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Abstract

We present a general model where the logarithm of hourly concentration of an air pollutant is modelled as a sum of
non-linear functions of traffic volume and several meteorological variables. The model can be estimated within the
framework of generalised additive models.

Although the model is non-linear, it is simple and easy to interpret. It quantifies how meteorological conditions and
traffic volume influence the level of air pollution. A measure of relative importance of each predictor variable is
presented.

Separate models are estimated for the concentration of PM;o, PM, s, the difference PMp-PM; 5, NO; and NO, at
four different locations in Oslo, based on hourly data in the period 2001-2003. We obtain a reasonably good fit, in
particular for the largest particles, PM g and PM;p—PM, s, and for NO,. The most important predictor variables are
related to traffic volume and wind. Further, relative humidity has a clear effect on the PM variables, but not on the NO
variables. Other predictor variables, such as temperature, precipitation and snow cover on the ground are of some

importance for one or more of the pollutants, but their effects are less pronounced.

© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The growing health problems caused by traffic-related
air pollution has resulted in an increased interest in
analysis and prediction of the air quality. Several
methodologies, both deterministic and statistical, have
been proposed. These are often based on linear or non-
linear regression models where the concentration of an
air pollutant at a specific site is related to traffic volume
and meteorological variables.

Levy et al. (2003) relates the concentrations of PM, s,
ultra-fine particles and polycyclic aromatic hydrocar-
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bons to traffic volume, wind direction and distance from
the road, using linear mixed effects regression models.
Chaloulakou et al. (2003) use linear regression to relate
PM )¢ and PM; 5 concentrations to predictor variables as
temperature, wind speed, wind direction, time of year
and day of week. They recognise that the meteorological
variables are non-linearly related to the concentrations
of PMjy and PM;,;s. To handle this, they convert the
meteorological predictor variables into binary variables
which are used as predictor variables in a modified linear
model. Several authors use non-linear methods. Gardner
and Dorling (1999), Kukkonen et al. (2003) and Schlink
et al. (2003) all conclude that neural networks (see for
instance Ripley (1996) for a general reference) are
superior to linear techniques in predicting PM o, NO,,

1352-2310/$ - see front matter © 2005 Elsevier Ltd. All rights reserved.

doi:10.1016/j.atmosenv.2004.12.020



2146 M. Aldrin, I.H. Haff | Atmospheric Environment 39 (2005) 2145-2155

NO, or ozone concentrations from several meteorolo-
gical variables. In addition, Schlink et al. (2003)
compares neural networks to several other methods,
including generalised additive models (GAM, Hastie
and Tibshirani, 1990). They conclude that the precision
of neural networks and generalised additive models is
comparable, and that both methods outperform linear
ones due to their ability to model static non-linearities.

Our aim is to present a general statistical model to
approach two important issues so far left unresolved:
quantifying the effects of various predictor variables on
the concentration of air pollution variables, and show-
ing how the results from several sites and for several
pollutants can be presented simultaneously in a com-
prehensive way. Our basic model is a generalised
additive model with Gaussian response. Because we
want to assess the specific contributions to the pollutant
of various variables, we prefer a generalised additive
model having a simple and explicit formulation of the
response—predictor relationships to for instance a neural
network model. The model is

log(y,) = si(x1) +--- + Sp(Xpe) + &1, (1

where y, is a univariate pollution variable, s;(-) are
unknown, but smooth functions that must be estimated,
and x; are the predictor variables, i.e. traffic volumes,
meteorological conditions and time-related variables.
Finally, ¢ is the residual, i.e. the part of log(y,) that is
unexplained by the model. The logarithmic transferma-
tion applied to the air pollutants is also used by
Chaloulakou et al. (2003) and Schlink et al. (2003). It
makes the data more homoscedastic and ensures that all
predicted values are positive on the original scale.

