited for 
registration can be discarded. The approach is intended for co-registration of sequences of 
images acquired from identical or similar earth observation sensors. It has been tested for such 
sequences from different types of sensors, both optical and radar, with varying resolution. For 
images with moderate differences in content the registration accuracy is in general good with 
an RMS error of one pixel or less. 
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ADAPTIVE REGISTRATION OF REMOTE SENSING IMAGES USING 
SUPERVISED LEARNING 

1. INTRODUCTION 
The study of time series of satellite images is an important task in many remote sensing 
applications, for instance for observing different environmental phenomena. In such 
applications a model-based geo-referencing is first performed based on satellite parameters. 
Then a co-registration of the images in the time series is used to improve the alignment of the 
images and refine the accuracy. A combination of manual and automatic registration techniques 
is typically used for this co-registration, but fully automatic techniques do exist.  

The image registration process tries to determine the most accurate match between the images, 
and automatic techniques typically combine similarity metrics and matching strategies to 
achieve this. There exists a range of different algorithms, and selection of the appropriate 
combination depends on the application and the image specifics. Hence, a single registration 
technique will generally not be sufficient when handling a range of images. For a user that 
needs to work on different types of time series, it would therefore be useful to have a more 
general tool for image registration. In this paper we present a novel registration approach, which 
aims at offering the user such a tool. The idea is to have a system with a library of different 
registration algorithms, and to provide a tool on top of this which makes the system able to 
intelligently choose, at run-time, an appropriate algorithm based on image characteristics.  

Others have presented systems for image registration that offer the user a selection of different 
methods to choose from. Fedorov et al. (2002) have designed a system consisting of three 
different algorithms for control point extraction which can easily be extended to include more 
methods. Le Moigne et al. (2004) present a modular image registration framework, offering a 
selection of algorithms. A registration algorithm is here defined as a combination of features, 
similarity measure and matching strategy, where a user may choose components suitable for the 
problem at hand. Hence, the user is responsible for selecting the right combination, and this 
combination will be used for the entire image. This requires that there exists an algorithm that 
will work for the entire image. The user also needs to know the algorithms well, and be able to 
select the algorithm that is best suited for each problem. Alternatively, the user can test and 
compare several algorithms. 

Approaches, where the system itself is able to automatically select the best registration 
algorithm for a problem, have been mentioned as potentially useful, for instance by Rignot et al. 
(1991) and Fonseca and Costa (1997). However, no one has presented methods for automatic 
selection of the best algorithm, and systems incorporating such solutions have yet to appear.  

In the approach that we propose, automatic selection of the best algorithms is achieved by using 
supervised learning, where the system learns the correspondence between image characteristics 
and algorithm performance. In addition, we use a region-based strategy to make the approach 
locally adaptive. This allows for use of different registration algorithms for different regions and 
permits regions not suited for registration to be discarded. The approach is an extension of a 
method introduced in a previous workshop paper (Eikvil et al., 2005). 

2. METHODS 

The approach that we suggest works as follows. In a training phase, the system learns the 
correspondence between image features and performance for a set of registration algorithms. At 
run-time, this enables the system to predict the performance for each algorithm from the image 
features. By applying this strategy to image regions rather than the whole image, the approach is 
made locally adaptive. Features are extracted from regions, and the performance of the available 
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algorithms is predicted for each region. For this prediction we have chosen to use a neural net. 
Based on the performance prediction, regions and algorithms are selected. For each selected 
region, a local registration can then be performed with the appropriate algorithm, and from the 
resulting set of local transforms, a smooth global transform can be estimated. Figure 1 illustrates 
the steps involved in our approach. The details of each step will be treated in Sections 2.1 to 2.4. 

 

Figure 1: The first few steps of the registration approach consist of feature extraction, performance 
prediction and region and algorithm selection, which results in an image where some regions are 
discarded (marked as black cells), while different registration algorithms may be selected for each of the 
remaining regions (illustrated as cells marked 1, 2, 3).This is followed by a local co-registration of image 
regions, removal of potential erroneous region transforms and a final estimation of a global transform. 
 

