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1 Introduction

If you do business in the financial market it is important to have knowledge about volatil-
ity. This is important because volatility is a measure of the risk. If a person is faced
with a decision of an investment in the industry, the future forecast will be highly sensi-
tive to the choice of volatility modelling. It is known that volatility varies over time and
tends to cluster in periods; small changes tend to be followed by small changes, and large
changes by large ones. This phenomenon when the standard deviation varies over time
is called heteroscedastisity. Heteroscedasticity means ”fluctuating variance”. In addition,
the volatility has shown to be autocorrelated, which means that today’s volatility depends
on the past volatility. Considering the fact that the volatility is not directly observable,
the need of a good model to predict the future volatilities is essential. One model that
has shown to be successful in capturing volatility clustering and predicting future volatili-
ties is the univariate GARCH (Generalized Autoregressive Conditional Heteroscedasticity)
model introduced by Bollerslev in 1986 [8].

It is known that financial volatilities move together more or less closely over time across
assets and markets. Hence it is essential to take into account the dependence in the co-
movements of asset returns. One method to estimate the covariance matrix between the
assets is to extend the univariate GARCH into a multivariate GARCH model. Extend-
ing from univariate to multivariate GARCH opens the door to better decision tools. The
main challenge in constructing multivariate GARCH models is to make them parsimonious
enough, but still maintain the flexibility.

One approach is to decompose the conditional covariance matrix into conditional standard
deviations and a conditional correlation matrix. The first model of this type was the
Constant Conditional Correlation (CCC-) model introduced by Bollerslev in 1990 [9]. In
this model, the conditional correlation is assumed to be constant over time, and only
the conditional standard deviation is time-varying. The assumption that the conditional
correlation is constant over time is not always reasonable. In 2001, Engle and Sheppard
introduced the DCC-GARCH model [11], which is an extension of the CCC-GARCH
model, for which the conditional correlation matrix is designed to vary over the time.
In this thesis the implementation of the DCC-GARCH model will be considered, using
Gaussian, Student t- and skew Student t-distributed errors.

This thesis is structured as follows: In Chapter 2 the univariate GARCH model will be
considered. In Chapter 3 multivariate GARCH models will be discussed in general to give
a basic understanding before the DCC-GARCH model will be presented in Chapter 4.
How to estimate the parameters of and determine the forecast and Value-at-Risk from the
DCC-GARCH model will be considered in Chapters 5 and 6 respectively. In Chapter 7 the
the goodness of fit of DCC-GARCH is discussed. In Chapter 8 DCC-GARCH models with
different error distributions are fit to real data. Finally, some conclusions are presented in
Chapter 9.

Multivariate DCC-GARCH Model -With Various Error Distributions 7
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2 Univariate GARCH
2.1 Basic idea

The American economist R. F. Engle developed the ARCH model in 1982 [12]. This model
captures the tendency of stock prices and other financial variables to move between high
volatility and low volatility. Previous research either assumed the volatility to be constant
or used simple devices to approximate it. There was need for a better model to measure
risk, for example in pricing options and financial derivatives. The ARCH model became an
essential tool of modern asset pricing theory and practice. In 2003, Engle was the winner
of the ”Nobel Memorial Prize in Economic Sciences” (shared with C. Granger) for his
work with analyzing time series methods with time-varying volatility (ARCH).

The danish economist T. P. Bollerslev proposed the generalized ARCH model [8], known
as GARCH, in 1986 after working with his Ph.D under supervision of Engle. This model
is a more generalized model of the ARCH model, and is shown to be more successful in
predicting volatilities than the ARCH model.

The main sources used in this chapter are the books [10], [18] and [1].

2.2 The GARCH model

The GARCH(q, p) model is defined as:

rt = µt + at (1)

at = h
1/2
t zt (2)

ht = α0 + α1a
2
t−1 + ...+ αqa

2
t−q + β1ht−1 + ...+ βpht−p (3)

Notation:

rt : log return of an asset at time t.

at : mean-corrected return of an asset at time t.

µt: the expected value of the conditional rt.

ht: the square of the volatility, i.e. the conditional variance at time t,
conditioned on the history.

{zt}: sequence of independent and identically distributed (iid) standardized,
random variables, i.e. E[zt]=0 and Var[zt]=1.

Multivariate DCC-GARCH Model -With Various Error Distributions 9



α0, α1, ..., αq: parameters of the model.