Table 1
Summary of pollution and traffic data

Separate models are estimated for hourly measure-
ments of concentrations of PM,y, PM, s, the difference
PM,o—PM; 5, NO> and NO, for four different locations
in Oslo in the period from 2001 to 2003. The degree of
smoothness of the s-functions is controlled by tuning
appropriate smoothing parameters. Less smoothness
gives better fit to data, but may result in over-fitting. To
ensure a reasonable degree of smoothness, our choice of
smoothing parameters is guided by forward validation,
a modification of cross-validation.

2. Data

The data set consists of pollution data from four
different locations in Oslo, namely Manglerud, Furuset,
Loren and Alnabru, for the period from 1 November
2001 to 31 May 2003, with corresponding measurements
of traffic volume and meteorological conditions. These
four locations are situated near roads with rather heavy
traffic, sce Table 1 for an overview. All data were
collected hourly. All data series contain periods of
missing observations. Withdrawing these periods, there
are left between 4000 and 9000 h of observations for the
different pollution variables at the various locations.
The data have been collected by The Norwegian Public
Roads Administration.

The pollution variables were measured as concentra-
tions with unit pgm=, and are presented in Table 1. The
traffic volumes are the total number of vehicles passing
the measurement site in both directions every hour.
These were counted directly at two of the pollution
measurement sites, whereas the two other sites were

Pollution measurement site

Manglerud Loren Furuset Alnabru
PMjo Yes Yes Yes Yes
PM; Yes Yes Yes No
PM,0-PM; s Yes Yes Yes No
NO, Yes Yes Yes Yes
NO, Yes Yes Yes Yes
Description 4m south-east 4m north-east 10m north-west 4m west of a

Distance from
Valle Hovin
(met. station)

Corresponding
traffic count site

of highway E6

3km

Manglerud

of highway Ring 3

1 km

Leren

of highway E6

5km

Karihaugen

municipal main
road in an area
with heavy traffic

3km

Karihaugen
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Table 2
Summary of meteorological data

2147

Variable Unit Comment

Temperature 2m above ground C Average

Temperature 25-2m above ground G Average

Wind direction 10 m above ground deg Average, 0 = wind from north
Wind speed 10 m above ground ms~! Average

Relative humidity % Average

Precipitation mmh™! Sum

Snow cover indicator

Take values from 0 to 3:
0: no snow,

1: 1-50% snow coverage,
2: 50-99% snow coverage,
3: 100% snow coverage.

related to the traffic volume at a nearby count site
(Karihaugen), which is situated at the same highway as
the Furuset site. This is summarised in Table 1.

The meteorological variables are listed in Table 2. All
of these except one were observed at Valle Hovin,
situated between 1 and Skm from the four pollution
measurement sites. The snow cover indicator was
observed at Blindern, 5-10km west of the pollution
measurement sites.

Fig. 1 shows the pollution and traffic data from
Manglerud along with the meteorological data from the
first 26 weeks of the data period.

Some minor preprocessing was made to the data, to
clear them for negative values and other incoherences.
The details are given in Appendix A.

3. Methods

We have modelled each of the five pollution variables,
PMjy, PM;,s, the difference PM;p—PM,s5, NO, and
NO,, separately using model (1) with the predictor
variables given in Table 3, with one exception: snow
cover was not included as a predictor variable in the
NO, model for Alnabru, since data were available for
one winter period only, giving an unstable estimate of
the snow cover effect.

The two precipitation variables in Table 3 need some
comments. The precipitation last 4 h is intended to take
care of the actual effect of precipitation in the air as well
as the effect of a dry or wet road. The precipitation last
week 1s meant to describe the effect of abundant
precipitation, assuming that it may wash the polluting
particles away from the road. The weights w; (see right
column of Table 3) are linearly decreasing to ensure that
the hours closest in time have most influence.

The predictor variable “hour of day” should take into
account diurnal variation that is not explained by the

other variables, such as traffic and temperature, but has
no interpretation of its own. The predictor variable “day
number” is meant to take care of long-term variation,
including seasonal variation, that is not explained by the
other predictor variables.