2.1. Region-based strategy 

We propose to use an approach where the registration algorithm is selected automatically based 
on image characteristics. In addition, as the characteristics of a remote sensing image may vary 
across the scene, it can be useful to permit the use of different algorithms for different regions. 
At the same time, it could be desirable to be able to identify and discard regions that are not 
suited for registration. Hence, we have chosen to use a region-based strategy in our approach. 
As corresponding regions from the images to be registered need to be comparable in shape and 
size, we have chosen a simple and robust strategy where the images are simply divided into 
smaller rectangular sub-images of equal size. Some discussion on the selection of region size 
can be found in Section 3.6. 

In the rest of this paper we will, when considering pairs of images to be co-registered,  use the 
notation fixed image and moving image, where the fixed image is the image defining the 
coordinate system, while the moving image is the one to be transformed to this coordinate 
system. 

2.2. Feature extraction 

We want to extract features from the image regions that convey image characteristics that are 
important for image registration. Below we discuss what would be important image 
characteristics in this context. 
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• Regions containing characteristic patterns or details will often provide more accurate 
matches. Hence, the features should say something about the information content of the 
image, e.g. whether the image is dominated by homogeneous or textured areas. For this 
purpose, texture and gradient features may be suitable. 

• Information on whether there is a correspondence between the fixed and the moving 
image(s) will be important. Regions where there is no correspondence, or where the 
images have very different contents, should be discarded. For earth observation images, 
such situations can for instance be caused by clouds. Features based on differences 
between the fixed and moving image, may be useful to reveal these cases. 

• Finally, the actual relationship between the image regions can also provide useful 
information. Many correlation-based methods for matching will, for instance, perform best 
when there is a linear relationship between the intensity of the images. Again, features 
conveying information about the relationship between images may be derived from 
differences between the images. 

Based on the considerations above, we selected a set of features based on texture, image 
statistics and image differences. More details on these features will be given in the next section. 

2.2.1.     Features 

To extract information about the content and characteristic details of the images we chose to 
use the following three types of features: 

• Texture features that are computed from the Grey Level Co-occurrence Matrix (GLCM). 
These features were originally introduced by Haralick et al. (1973). They are based on 
second-order statistics, and are computed by finding repeated occurrences of grey-level 
configurations. The following texture features were used: mean, variance, homogeneity, 
contrast, dissimilarity, entropy, ASM and correlation. The features were extracted from 
windows corresponding to the image regions. 

• Registrability (RIG). This is a measure introduced by Chalermwat (1999) which is intended 
to represent a region's ability to provide unambiguous registration by measuring sensitivity 
to transformations. Regions that are sensitive to transformations are expected to be better 
suited for registration than regions that are not. 

• Gradient magnitude computed by the Sobel operator is included. 

To extract information about correspondence and relationship between the images, we use a set 
of features based on differences between image characteristics. These are computed as 
differences between the features computed from the fixed image and the moving image: 
• Differences in texture, registrability and gradient magnitude. These are computed from the 

feature values derived with the methods described above. 
• Differences in statistical features. The differences in values for a set of four normalized 

statistical features are computed for each pair of images (regions). These features are range, 
mean, variance and entropy. 

• Differences in zone means. Each region is divided into a grid of nine zones, where the mean 
within each zone is calculated. The Euclidean distance and the variance of the differences 
between the zone means of corresponding regions are used as features. The features are 
normalized to reduce their dependence on the grey scale level of the image. 

A total of 26 features are extracted from each region. The features are normalized such that the 
means and standard deviations are zero and one, respectively.  
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2.3. Selection of regions and registration algorithms 

We need to establish a correspondence between extracted features and performance of the 
registration algorithms. This can be achieved in different ways: 
• By establishing an a priori model for the correspondence between image characteristics and 

the expected performance of each algorithm. 
• By using a training approach to determine the correspondence between image 

characteristics and algorithm performance. 
In practice, these two are often combined. We have used a priori knowledge to choose the 
features, and a supervised training approach to establish the correspondence. The latter problem 
is viewed as a regression problem, where the objective is to use the extracted features to predict 
the performance for each registration algorithm. For this regression problem we have used a 
feed-forward neural network, which provides a flexible way to model complicated relations. 