β1, ..., βp: parameters of the model.

p, q: order of the GARCH model

In (1) µt can be modelled as a time series, e.g. an ARMA model, or just as a constant. In
this thesis the modelling of µt will not be the focus.

The volatility in (3) can be written as:

ht = α0 +
q∑
i=1

αia
2
t−i +

p∑
j=1

βjht−j

From (3) we see that the conditional variance, ht, varies over time, dependent on the last
squared returns, {a2

t−i}
q
i=1. If a big movement in the market occured yesterday, the day

before yesterday or up to q days ago, the effect of this big movement will be shown in an
increased volatility. Consequently at will tend to be large. This means that a large shock
tends to be followed by another large shock. When the volatility is serially dependent, the
time series will have periods of high volatility followed by periods of low volatility. This
periodical dependence of volatility is called volatility clustering.

at is serially uncorrelated even though it is dependent on the last observations, i.e. the
dependence is not linear.

It is important to be aware of that even though the volatility is large, this does not
necessarily imply that at have to be large, it just means that the probability of obtaining
a large value of at has increased.

An important weakness of the GARCH model is that it does not distinguish between
positive and negative movements in the market. This is because the returns, {at−i}qi=1,
are squared in (3).

2.3 Properties of the GARCH model

2.3.1 Unconditional distribution of at

In this section we derive unconditional mean, variance and autocovariance of at

Multivariate DCC-GARCH Model -With Various Error Distributions 10



Unconditional mean of at

The unconditional mean of at is:

E[at] = E[E{at|Ft−1}]

= E[E{h1/2
t zt|Ft−1}]

= E[h1/2
t E{zt|Ft−1}]

= E[h1/2
t E{zt}] = 0

(4)

where Ft denotes the information set available at time t, i.e Ft = {as : s ≤ t}. Here it is
used that ht and zt are independent.

In the last equality of (4) we get 0 because E[zt] = 0 for all t. Hence the unconditional
mean of at is 0 for all time t.

Unconditional variance of at

The unconditional variance of at is:

σ2 = Var[at] = E[a2
t ]

= E[E{a2
t |Ft−1}]

= E[E{htz2
t |Ft−1}]

= E[htE{z2
t }]

= E[ht]
= E[α0 + α1a

2
t−1 + ...+ αqa

2
t−q + β1ht−1 + ...+ βpht−p]

= α0 +
q∑
i=1

αiE[a2
t−i] +

p∑
j=1

βjE[ht−j ]

= α0 +
q∑
i=1

αiVar[at−i] +
p∑
j=1

βjE[ht−j ]

(5)

In (5) it is used that E[z2
t ] = Var[zt]=1 since E[zt] = 0, and that ht and zt are independent.

E[ht−j ] = ht−j = σ2 for j = 1, ..., p because ht−j is deterministic and equal to the uncon-
ditional variance, σ2.

If we assume {at} to be a stationary process, we get σ2 =Var[at] =Var[at−1] = ... =Var[at−q].
Putting this in (5) and solving the equation with respect to σ2 we get the unconditional
variance:

σ2 = α0
1− (∑q

i=1 αi +
∑p
j=1 βj)

(6)

Multivariate DCC-GARCH Model -With Various Error Distributions 11



The assumption that {at} is stationary is only true when ∑q
i=1 αi +

∑p
j=1 βj < 1, because

the variance have to be positive. If this sum is greater than 1 there is no constant uncon-
ditional variance.

Unconditional autocovariance of at

The unconditional autocovariance of at is:

E[at+kat−1] = E[E[at+kat−1|Ft−1]] = E[at−1E[at+k|Ft−1]] = 0 for k = 0, 1, 2, ... (7)

because E[at+k|Ft−1] = 0.

Since zt ∼ IID, the unconditional distribution has the same distribution for all t, i.e.
at, ..., at+n has the same distribution as at+k, ..., at+n+k. That is, the unconditional distri-
bution of at is strictly stationary. Since E[z2

t ] < ∞, E[a2
t ] < ∞. Hence the unconditional

distribution of {at} is also weakly stationary.

2.3.2 Excess kurtosis of the GARCH model

The kurtosis of a model is interesting because it gives us an indication of the behaviour of
the tails. The excess kurtosis of the normal distribution is 0. Distributions with positive
excess kurtosis have heavier tails than the normal distribution. When the excess kurtosis
is negative, the distributions are more light-tailed than the normal distribution. In this
section the values of the kurtosis for the GARCH model is compared to the values of the
kurtosis for the normal distribution.