The predictor variables are moderately correlated.
The correlation between the snow cover indicator and
the temperature is —0.56, between the relative humidity
and temperature, it is —0.43 and between the number of
vehicles and ‘“hour of day”, it is 0.39. All other
correlation coefficients are 0.31 or less in absolute
values. Based on these moderate correlations, we do
not expect any serious problems with confounding
between predictor variables.

For given values of the smoothing parameters (see
Appendix B), the s-functions in model (1) are estimated
by the method of least squares within the framework of
generalised additive models (Hastie and Tibshirani,
1990), using the software package Splus (version 6.1.2,
Insightful corporation, Seattle, WA).

The residuals ¢, will in practice be autocorrelated.
This could be handled by some time series model. It is
important for prediction, but has little effect on the
estimation of the s-functions. According to the theory of
generalised estimating equations (see for instance Liang
and Zeger, 1986), the estimates are consistent even
though the autocorrelation is ignored. We have there-
fore chosen not to include a model for the residuals. If
forecasting were the purpose, appropriate modelling of
& would be necessary.

Model (1) is additive on log-scale, and can be
transformed back to a model with multiplicative effects
on the original scale as

V= S10xc1,) - Salx1,) - - 'S[l(xpl) -E,, 2

where S(-) 1s exp(s(-)) and E, = exp(g,).
Generalised additive models are well suited for this
type of application, due to their ability to describe the
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Fig. 1. Pollution data from Manglerud with corresponding traffic and meteorological data from week number 44, 2001 to week
number 17, 2002.

so-called static non-linearities, i.e. non-linear effects actions, for instance between wind direction and wind
which are stable over time. They are easy to interpret, speed, are ignored. In comparison, neural-network
since each predictor variable enters the model models may describe both non-linearities and
separately in an additive structure. However, interac- interactions, but it is difficult to sort out and quantify
tions are more difficult to handle. Our model (1) the separate effect of each predictor variable in such

contains only main effects. Potentially important inter- models.
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We have calculated the squared correlation coefficient
R? for each model on the log-scale. In addition, we have
calculated a measure of relative importance of the
predictor variables as described in Appendix C.

4. Results

Based on the data presented in Section 2, the additive
model (1) was estimated for the various pollution
variables at the four different locations in Oslo.

Table 4 shows the explained variation (the squared
correlation coefficient) R? for the models on log-scale.
The values are between 0.48 and 0.80, indicating that the
models explain most of the variation in the pollution
data, but that there still is considerable unexplained
variation. The highest values of R? are found at Leren,
which is the pollution measurement site that is closest to
the meteorological measurement site Valle Hovin.
Moreover, R? is larger for PM; and PM;o—PM, s than
for PM; s, and larger for NO, than for NO,.

Fig. 2 shows the relative importance of each predictor
variable for each model. It can be summarised as
follows: The number of vehicles is very important for all
pollutants. The temperature has some effect on all
pollutants, whereas the temperature difference affects

Table 3
Predictor variables

Predictor variable Definition

Number of vehicles
Temperature
Temperature difference
Wind direction

Wind speed

Relative humidity
Precipitation last 4h
Precipitation last week

25-2m

1/10(4P; + 3Py + 2P, + 1P, _3)
1/(252:68 w,-)z_,::}“ w;jP,_3_;, where
w; =169 —j

Snow cover indicator

Hour of day values from 1 (00:00-01:00) to 24
(23:00-24:00)

Day number values from 1 (I November 2001) to
577 (31 May 2003)

Table 4

The squared correlation coefficient R? for each model on log-scale

the NO variables, but not the PM variables. Wind
direction and wind speed have large effect on all
pollutants. Relative humidity is important for particu-
late matter, but not for nitrogen oxides. Most of the
precipitation effects are due to the precipitation last
week and is clear, though not very large, on the PM
variables and more diffuse on the NO variables. Snow
cover has some effect on PM;p—PM,;s, but is of little
importance for the other pollutants. Both day number
and hour of day affect all pollutants to some extent.