2.3.1.     Training 

Supervised learning is used in a separate training phase, where the system is trained on a large 
number of examples for which the distortion is known. These examples are obtained by first 
performing a careful manual co-registration of image pairs and then applying various known 
distortions to one of the images. The subsequent training is then performed by running all 
registration algorithms on all examples, and computing the algorithm performance in each case. 
Features based on image characteristics are also extracted for all the examples. Afterwards, the 
system is trained to learn the correspondence between image characteristics and algorithm 
performance. 

For learning, and later prediction, we have chosen to use a neural network with one hidden layer. 
The number of input nodes corresponds to the number of image features, and the number of 
output nodes corresponds to the number of registration algorithms. For the training of this 
network, a measure of each algorithm’s performance needs to be defined for the target values. 
We have decided to use a performance measure based on the distance from the true distortion. 
By using training examples for which the true distortion was known, the performance was 
measured as the Euclidean distance between the distortion estimated by the registration 
algorithm and the true distortion. 

In cases where a registration algorithm fails completely, the distance from the true distortion 
may be somewhat unpredictable. To reduce the variability in the target values we have therefore 
used a soft truncation of the distances. Finally, as a distance equal zero corresponds to the best 
performance, we have changed the sign of the target value to get a performance measure that 
increases with increasing registration accuracy.  

2.3.2. Performance prediction 

The trained neural network will, during run-time, use extracted image features to automatically 
predict the performance for the set of available registration algorithms. This is done for each 
region in the image, resulting in a list of scores corresponding to the predicted performance for 
each algorithm for that region. These scores can then be used to select both the regions that are 
best suited for registration and the registration algorithm to be applied to each region.  

2.3.3. Selecting regions and algorithms 

The aim of the region selection is to rule out regions that may decrease the quality of the 
registration and also to reduce the computational load of the process. A low maximum score for 
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a region will indicate that it is not suited for registration. Hence, regions are selected according 
to their maximum score. In addition, care is taken to ensure a sufficient spatial distribution of 
regions over the image. When the selection of regions is finished, the algorithm to be used for 
each remaining region is simply selected by picking the one with the highest predicted 
performance. 

2.4. Transform estimation 

In this process, the registration algorithm selected for each pair of regions is used to estimate the 
transform needed to co-register that pair. The result is a set of local transforms. This set is 
analysed to remove potential errors, and then the remaining set of transforms is used to estimate 
the global transform. The details of this process are described in the next sections. 

2.4.1.     Registration of regions 

The registration of regions is performed using the algorithms selected according to the 
performance prediction. The algorithms are fetched from a library offering a selection of 
registration algorithms with different characteristics.  

Algorithm library 

Any library offering a variation of registration algorithms could in practice be used. To find a 
suitable library, we have reviewed and evaluated a range of existing tools offering algorithms 
needed in the registration process. Based on this evaluation, the ITK/Insight library (Ibanez et 
al., 2005) was selected to provide the basic registration algorithms. This is a C++ library, 
originally developed for use in medical imaging, which contains, among other things, a 
selection of similarity metrics and optimizers for image registration. Image registration is seen 
as an optimization problem. The similarity metrics are used to compare the fixed and the 
moving image and provide the criteria for the optimizer, while the optimizer searches through 
the space of transform parameters to find the best match. In our case, the transform can be 
selected as one of translation, rotation or affine transform. 

The combination of metric and optimizer defines the registration algorithm. From the library we 
have selected a set of metrics and optimizers, designed to handle different situations. A subset 
of combinations of these algorithms constitutes our set of registration algorithms. This will be 
described in the next sections. 

Similarity metrics 

The similarity metrics are used to measure the correspondence between images (or regions). 
Three metrics, with different characteristics, were selected from the Insight toolkit: 

• Mean Squares. This metric computes the mean squared pixel-wise difference in intensity 
between image A and B over a region. It is simple to compute and has a relatively large 
capture radius, but even linear changes in intensity can result in a poor match. 

• Normalized Correlation. This metric computes pixel-wise cross-correlation and normalizes 
it by the square root of the auto-correlation of the images. The metric is insensitive to 
multiplicative factors between the images, but has a relatively small capture radius. It is 
robust to white noise, but sensitive to clutter, occlusion and nonlinear contrast changes. 