For simplicity GARCH(1,1) will be considered in this section. The same idea can be applied
to GARCH(q, p), p = 1, 2, ..., q = 1, 2, ..., as well.

The definition of the excess kurtosis of at, Ka, is:

Ka = E[a4
t ]

Var[at]2
− 3 (8)

From (6) we have that Var[at] = E[a2
t ] = α0/[1− (α1 + β1)].

E[a4
t ] is:

E[a4
t ] = E[h2

t z
4
t ] = E[z4

t ]E[h2
t ] = (3 + Kz)E[h2

t ], (9)

where Kz is the excess kurtosis of zt. When we assume zt ∼ N(0, 1), then Kz = 0 and hence
E[z4

t ] = 3. This can be calculated by derivating the moment Mz(t) = e
1
2 t

2 four times, and
we find M(4)

z (0) = E[z4
t ] = 3.

Multivariate DCC-GARCH Model -With Various Error Distributions 12



We have to calculate E[h2
t ]:

E[h2
t ] = E[(ht)2]

= E[(α0 + α1a
2
t−1 + β1ht−1)2]

= E[α2
0 + α2

1a
4
t−1 + β2

1h
2
t−1 + 2α0α1a

2
t−1 + 2α0β1ht−1 + 2α1β1ht−1a

2
t−1]

= α2
0 + α2

1E[a4
t−1] + β2

1E[h2
t−1] + 2α0α1E[a2

t−1] + 2α0β1E[ht−1] + 2α1β1E[ht−1a
2
t−1]
(10)

Stationarity gives that E[h2
t ] = E[h2

t−1]. E[a2
t−1] = E[ht−1] = σ2 = α0

1−α1−β1
from (6) and

E[ht−1a
2
t−1] = E[h2

t−1] because a2
t−1 = ht−1 since the history up to time t − 1 is known

at time t. E[a4
t−1] = (Kz + 3)E[h2

t−1] from (9). Putting this in (10) and solving for E[h2
t ]

gives:

E[h2
t ] = α2

0(1 + α1 + β1)
[1− α1 − β1][1− (Kz + 2)α2

1 − (α1 + β1)2]
(11)

Inserting (11) into (9) gives:

E[a4
t ] = α2

0(3 + Kz)(1 + α1 + β1)
[1− α1 − β1][1− (Kz + 2)α2

1 − (α1 + β1)2]
(12)

Finally, putting (12) and Var[at]2 = (σ2)2 = ( α0
1−α1−β1

)2 into (8), the excess kurtosis of at
is:

Ka = E[a4
t ]

Var[at]2
− 3

= α2
0(3 + Kz)(1 + α1 + β1)

[1− α1 − β1][1− (Kz + 2)α2
1 − (α1 + β1)2]

(1− α1 − β1)2
α2

0
− 3

= (3 + Kz)[1− (α1 + β1)2]
1− (Kz + 2)α2

1 − (α1 + β1)2
− 3

(13)

Hence the excess kurtosis of at is dependent on the distribution of zt.

Consider the case when zt ∼ N(0, 1):

When zt ∼ N(0, 1), then Kz = 0. Then we get from (13):

K(g)
a = 3[1− (α1 + β1)2]

1− 2α2
1 − (α1 + β1)2

− 3 = 6α2
1

1− 2α2
1 − (α1 + β1)2

(14)

The superscript (g) is used to denote that zt is Gaussian distributed.

This result shows that the kurtosis of at exists if 1− 2α2
1 − (α1 + β1)2 > 0. When α1 > 0,

K(g)
a > 0 and the distribution of at has heavy tails. If α1 = 0, K(g)

a = 0, and then the

Multivariate DCC-GARCH Model -With Various Error Distributions 13



GARCH(1,1) model does not have heavy tails.