The actual estimated smooth non-linear curves are
shown in Figs. 3 and 4. The figures are organised as
matrices with one column for each pollutant (named at
the top of each column) and one row for each predictor
variable (named to the right of each row). Results are
presented as relative effects on the original scale.
Relative effects are easy to compare between pollutants
as well as between predictor variables. More specifically,
the displayed curves are 100S(x)/S(x"), where x is the
predictor variable of interest, S(-) is the corresponding
estimated smooth function in model (2) at original scale,
and x™ is a chosen reference value of x. Thus the curve
is set to 100 at the reference value. The predictor
variable of interest is varied from the lowest to the
highest observed value, while the other explanatory
variables are kept fixed. Confidence intervals could be
calculated for the curves, but are not shown here, since
they would make the plots too confusing. Instead, the
spread between the four measurement stations gives an
impression of the variability.

The upper left panel of Fig. 3 shows how the
concentrations of PMq varies as the number of vehicles
changes and all other conditions are kept fixed. Each
curve corresponds to one of the measurement stations.
The curve for Loren is the one going farthest to the
right, meaning that it is the location where the highest
number of vehicles was observed. The interpretation of
the curve is as follows: when the traffic volume increases
from 1000 (reference value) to 7000 cars per hour and all
other conditions are constant, the concentration of
PMj at Loren grows from 100 to 200, i.e. doubles. The
other panels on the upper row show corresponding
curves for PM, s, PM(-PM; s, NO, and NO,.

The remaining rows of the figure present the estimated
effects of the other predictor variables, in order with
reference values in parenthesis, temperature (0°C),

Measurement station PMq PM; s PM-PM, 5 NO, NO,
Manglerud 0.58 0.55 0.61 0.59 0.64
Loren 0.72 0.62 0.76 0.77 0.80
Furuset 0.63 0.56 0.65 0.65 0.69
Alnabru 0.48 — - 0.59 0.70
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Fig. 2. Relative importance (in %) of each predictor variable within each model.

temperature difference (0°C), wind direction (0°), wind
speed (O0ms™") and relative humidity (97%). The rows of
Fig. 4 display the effects of precipitation the last 4h
(0mm h™1), precipitation the foregoing week (0 mm ht,
snow cover (0), day number (396 days, corresponding to
the 31 September 2002) and hour of day (1). It should be
noted that the range of the y-axis is the same in all the
plots of a given predictor variable.

In the following we comment in Fig. 3 in more detail.

The upper row of the figure shows that increasing
traffic volume corresponds to increasing air pollution.
This result is obviously as expected, and is consistent to
the data of Keary et al. (1998), showing positive
correlation between PM)y and traffic volume. Apart
from this main trend, there is a rather large variation in
the estimated effects, both between the different loca-
tions and the pollution variables. NO, is the pollutant
that is most affected by the traffic, with an approxi-
mately linear relationship. Hence the concentration of
NO, is almost proportional to the number of vehicles.
This is reasonable, since NO, includes both NO, coming
directly from the exhaust and NO, that is created when
NO reacts with oxygen. The coarse fraction component
PMo-PM; s mainly comes from particles whirled up
from the road, whereas a large share of the fine particles
in PM, s originates from wood-burning in fire places.
This explains why PM;o—PM, s has a stronger relation-
ship to the traffic volume than PM, s.

The effect of temperature seems to be rather similar at
the different locations, but varies among the pollutants.

Low temperatures are strongly associated with high
concentrations of PM;s, but temperature seems to be
rather unimportant for the difference PMp—PM,s,
which is consistent with the fact that wood-burning
results in higher concentrations of PM;s. Keary et al.
(1998) found a negative correlation between PMjqg
concentrations and temperature, which is also seen in
our results. For NO, and NO,, the tendency is that the
concentrations are lowest around 0°.

The temperature difference seems to be of little
importance for the PM variables. However, for NO,,
and even more so for NO,, a positive temperature
difference corresponds to high concentrations. A
positive temperature difference means that the air is
hotter 25m above ground than 2m above, such that the
air stays near the ground. The results are therefore
sensible.