• Mutual Information. Mutual information (MI) measures how much information one random 
variable (image intensity in one image) tells about another random variable (image intensity 
in the other image). Hence, the actual form of dependency does not have to be specified, 
and a complex correspondence between image values can be modelled. Three different 
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variants of MI have been included: Mattes MI (Mattes et al., 2001), Viola-Wells MI, and 
Normalized Viola-Wells MI (Viola and Wells 1997).  

Optimizers 

The optimizer will optimize the similarity metric criterion with respect to the transform 
parameters. Three optimizers with different characteristics were selected from the Insight toolkit: 

• Gradient Descent: This optimizer advances parameters in the direction of the gradient, the 
step size being governed by a learning rate. The drawback of this optimizer is that the steps 
depend on the values of the gradient. This can however be an advantage for problems where 
the derivatives are smooth and monotonic.  

• One Plus One Evolutionary (Styner et al., 2000): This optimizer follows a strategy that 
simulates the biological evolution of a set of samples in the search space. It generates 
random samples around the current position in the parametric space. It can perform better 
than gradient descent type optimizers when similarity metrics are noisy. 

• Regular Step Gradient Descent: This optimizer advances parameters in the direction of the 
gradient, computing the step size with a bipartition scheme. The Regular Step Gradient 
Descent will advance at a more stable rate than the other two optimizers. 

Registration algorithms 

A registration algorithm is defined as a combination of a similarity metric and an optimizer. We 
selected a subset of 10 combinations from the set of metrics and optimizers described above.  
This set was found to offer a sufficient selection of algorithms with different characteristics. The 
set of combinations is summarized in Table 1. 

Algorithm Similarity metric Optimizer 
M1 Mattes Mutual Information Regular Step Gradient Descent 
M2 Normalized Correlation One Plus One Evolutionary 
M3 Mean Squares Regular Step Gradient Descent 
M4 Mattes Mutual Information One Plus One Evolutionary 
M5 Normalized Correlation Regular Step Gradient Descent 
M6 Viola-Wells Mutual Information Gradient Descent 
M7 Viola-Wells Mutual Information One Plus One Evolutionary 
M8 Normalized Viola-Wells Mutual Information One Plus One Evolutionary 
M9 Mean Squares One Plus One Evolutionary 
M10 Normalized Viola-Wells Mutual Information Regular Step Gradient Descent 

Table 1: Our library of registration algorithms. 

 
2.4.2.     Rejection of erroneous local transforms 

At times, some of the local transform estimations may fail. For a best possible result, these 
should be excluded from the estimation of the global transform. Hence, we have included a 
procedure for detecting and removing the erroneous local transforms prior to the global 
transform estimation. In the system described, all local transforms are of the same type. Hence, 
they will all have the same transform parameters. Assuming that the relative distortion between 
the fixed image and the moving image is a translation, rotation, scaling, or a combination of 
these, the true value of each transform parameter can be approximated by a linear function of 
the coordinates of the centre of the region. These linear functions are unknown, but based on the 
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set of estimated local transforms such a function can be fitted for each transform parameter. The 
fitting is done by using iteratively re-weighted least squares (Heiberger and Becker 1992; Huber, 
1972; Huber, 1981), which is a robust method. Large fitting error for a region indicates that the 
local transform estimation has failed for that region.  Regions where this error exceeds a given 
threshold are therefore excluded from the final global transform estimation. 

2.4.3.     Global transform estimation 

The estimation of the final global transform is performed based on the set of local transforms 
that remain after the removal of the erroneous ones. First, a set of point coordinates are selected 
from regions in the moving image, and then the target points are determined by applying the 
estimated transform for each region to the selected points. The number of points that are 
selected for each region depends on the type of transform (translation, rotation or affine) that 
was selected for the local registration. 

The total set of selected points and corresponding target points makes up our set of tie-points (or 
control points). This set of points is used as input to a warping method provided by ENVI/IDL1. 
This software offers a selection of common approaches for warping and resampling, which we 
have integrated in our registration tool. For the experiments reported here, we have chosen to 
use their RST (Rotation, Scaling and Translation) based warping method and bilinear 
interpolation. 