Consider the case when zt is not Gaussian distributed:

Using the result in (14) we can rewrite the general expression for the excess kurtosis of at
from (13), and for easier notation put Da = 1− 2α2

1 − (α1 + β1)2:

Ka = (3 + Kz)[1− (α1 + β1)2]
1− (Kz + 2)α2

1 − (α1 + β1)2
− 3

= Kz[1− 2α2
1 − (α1 + β1)2] + 6α2

1 + 5Kzα
2
1

[1− 2α2
1 − (α1 + β1)2]−Kzα2

1

= KzDa + 6α2
1 + 5Kzα

2
1

Da −Kzα2
1

=
Kz + 6α2

1
Da + 5Kzα2

1
Da

1− Kzα2
1

Da

=
Kz + K(g)

a + 5
6KzK(g)

a

1− 1
6KzK(g)

a

(15)

The result in (15) shows that for a GARCH(1,1) model, the coefficient α1 plays a critical
role in determining the tail behaviour of at. For instance if α1 = 0, K(g)

a = 0 and Ka =
Kz. Hence the tail behaviour of at is similar to that of the standardized error zt. When
α1 > 0, K(g)

a > 0 and the distribution of at has heavy tails. Hence the tailheaviness of the
distribution of at is dependent on the parameters in the model and the distribution of the
error zt. For instance if zt is Student-t distributed, then Kz = 6/(ν-4) for ν > 4.

This result holds for all GARCH models, but only if the excess kurtosis exists.

2.4 Estimation of the parameters

Estimation of the parameters in the GARCH model can be done by maximum likelihood.
The expression of the likelihood is:

L(α,β|a1, .., an) = f(a1, ..., an|α,β)
= f(an|Fn−1,α,β)f(an−1|Fn−2,α,β) · · · f(am+1|Fm,α,β) · f(a1, ..., am|α,β)

Where n is the sample size, m =max(p, q), α = (α0, α1, ..., αq)T , β = (β1, ..., βp)T and
f(a1, ..., am|α,β) is the joint probability density function of a1, ..., am.

Since the exact form of f(a1, ..., am|α) is complicated, the conditional likelihood function
is usually used instead. It is given by:

Multivariate DCC-GARCH Model -With Various Error Distributions 14



L(α,β|am+1, .., an) = f(am+1, ..., an|α,β, a1, ..., am)

To determine f(am+1, ..., an|α,β, a1, ..., am), we have to decide a model for zt. The most
common is to assume zt to be standard Gaussian distributed.

Assuming zt ∼ N(0,1):

When zt ∼ N(0,1), at|Ft−1 ∼ N(0,ht), since at =
√
htzt. This can be calculated from the

transformation of variables. In this case the conditional likelihood function is:

L(α,β|am+1, .., an) = f(am+1, ..., an|α,β, a1, ..., am) =
T∏
t=1

1√
2πht

exp
{
− a2

t

2ht

}

where t = 1, ..., T denotes the time points in the conditional likelihood function.

Maximizing the conditional likelihood function is equivalent to maximizing its logarithm
because ln(· ) is a strictly increasing function. Since the log-likelihood is easier to handle,
we prefer this:

ln(L) = l(am+1, ..., an|α,β, a1, ..., am)

= −1
2

T∑
t=1

[
ln(2π) + ln(ht) + a2

t

ht

]

= −1
2

T∑
t=1

[
ln(ht) + a2

t

ht

]
+ constant

(16)

where ht = α0+α1a
2
t−1+...+αqa2

t−q+β1ht−1+...+βpht−p has to be evaluated recursively.

Maximizing the log likelihoods

The log-likelihood in (16) can be maximized using numerical optimization methods. The
most common method is using a quasi-Newton optimizer.

A common quasi-Newton method for this problem is the Broyden-Fletcher-Goldfarb-
Shanno (BFGS). For instance, the statistical software R is using this method when maxi-
mizing the log-likelihood.

Distribution of the Maximum Likelihood Estimator

The maximum likelihood estimator can be shown to be approximately normally dis-
tributed, with the mean as the true parameter value, θ̂ ∼ N(θ, Σ), where

θ =
[
α

β

]

Multivariate DCC-GARCH Model -With Various Error Distributions 15



Σ is approximately equal to the inverse of the matrix whose (i, j)th element is:

Cov(θi, θj) = 1
2

T∑
t=1

1
h2
t

∂ht
∂θi

∂ht
∂θj

Estimation problems

Sometimes there is problem with convergence because the likelihood function becomes flat
when the number of parameters is large. It may be that only a local optimum is achieved,
and in this case the starting values of the parameters are very important. Different set
of estimates may be obtained when the starting values are changed. To secure that we
really have found the global maximum, one should run the model with many different
starting values. If possible, one should try to use a more parsimonious parametrization of
the model if this convergence problem occur.