The wind direction appears to have a large influence
on the air pollution, which is reasonable, and also found
in Levy et al. (2003). The estimated curves are however
quite different for the various locations. This is as
expected, since the effect of wind direction is very local,
depending on the exact location of the measurement
equipment relative to the road. For all four measure-
ment sites, the highest concentrations are found when
the wind blows from the road towards the measurement
equipment (cfr. Table 1). PM, ;s is the pollutant that is
least affected by the wind direction. A plausible
explanation is again that PM,s is caused by wood-
burning rather than traffic.
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Fig. 3. Estimated effects (on the original scale) of traffic, temperature, temperature difference, wind direction, wind speed, and relative

humidity.

For rather low values of the variable, wind speed has
a pronounced effect; increasing speed corresponds to
decreasing air pollution. The tendency is particularly
marked for NO,. This is as anticipated, and agrees with
previous findings of Levy et al. (2003), Chaloulakou
et al. (2003) and Keary et al. (1998). For the particulate
matter, the curves tend to flatten out for higher wind
speeds, especially for PM(—PM,s. A possible explana-
tion is that particles are whirled up because of a high
wind speed, instead of being blown away.

The results for relative humidity are very clear. For
PM,, high humidity corresponds to low concentrations.
In other words, the curves go downward for increasing
humidity. For PM;s, the effect is opposite, and the
curves are directed slightly upwards. This sums up to
strongly downwards inclined curves for the difference
PM,0-PM; 5. Hence, the effect of humidity is consider-
able on the largest particles. However, it seems to have
no particular influence on the NO; and NO, concentra-
tions.
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Fig. 4. Estimated effects (on the original scale) of precipitation last 4 h, precipitation last week, snow cover, day number, and hour

of day.

The overall impression is that increasing precipitation
induces lower concentrations of particulate matter. This
is again consistent with the data of Keary et al. (1998),
who found a negative correlation between the concen-
tration of PM o and rainfall. However, the effect seems
to be the opposite for high values of precipitation last
week, which may be difficult to explain. The curves for
NO, and NO, are rather widespread and difficult to
interpret. Large amounts of precipitation appear to
correspond with higher concentrations, and we have
found no obvious reason for this.

When the ground is covered with snow or ice, the
concentrations of PMj¢ and particularly PM;;—PM;,

tend do be smaller, which indicates that large particles
are captured into the snow. The other concentrations are
apparently not much influenced by the snow cover,
which seems to be reasonable at least for the nitrogen
oxides.

The day number is supposed to describe varying
pollution level over time, including seasonal variation,
that is not explained by the other variables. Most of the
curves seem to have a top near day number 150 (March/
April 2002) and a corresponding top around day
number 520, that is 1 year after. This suggests that
there is a phenomenon in spring at all four locations that
the other parts of the model do not account for. One
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possible explanation is that pollutants have been bound
to the snow, and are released when the snow is melting.
However, 2 years of data is too little to draw any
conclusions about seasonal effects of this type. The gap
in the curves between roughly 200 and 350 are caused by
lack of meteorological data between week 19 and 39 year
2001.

The variable “hour of day” is not in itself inter-
pretable, but should describe the diurnal variations not
explained by the rest of the model. It appears to have
some effect, especially on NO,, for which the concen-
trations in the morning tend to be higher than in the
evening, correcting for all other variables. Hence,
although other variables (traffic in particular) model
most of the diurnal variation, there is some left. One of
the reasons may be interactions between some of the
variables, and, as earlier mentioned, interactions are not
accounted for in this model.

5. Summary and conclusion

This work presents a way to estimate the relationship
between each of five pollution variables, namely
concentrations of PM g, PM,s, PM(-PM;5, NO, and
NOy, and traffic, as well as a set of meteorological
variables. The model used is additive on the log-scale,
resulting in a multiplicative model on the original scale.
The estimates were made based on hourly data collected
during a period of one and a half year at four different
locations in Oslo.

The estimated models gave a reasonably good fit in
terms of the squared correlation coefficient. For all
stations, the models for PM g and PM(—PM; s and for
NO, had more explanatory power (higher values of R?)
than the ones for PM, s and NO,, respectively.