3. EXPERIMENTAL RESULTS 

The approach presented in this paper is intended for co-registration of time series of remote 
sensing images originating from identical or similar sensors. This registration is typically 
performed after a model-based geo-referencing based on satellite parameters. One challenge in 
the registration of time series of images is that a scene may change considerably with time, due 
to changing seasons and weather conditions. Hence, we have chosen to evaluate our registration 
approach on image pairs with varying degrees of difficulty in terms of differences between the 
images to be registered. In the next sections, our data set, the evaluation procedure, the 
procedure used for training and the different experiments are described. In addition to an 
evaluation of the performance, some additional experiments have been performed to evaluate 
the effects both of using a region-based strategy and of the size of the regions that are used. 

3.1.     Data set 

As we wanted to evaluate the performance for several degrees of difficulty in terms of changes 
in scene appearance, we have selected three classes of images with no differences in content, 
moderate differences and large differences: 

• No differences in content: 

o One Quickbird image (Q, Figure 2) with resolution 0.6 m, of the centre of Oslo. 
Image pairs were created from the same image. 

• Moderate differences in content: 

                                                            
1 The ENVI® (Environment for Visualizing Images) and IDL® (Interactive Data Language) software 
products from ITT Visual Information Solutions. 
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o A pair of Envisat ASAR images (E1 and E2, Figure 3) with resolution 100 m, 
covering an area around the Oslo fjord in Norway. Challenges are here related to 
differences in soil moisture and wet-snow cover. 

o A pair of Landsat TM images (L1 and L2, Figure 4) with resolution 25 m, covering 
mountainous areas in Norway. The images have varying snow cover. In L1 large 
areas consist solely of snow and contain no texture.  

o A pair of NOAA-AVHRR images (N1, and N2, Figure 5) with resolution 1 km, 
covering Norway. Challenges are related to clouds and differences in snow cover. 

• Large differences in content: 

o Another pair of NOAA-AVHRR images (N2 and N3, Figure 5) with resolution 1 km, 
covering Norway. Challenges are related to substantial differences in both cloud 
and snow coverage. 

To be able to measure the registration performance in each case, our image pairs were chosen 
from a set that was already manually co-registered, and then known geometric distortions were 
applied to one image from each pair. Hence, we could later evaluate performance by comparing 
the estimated distortion with the true applied distortion (see Section 3.2 for more details). 

In addition, we tested the approach on an image pair that was not initially co-registered, and 
where the geometric distortion was unknown and caused by differences in satellite paths: 

• A pair of MODIS images (M1 and M2, Figure 6) from different dates with resolution 250 m, 
covering an area around Stockholm in Sweden. 

The size of all the images was approximately 1000×1000 pixels. 

 

 
Figure 2: A Quickbird image (Q) of the centre of Oslo. QuickBird image © DigitalGlobe, 2006, 
distributed by courtesy of Eurimage. 
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Figure 3: The Envisat ASAR image pair (E1 and E2, ), © 2005 ESA. The images cover an area around the 
Oslo fjord with variations in soil moisture and wet-snow cover. 
 

                           
 
Figure 4:  The Landsat image pair (L1 and L2). The images cover mountainous areas in Norway and are 
acquired during the snow melting season. 
 

 
Figure 5: The NOAA-AVHRR image triplet (N1, N2 and N3). The images cover Norway and were 
acquired at different times during the snow melting season. 
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Figure 6: The MODIS image pair (M1 and M2). The images cover an area around Stockholm in Sweden. 
The images are acquired at two different dates during the summer season. 
 

3.2.     Evaluation procedure 

To be able to properly evaluate and compare registration accuracies, we have chosen to perform 
our experiments on images where the distortion is known, as this enables computation of 
objective measurements in the form of RMS (root mean square) errors. During operative use of 
the system, however, the distortion will not be known. 

The evaluation procedure makes use of two images, A and B, which are already registered to 
each other. Image B is then transformed using some known transformation U0 to obtain image 
B’. The registration approach to be evaluated is then used to register image B’ back to image A, 
resulting in the transformation UR. Ideally the estimated transform for this registration should 
equal U0

-1. The quality of the registration can thus be measured by the RMS residual differences 
between U0

-1(x) and UR(x), or, equivalently, their corresponding displacements. 