Another convergence problem may occur if the gradient algorithm used to maximize the
likelihood function has hit a boundary. If there are obvious outliers in the data, it is very
likely that the optimization algorithm will return the value 0 or 1 for either the α or the
β parameter (or both). If there is still a problem with convergence after removing the
outliers, one should try to change the starting values.

Most univariate models will encounter few convergence problems if the model is well
specified for the data, and especially if the number of parameters is low.

2.5 Prediction of the volatility

The main use of the GARCH model is to predict future volatilities. More specifically
one wants to predict the future volatility k-step ahead, i.e. ht+k. Assume a GARCH(q,p)
model. Then we have:

E[ht+k|Ft] = Var[at+k|Ft]
= E[a2

t+k|Ft]
= E[E{ht+kz2

t+k|Ft+k−1}|Ft]
= E[ht+k|Ft]
= E[α0 + α1a

2
t+k−1 + ...+ αqa

2
t+k−q + β1ht+k−1 + ...+ βpht+k−p|Ft]

= α0 + α1E[a2
t+k−1|Ft] + ...+ αqE[a2

t+k−q|Ft] + β1E[ht+k−1|Ft]+
...+ βpE[ht+k−p|Ft]

= α0 + α1E[ht+k−1] + ...+ αqE[ht+k−q] + β1E[ht+k−1]+
...+ βpE[ht+k−p]

= α0 +
max(p,q)∑
i=1

(αi + βi)E[ht+k−i]

(17)
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where
E[ht+k] = a2

t+k for k < 0

The k-step-ahead conditional variance can be found recursively from this formula, by first
computing E[ht+1|Ft], then E[ht+2|Ft] and up to E[ht+k|Ft].

If the forecast horizon, k, increases to infinity, it is reasonable to believe that the prediction
of the volatility will converge to the unconditional variance, since the nearest past is
unknown. Let us check whether this is true for the simplest model GARCH(1,1). (17) can
be rewritten as:

E[ht+k] = α0 + (α1 + β1)ht+k−1

= α0 + (α1 + β1)(α0 + (α1 + β1)ht+k−2)
= α0 + (α1 + β1)α0 + (α1 + β1)2(α0 + (α1 + β1)ht+k−3)

= α0

k−2∑
i=0

(α1 + β1)i + (α1 + β1)k−1ht+1

= α0

(
1− (α1 + β1)k−1

1− α1 − β1

)
+ (α1 + β1)k−1ht+1 → α0

1− α1 − β1
as k →∞

(18)

It is used that ∑k−2
i=1 (α1 + β1)i is a geometric series since (α1 + β1) < 1.

This result shows that the GARCH(1,1)-prediction of the volatility in the distant future
converges to the stationary variance as calculated in (6). This is also the case in general
for GARCH(q,p), i.e.

ht+k →
α0

1− (∑q
i=1 αi +

∑p
j=1 βj)

as k →∞
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3 Multivariate GARCH
3.1 Basic idea - why extend from univariate to multivariate?

• In financial econometrics and management understanding, predicting the dependence
in the comovements of asset returns is important. For example, asset pricing depends
on the covariance of the assets in a portfolio. Hence it is important to consider the
comovements in the portfolio.

• Financial volatilities move together more or less closely over time across assets and
markets.

• Recognizing this feature through a multivariate model should lead to more relevant
empirical models than working with separate univariate models.

• In financial applications, extending from univariate to multivariate modelling opens
the door to better decision tools in various areas such as asset pricing models, portfolio
selection, hedging, and Value-at-Risk forecasts.

3.2 The multivariate GARCH models

The multivariate GARCH models are defined as:

rt = µt + at (19)

at = H
1/2
t zt (20)

Notation:

rt : n× 1 vector of log returns of n assets at time t.

at: n× 1 vector of mean-corrected returns of n assets at time t, i.e. E[at]=0.
Cov[at] = Ht.

µt: n× 1 vector of the expected value of the conditional rt.

Ht: n× n matrix of conditional variances of at at time t.

H
1/2
t : Any n× n matrix at time t such that Ht is the conditional variance

matrix of at. H1/2
t may be obtained by a Cholesky factorization of Ht.

zt: n× 1 vector of iid errors such that E[zt]=0 and E[ztzTt ] = I.
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µt in (19) may be modelled as a constant vector or a time series model. The modelling of
µt is however not the focus in this thesis.