Even though some of the estimates from different
locations are rather spread, there are some general
trends. Traffic volume has, as expected, a highly
significant effect on air pollution, especially on NO,.
For temperatures below 0°C, concentrations, of PM g
and PM,s in particular, increase as the temperature
drops. A positive temperature difference between 25 and
2m above ground raises the concentrations of the two
gases NO, and NO,. Wind direction has a very
significant, but local effect on the pollution. Higher
wind speed reduces the air pollution. Relative humidity
decreases the concentration of PMy and PM,y—PM; s,
and increases the concentration of PM, 5 as it increases,
but has no effect on NO, and NO,. Overall, heavier
precipitation tends to reduce the PM concentrations,
and have a more diffuse effect on the NO concentra-
tions. The concentration of PMo—PM; s, and to a lesser
extent PM g, is smaller when the ground is covered with
snow or ice. Diurnal and seasonal variations of the
concentrations were mostly described by variables such

as traffic and temperatures. However, some systematic
temporal variations remained.

Everything taken into consideration, the relations
between air pollution, traffic and meteorological vari-
ables are quite well estimated using generalised additive
models. These models combine non-linearity, which is to
be found in these relations, and interpretability. The
estimates for different locations have many traits in
common, hence similar models may be estimated for
other locations.

However, potential interactions have been ignored.
For instance, in reality, there will obviously be an
interaction between wind direction and wind speed,
since wind direction will have no effect when the wind
speed is very low. Fortunately, pairwise interactions can
be handled within the same framework and the same
software, by replacing the two terms s;(x;;) + s;(x;,) with
an interaction term s;;(x;;, x;;) (Cleveland and Devlin,
1988; Currie et al., 2004). Interpretation of the effect of
the predictor variables included in the interactions
becomes slightly more difficult, however.

Our focus has been on interpretation of empirical
relationships, but the models might also be useful for
forecasting, for instance one day ahead. The residuals ¢,
from our models are clearly autocorrelated. This
correlation should be modelled, for instance by some
autoregressive model, in order to reduce the forecast
uncertainty. Further, forecasting the air pollution
concentrations requires reliable forecasts of the pre-
dictor variables. Forecasts of the meteorological vari-
ables are often available on a routinely basis, but their
uncertainty will probably contribute considerably to the
total uncertainty. On the other hand, the traffic patterns
are rather stable over time, making the number of
vehicles easy to predict with reasonable precision.
Finally, the future values of the variables day number
and hour of day are known exactly, so forecasts for
these are not required.
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Appendix A. Modifications of data

Due to measurement errors, some negative values of
pollution concentrations appear in the raw data. Values
less than —5pgm™3 are regarded as errors and are
replaced by missing values, whereas negative values
above that limit are accepted. However, since the
pollution data are modelled at log-scale, both negative
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values and values at or near 0 cause problems. There-
fore, measured concentrations between a small positive
value 6 and —5pgm~ are set to §, where § = 2 pgm™
for PMjg, NO; and NO,, and § = I pgm~ for PMss
and PM[Q*PM2_5.

Further, measurements of particulate matter around
midnight on New Year’s Eve, more specifically 4h
before and 20 h after midnight, have been removed. The
reason is that the values measured during those hours
were extremely high, due to the fireworks.

The snow cover indicator is measured daily. Hourly
values are constructed by repeating the daily value 24
times.

Regarding the traffic volume, counts with 0 vehicles
per hour are treated as missing values, since 0-values on
these large roads probably are recorded due to errors on
the measurement equipment.

The traffic volume and the two precipitation variables
were actually transformed before their non-parametric s-
functions were estimated (note that the results are shown
on the original scale). The aim was to help the non-
parametric smoother by a preliminary transformation.
The traffic were log-transformed, whereas for precipita-
tion we used log(precipitation+0.1) to avoid problems
with 0 precipitation.