 

Figure 7: Transforms and displacement maps involved in the computation of the RMS error. 

To do this we create a displacement map, D0(x,y) = (x,y), where all transformations applied to 
image B (the moving image) are also applied to this displacement map (see Figure 7). From 
such a displacement map, we can then compute the RMS error as follows: 

∑
=

=
n

i
ierror

n
RMS

1

21
,     (1) 
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where n is the number of pixels in the image and, for each pixel i=(x,y), the errori is the 
Euclidean distance (in pixels) between D0(x,y) and D2(x,y). D0 and D2 are the displacement maps 
associated with the original and the registered image, respectively. This means that for each 
pixel i, errori expresses how far pixel i has been moved from its true position. 

Image pairs to be used in the evaluation were produced from the data set described in Section 
3.1, by keeping one image unchanged and transforming the other one. The following 
transformations were applied, where the parenthesis give the abbreviations used in the tables:  
• Identity, 
• Translation by 2, 4 and 8 pixels (T2, T4, T8), 
• Rotation by 0.25, 0.5 and 1.0 degrees (R .25º, R .5º, R 1º), 
• Scaling of 0.5%, 1.0% and 2.0% (enlargements) of the original (S .5%, S 1%, S 2%), 
• A composition of a translation by 2 pixels, a rotation by 0.25 degrees and a scaling of 0.5% 

(T 2/S .5%/R .25º). 
• A composition of a translation by 4 pixels, a rotation by 0.5 degrees and a scaling of 1.0% 

(T 4/S 1%/R .5º). 
The magnitude of these relative distortions corresponds to displacements from 0 to 10 pixels. 
Currently, the approach is not designed to handle much larger distortions than this.  

3.3.     Training 

A standard neural network with one input layer, one hidden layer and one output layer was 
defined. The 26 features described in Section 2.2.1 constituted the input layer, while 
performance values for the 10 registration algorithms (Table 1) constituted the output layer. The 
number of hidden nodes was chosen to be 15. Direct connections from the input layer to the 
output layer were not allowed. This gave a total of 565 parameters (weights for the connections 
in the network) that needed to be estimated in the training phase. 

The training was performed as described in Section 2.3.1, using a set of approximately 4000 
different training samples (pairs of image regions) fetched from images originating from 
different types of sensors. The input (image features) and the target values (performance in 
terms of distance from true distortion) were first normalized, and then the parameters (weights) 
of the net were estimated with Splus (statistical software package) using least squares fitting and 
weighting decay (Venables and Ripley 1994). 

3.4.     Evaluation of performance accuracy  

To get objective measurements of the performance accuracy, we have followed the evaluation 
procedure described in Section 3.2. The experiments were performed on image pairs from the 
three classes of images with no differences, moderate differences and large differences, as 
described in Section 3.1. 

Table 2 gives a summary of the results obtained for the different classes of images. Different 
parameter settings with combinations of local transforms and region size (50×50 and 100×100 
pixels) were tested. For image pairs with no differences and moderate differences, only small 
variations in RMS errors were observed for different parameter settings. In Table 2 we have 
therefore presented the mean of the RMS errors for these experiments. For the image pair with 
large differences, there were larger variations in the results. Hence, we have here not given the 
means, but instead included the RMS error obtained for two of the experiments to show the 
variation. 
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 No diff Moderate differences Large diff 
Distortion QB E1, E2 L1, L2 N1, N2 N2, N3 
Identity 0.00 0.54 0.92 0.51 0.47 0.25 
T2 0.04 0.54 0.97 0.53 2.00 0.60 
T4 0.05 0.57 0.94 0.56 3.05 0.85 
T8 0.04 0.53 1.03 0.54 10.24 0.53 
S .5% 0.05 0.53 0.99 0.54 1.00 0.45 
S 1% 0.04 0.46 1.01 0.58 2.76 0.76 
S 2% 0.12 0.50 0.90 0.67 5.19 0.85 
R .25º 0.03 0.51 1.01 0.52 1.65 0.47 
R .5º 0.05 0.51 0.99 0.58 2.41 0.53 
R 1º 0.09 0.48 0.93 0.63 7.55 1.38 
T 2/S .5%/R .25º 0.04 0.49 0.98 0.56 2.06 0.75 
T 4/S 1%/R .5º 0.07 0.53 1.01 0.60 5.03 5.78 
RMS mean 0.06 0.52 0.97 0.57 4.55 1.81 