As in the univariate case, at is uncorrelated in time. However this does not mean that
there is no serial dependence, but that the dependence is non-linear.

What remains to be specified is the conditional covariance matrix, Ht. There are many
possible specifications of Ht. The parameters in the conditional covariance matrices in-
crease very rapidly as the dimension of at increases.

Since Ht is dependent of the time t, it has to be inverted in each iteration, which makes
the computation demanding unless n is small. This creates difficulties in the estimation
of the models, and therefore an important goal in constructing the MGARCH models is
to make them parsimonious enough, but still maintain the flexibility. Another aspect is to
ensure the conditional covariance matrix to be positive definite.

The different specifications of MGARCH models can be divided into four categories as
suggested in [17]:

1. Models of the conditional covariance matrix; In this class the conditional co-
variance matrices,Ht, are modelled directly. This class includes the VEC and BEKK
models. These models were among the first parametric MGARCH models.

2. Factor models; The idea of factor models comes from economic theory. In this class
the conditional covariance matrices are motivated by parsimony. The process at is
assumed to be generated by a (small) number of unobserved heteroskedastic factors,
hence these models are called factor models. These factors can be studied and one
may make assumptions that some characteristics of the data is captured, similar as
for principal component analysis. This approach has the advantage that it reduces the
dimensionality of the problem when the number of factors relative to the dimension
of the return vector at is small.

3. Models of conditional variances and correlations; The models in this class are
built on the idea of modelling the conditional variances and correlations instead of
straightforward modelling the conditional covariance matrix. We will consider one
specific model of this class in Section 3.3.

4. Nonparametric and semiparametric approaches; Models in this class form an
alternative to parametric estimation of the conditional covariance structure. The ad-
vantage of these models is that they do not impose a particular structure (that can
be misspecified) on the data.

The goal of this thesis is to have a closer look at a model called Dynamic Conditional
Correlation (DCC-) GARCH which belongs to the category 3 above. However, before we
give a closer description of the DCC model in Chapter 4, a more general description of
the category 3 models are given in Section 3.3.
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3.3 Models of conditional variances and correlations

The models in this class are built on the idea of modelling the conditional variances and
correlations instead of straightforward modelling the conditional covariance matrix. The
conditional covariance matrix is decomposed into conditional standard deviations and a
correlation matrix as:

Ht = DtRtDt (21)

where Dt = diag(h1/2
1t , ..., h

1/2
nt ) is the conditional standard deviation, and Rt is the corre-

lation matrix. Models in this class can be classified in two groups; those with a constant
correlation matrix and those when the correlation matrix is time-varying.

3.3.1 Constant correlation matrix

Models in this class includes the Constant Conditional Correlation (CCC-) GARCH of
Bollerslev [9] and its extensions. The conditional correlation matrix is time invariant, i.e.
Rt = R. Hence (21) becomes:

Ht = DtRDt

The correlation matrix, R = [ρij ], is positive definite with ρii = 1, i = 1, ..., n. The off-
diagonal elements of the conditional covariance matrix, Ht, are given by:

[Ht]ij = h
1/2
it h

1/2
jt ρij , i 6= j (22)

The process {ait} is modelled as univariate GARCH. Hence the conditional variances can
be written in a vector form:

ht = c+
q∑
j=1
Aja

(2)
t−j +

p∑
j=1
Bjht−j (23)

where c is n× 1 vector, Aj and Bj are diagonal n× n matrices, and a(2)
t−j = at−j � at−j

is the element–wise product. Ht is ensured positive definite when the elements of c and
Aj and Bj are positive, since R is positive definite.

There exists also an extended CCC-GARCH model for which Aj and Bj do not need to
be diagonal.

The estimation of models in this class is computationally attractive because the correlation
matrix is constant. However the CCC-GARCH model may be too restrictive in some cases.
The model may then be generalized by assuming the correlation matrix to vary with time.
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3.3.2 Time-varying correlation matrix

When the correlation matrix, Rt, is time-varying, Ht is positive definite if Rt is positive
definite at each point in time and the conditional variances, hit, i = 1, ..., n are well-defined.
Compared to the CCC-GARCH model, the advantage of numerically simple estimation is
lost, as the correlation matrix has to be inverted for each time, t, during every iteration.
Several specifications of Rt have been suggested in the literature. In this thesis we will
study one specification; the DCC-GARCH model.
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4 DCC-GARCH
4.1 Basic idea

The Dynamic Conditional Correlation (DCC-) GARCH belongs to the class ”Models of
conditional variances and correlations” as discussed in Section 3.3. It was introduced by
Engle and Sheppard in 2001 [11]. The idea of the models in this class is that the covariance
matrix,Ht, can be decomposed into conditional standard deviations,Dt, and a correlation
matrix, Rt. In the DCC-GARCH model both Dt and Rt are designed to be time-varying.