Appendix B. Choice of smoothing parameters

The smoothness of each function s; in model (1) is
controlled by a smoothness parameter, here expressed
by the number of degrees of freedom or effective
parameters for each function. This must be chosen
before the function is estimated. As the number of
degrees of freedom increases, the function becomes less
smooth, but more flexible and it gives better fit to data.
Hence, choosing the smoothness parameter is a trade-off
between good fit and smoothness, or in other words,
between bias and variance.

Even though prediction is not our primary aim,
measuring prediction performance is still useful for
model selection. Therefore, we have chosen the number
of degrees of freedom by means of forward validation,
which is a modification of cross-validation useful for
time series. The forward validation is based on one-day-
ahead hourly predictions of the concentration of PM;q
at Alnabru for the period from 1 January 2003 to 31 July
2003. If the focus were on precise forecasting, it would
probably be worthwhile repeating the forward valida-
tion experiment for other measurement stations and
other pollutants. However, we found this unnecessary
for our application, since we only use the results as a
rough guide to get reasonably smooth estimates and
prevent over-fitting.

For each day, and for a given set of degrees of
freedom, the model is re-estimated using the data up to

the day before. Then the hourly log PM;y concentra-
tions for the next day is predicted, assuming that the
predictor variables that day are known. The prediction
is compared to the actual value, and the hourly
prediction errors are calculated. This is repeated for
each day from 1 January 2003 to 31 July 2003, and the
root mean squared error of prediction (RMSE) is
calculated. The whole procedure is repeated for various
choices of degrees of freedom.

Since it would have been computationally too
extensive to vary the degrees of freedom for all the
functions independently, we restricted all the functions
but the one corresponding to the variable day number to
have the same number of degrees of freedom. Moreover,
instead of varying the number of degrees of freedom for
both day number and the other variables simulta-
neously, we first fixed it (to 10) for the day number,
while we varied it for the other variables. Then, we fixed
the number of degrees of freedom for the other variables
at the value giving the minimum RMSE (10), and varied
it for day number.

The results from the forward validation are shown in
Fig. 5. The upper panel shows that the minimum RMSE
occurs at 10 degrees of freedom for all variables but the
day number, whereas the minimum RMSE is found at
15 degrees of freedom for the day number. However,
using 10 degrees of freedom for the remaining variables
resulted in strange curvatures in some of the estimated
functions. Since we want smooth, easily interpretable
functions, we reduced the number of degrees of freedom
for these variables to 4 in the final models presented in
Section 4, whereas the number of degrees of freedom for
day number were kept at 15. This gives smoother
functions, without increasing the RMSE considerably,
according to the upper panel of Fig. 5.
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Fig. 5. Results from the forward validation on the number of
degrees of freedom for all variables but the “Day number”
(upper panel), and for the “Day number” (lower panel).
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Appendix C. Measure of relative importance

Let z, = log(y,) be the observed response on the log-
scale, and let 2, be the predicted response from the
model. Then

I & 3
== @-a) ®
=1

is the unexplained variation, i.e. the variation not
explained by the model, where n is the number of
observations. Further, let Z,(_; be the predicted response
from a modified model where s;(x;) is replaced by the

constant s;(¥;), where X; is the average of x;, over time.
Then

0'( ,)=*Z(Zl'—zt( ;)) (C)]

is the unexplained variation when the effect of the ith
predictor varlable 1s ignored. The variation a( 5 will be
larger than &2, and the difference cr(z_i)—&2 can be
interpreted as the variation explained by ith predictor
variable. Summing the individual differences over all
predictor variables gives

P
Z@ p=8)=> &, —p-&. )
i=1

Then we define the proportion (in percent) of variation
explained by the /th predictor variable is given by

2% x
G'( i) — 0

-
Zi:l O_p—P-0

2

100 (6)

There are alternative measures of relative importance,
see for instance Doksum and Samarov (1995).
general, the various measures may give slightly different
answers when the functions s;(x;) are correlated.

If model (1) were restricted to be linear and the
predictor variables were uncorrelated, the measure of
relative importance given by Eq. (6) would be equivalent
to the ith squared standardised regression coefficient
divided by the sum of the squared standardised
regression coefficients.
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