Table 2: Results from the experiments with the adaptive registration approach. The table presents the 
RMS error in pixels obtained for the different images and distortions. For the image pairs with large 
differences, both results for a region size of 50x50 (left) and 100x100 pixels (right), are shown. For the 
other images the variance over the different experiments was small and the RMS mean is shown. 

  

The image pair with no differences was mainly included to verify that the approach works 
properly under perfect conditions, i.e. when there are no differences in content between the 
images. A mean RMS error of 0.06 for these cases, verifies this.  

The results for the image pairs with moderate differences are also presented in Table 2. As can 
be seen from this table, the mean RMS error is less than one pixel for each pair of images. 
However, we do not know the exact sub-pixel accuracy of the manual co-registration used as 
ground truth for these images as this is difficult to verify. We have for instance observed that 
through all our experiments we quite consistently get an RMS error of about 0.5 for the E1-E2 
image pair, 0.9-1.0 for the L1-L2 image pair and 0.5-0.6 for the N1-N2 image pair. This may 
indicate that we actually get better sub-pixel accuracy with our automatic methods, than what 
was the case for the initial manual co-registration. 

For the image pair with large differences, the performance was more sensitive to the choice of 
region size and local transform. In Table 2 we have included the results obtained for two 
experiments with region sizes 50×50 and 100×100 pixels. As can be seen, the variation is larger 
here. The experiments with the largest region size gave the best performance. Here, the RMS 
error was below 1 for all but the two largest distortions. In the cases where the registration failed, 
the problem for this pair of images was typically that too few regions were selected for 
registration. Analyzing the images in more detail (Plate 1), we see that quite large areas in 
image N3 are covered by fragmented clouds producing a special pattern. Hence, the main 
problems here may not be due so much to the differences between the images, as the large areas 
that are less suited for registration due to clouds and homogeneous sea regions. 
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Plate 1:  Detail of the N2, N3 image pair. This detail shows that the image N3 (on the right) contains a lot 
of fragmented clouds. 

Finally, we ran our registration approach on a MODIS image pair (see Figure 6) where the 
relative distortion was caused by differences in satellite paths rather than a known geometric 
distortion. For this image pair no manually co-registered result was available, and as the 
geometric distortion was not known, the RMS error as described in Section 8.2 could not be 
computed. Instead, in Plate 2, image mosaics, created by alternately fetching tiles from the fixed 
and moving images, are included to illustrate the quality of the registration. The image mosaics 
show the island Yxlan in the Stockholm archipelago. The first mosaic is created from the fixed 
image and the original moving image. Here we see a broken coastline indicating the original 
distortion. In the second mosaic, created from the fixed and the moving image resulting from 
the automatic registration process, the same coastline is continuous. This indicates that the 
registration has been successful. 

 
Plate 2: Illustration of the results from the registration of the MODIS image pair for an image detail from 
the island Yxlan in the Stockholm archipelago.  The first image shows the detail in the fixed image. The 
next image shows a mosaic created from the fixed image and the original moving image before the 
registration. The red pixels come from the fixed image and the blue pixels from the moving image. The 
last image shows the corresponding mosaic created from the fixed image and the moving image after 
registration. 
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3.5.     Examining the effect of region selection 

When using a region-based strategy, a necessary condition for successful registration is that 
regions are selected in areas containing the most informative structures. We present two 
examples to demonstrate this. Plate 3 shows the regions that have been selected for registration 
of two Envisat ASAR images and two Landsat TM images. For the Landsat image pair, we see 
that regions completely covered by snow, containing no characteristic details, are not selected. 
For both image pairs, we see that the regions that are selected are typically found in areas 
containing edges of water bodies, and these are indeed the most informative structures in these 
images. In the illustration, the algorithm selected for each region is also indicated, showing that 
algorithm M4 (a combination of Mattes Mutual Information and One Plus One Evolutionary) 
appears to be the most frequently selected registration algorithm. However, the distributions of 
the selected algorithms are somewhat different for the two image pairs. 