4.2 The DCC-GARCH model

Suppose we have returns, at, from n assets with expected value 0 and covariance matrix
Ht. Then the Dynamic Conditional Correlation (DCC-) GARCH model is defined as:

rt = µt + at (24)

at = H
1/2
t zt (25)

Ht = DtRtDt (26)

Notation:

rt : n× 1 vector of log returns of n assets at time t.

at : n× 1 vector of mean-corrected returns of n assets at time t, i.e. E[at]=0.
Cov[at] = Ht.

µt: n× 1 vector of the expected value of the conditional rt.

Ht: n× n matrix of conditional variances of at at time t.

H
1/2
t : Any n× n matrix at time t such that Ht is the conditional variance

matrix of at. H1/2
t may be obtained by a Cholesky factorization of Ht.

Dt: n× n, diagonal matrix of conditional standard deviations of at at time t.

Rt: n× n conditional correlation matrix of at at time t.

zt: n× 1 vector of iid errors such that E[zt]=0 and E[ztzTt ] = I.

µt in (24) may be modelled as a constant vector or a time series model. The modelling of
µt is however not the focus in this thesis.
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The elements in the diagonal matrix Dt are standard deviations from univariate GARCH
models.

Dt =



√
h1t 0 · · · 0

0
√
h2t

. . . ...
... . . . . . . 0
0 · · · 0

√
hnt


where

hit = αi0 +
Qi∑
q=1

αiqa
2
i,t−q +

Pi∑
p=1

βiphi,t−p

Note that the univariate GARCH models can have different orders. Often the simplest
model, GARCH(1,1), is adequate. The specification of the univariate GARCH models is
not limited to the standard univariate GARCH(p,q) in Chapter 2, but can include any
GARCH process with Gaussian distributed errors that satisfies appropriate stationarity
conditions that ensures the unconditional variance to exist. In this thesis, however, only
the standard univariate GARCH in Chapter 2 will be considered.

Rt is the conditional correlation matrix of the standardized disturbances εt, i.e:

εt = D−1
t at ∼ N(0,Rt)

Since Rt is a correlation matrix it is symmetric.

Rt =



1 ρ12,t ρ13,t · · · ρ1n,t

ρ12,t 1 ρ23,t · · · ρ2n,t

ρ13,t ρ23,t 1 . . . ...
...

... . . . . . . ρn−1,n,t

ρ1n,t ρ2n,t · · · ρn−1,n,t 1


The elements of Ht = DtRtDt is:

[Ht]ij =
√
hithjtρij (27)

where ρii = 1.

As discussed in Section 3.3 there exists different forms of Rt. When specifying a form of
Rt two requirements have to be considered:

1. Ht has to be positive definite because it is a covariance matrix. To ensure Ht to be
positive definite, Rt has to be positive definite (Dt is positive definite since all the
diagonal elements are positive).
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2. All the elements in the correlation matrix Rt have to be equal to or less than one by
definition.

To ensure both of these requirements in the DCC-GARCH model, Rt is decomposed into:

Rt = Q∗−1
t QtQ

∗−1
t (28)

Qt = (1− a− b)Q+ aεt−1ε
T
t−1 + bQt−1 (29)

where Q = Cov[εtεTt ] = E[εtεTt ] is the unconditional covariance matrix of the standardized
errors εt. Q can be estimated as [13]:

Q = 1
T

T∑
t=1

εtε
T
t

The parameters a and b are scalars, and Q∗t is a diagonal matrix with the square root of
the diagonal elements of Qt at the diagonal:

Q∗t =



√
q11t 0 · · · 0

0 √
q22t

. . . ...
... . . . . . . 0
0 · · · 0 √

qnnt


Q∗t rescales the elements in Qt to ensure the second requirement; |ρij | = | qijt√

qiitqjjt
| ≤ 1.