 

Plate 3: Regions and algorithms that have been selected for registration of two Envisat ASAR images 
(left) and two Landsat TM images (right). The colour coded regions were the ones selected for 
registration, and the colour indicates which algorithm that was chosen for each region. (An overview of 
the available algorithms is given in Table 1). 

 
To evaluate the adaptive region selection process, we have also compared this to a traditional 
registration approach where the whole image is used in the registration. To test this, we used our 
adaptive approach only to select regions, using the same registration algorithm for all regions. 
The results of this process were compared to those obtained when applying the corresponding 
registration algorithms to the entire image as a whole. Experiments were performed on the 
Landsat image pair (L1, L2) and the NOAA-AVHRR pair (N1, N2) with the four largest 
distortions from Section 3.2 (T8, R1, S2 and T4-S1-R.5). In Table 3 we have presented the 
results obtained with the registration algorithm with the best performance (M4). The table gives 
the RMS errors obtained with this algorithm both with and without the use of regions. From this 
table it can be seen that the use of regions generally results in much better registration 
accuracies. 

 

 
 
 
 
 

Table 3: Comparison of registration results with and without the use of regions. 

  Using regions (100x100)  Using entire image 
Distortion  L1, L2 N1, N2  L1, L2 N1, N2 
T8  0.95 0.52  1.37 1.10 
S 2%  0.96 0.77  8.69 8.77 
R 1º  1.10 0.68  7.58 7.23 
T 4/S 1%/R .5º  1.01 0.58  5.73 5.55 
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3.6.     Examining the effect of region size 

As demonstrated above, the use of regions is fruitful in our registration approach. In our system, 
the user will be able to choose the size of regions. Although the method is not very sensitive to 
the choice of region size, there is a relationship between the ideal region size, and the contents 
and the resolution of the image. Typically, we would expect that for images containing large 
structures a larger region size would be better suited. Through our experiments we have found 
that region sizes of 50×50 and 100×100 pixels both work well. Smaller regions should be 
avoided, as these will generally not contain enough information.  

For our experiments with an image size of 1000×1000 pixels, larger regions were not so well 
suited, as this will result in a too low total number of regions. In terms of registration quality 
there is however no dependency between image size and region size as long as the region size 
allows for a division of the image into a sufficient number of regions. Finally, a user will often 
have some knowledge of the order of magnitude of the distortion, and should then also select a 
region size that ensures that corresponding regions in the fixed and moving images will overlap 
enough to give a match. 

4. CONCLUSION 

The approach presented in this paper, is intended for co-registration of time series of remote 
sensing images. For a user who needs to handle different types of time series, it can be difficult 
to choose the most appropriate registration algorithm for each case. Our system aims at 
simplifying this process for the user, by offering a tool that automatically chooses a registration 
algorithm based on image characteristics. During a training phase the system learns the 
relationship between image features and performance for a set of registration algorithms. At 
run-time, the system can then predict the performance for each algorithm from image features. 
This strategy is applied to image regions. Hence, the most appropriate algorithm can be selected 
for each region, and regions unsuited for registration can be discarded. 

The approach has been tested on a selection of image pairs from different sensors, presenting 
different types of contents and different degrees of difficulty in terms of differences between the 
images to be registered. The results from these experiments have demonstrated that the adaptive 
approach works well and that the same approach can be applied to different types of time series 
with different types of contents without tedious testing and tuning. The approach is also able to 
handle images with at least moderate differences in contents, selecting different registration 
algorithms for different regions and discarding regions that are not suited for registration. In 
conclusion, the experiments show that both the learning-based and the region-based approaches 
are fruitful. 

In addition to simplifying the registration process for the user, this approach may also open for 
new possibilities, like simple integration of predefined masks. Cloud masks could, for instance, 
easily be exploited by excluding regions covered by the mask from the local registration. 
Furthermore, our system can easily be extended to include more registration algorithms. In 
future work we will also consider inclusion of a multi-resolution strategy to extend the approach 
to work for larger distortions. 
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