Further Qt has to be positive definite to ensure Rt to be positive definite.

There are imposed some conditions on the parameters a and b to guarantee Ht to be
positive definite. In addition to the conditions for the univariate GARCH model to ensure
positive unconditional variances, given in Section 2.3.1, the scalars a and b must satisfy:

a ≥ 0 , b ≥ 0 and a+ b < 1

In addition Q0, the starting value of Qt, has to be positive definite to guarantee Ht to be
positive definite.

The correlation structure can be extended to the general DCC(M,N)-GARCH model:

Qt = (1−
M∑
m=1

am −
N∑
n=1

bn)Qt +
M∑
m=1

amat−1aTt−1 +
N∑
n=1

bnQt−1 (30)

In this paper only the DCC(1,1)-GARCH model will be studied. For more details of the
general DCC(M,N)-GARCH see [12].
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5 Estimation of DCC-GARCH
In this chapter we describe how the parameters of a DCC-GARCH model may be de-
termined. We consider three different distributions for the standardized error zt; the
multivariate Gaussian, the multivariate Student’s t- and a multivariate skew Student’s
t-distribution.

5.1 Multivariate Gaussian distributed errors

When the standardized errors, zt, are multivariate Gaussian distributed, the joint distri-
bution of z1, ..., zT is:

f(zt) =
T∏
t=1

1
(2π)n/2

exp{−1
2z

T
t zt}

since E[zt]=0 and E[ztzTt ] = I. Here t = 1, ..., T is the time period used to estimate the
model.

Using the rule for linear transformation of variables (see e.g. page 13 in [3]), the likelihood
function for at = H

1/2
t zt is:

L(θ) =
T∏
t=1

1
(2π)n/2|Ht|1/2

exp{−1
2a

T
t H

−1
t at} (31)

where θ denotes the parameters of the model. Let the parameters, θ, be divided in two
groups; (φ,ψ) = (φ1, ...,φn,ψ), where φi = (α0i, α1i, ..., αqi, β1i, ..., βpi) are the parame-
ters of the univariate GARCH model for the ith asset series, i = 1, ..., n. ψ = (a, b) are the
parameters of the correlation structure in (29).

By taking the logarithm of (31) and substitutingHt = DtRtDt we get the log-likelihood:

ln(L(θ)) = −1
2

T∑
t=1

(
nln(2π) + ln(|Ht|) + aTt H−1

t at

)

= −1
2

T∑
t=1

(
nln(2π) + ln(|DtRtDt|) + aTt D−1

t R
−1
t D

−1
t at

)

− 1
2

T∑
t=1

(
nln(2π) + 2ln(|Dt|) + ln(|Rt|) + aTt D−1

t R
−1
t D

−1
t at

)
(32)

The estimation of the correctly specified log-likelihood is difficult, and hence the DCC-
model was designed to allow for two stage estimation. In the first stage the parameter φ
of the univariate GARCH models are estimated for each asset series. The likelihood used
in the first stage results in replacing Rt with the identity matrix In. In the second stage,
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the parameter ψ are estimated using the correctly specified log-likelihood in (32), given
the parameter φ.

5.1.1 Step one

In the first stage Rt is replaced with the identity matrix In in (32), which results in the
quasi-likelihood function:

ln(L1(φ)) = −1
2

T∑
t=1

(
nln(2π) + 2ln(|Dt|) + ln(|In|) + aTt D−1

t InD
−1
t at

)

= −1
2

T∑
t=1

(
nln(2π) + 2ln(|Dt|) + aTt D−1

t InD
−1
t at

)

= −1
2

T∑
t=1

(
nln(2π) +

n∑
i=1

[
ln(hit) + a2

it

hit

])

=
n∑
i=1

(
−1

2

T∑
t=1

[
ln(hit) + a2

it

hit

]
+ constant

)
(33)

Comparing (33) with the log-likelihood (16) in the univariate case we see that the log-
likelihood in (33) is the sum of the log-likelihoods of the univariate GARCH equations of n
assets, meaning that the parameters of the different univariate models may be separately
determined. From this first step, the parameter set φ = φ1, ...,φn is estimated. When φ
is estimated, also the conditional variance hit is estimated for each asset i = 1, .., n, and
εt = D

−1/2
t at and Q = E[εtεTt ] can be estimated.

After the first step only the parameters a and b are unknown. These parameters are
estimated in the second step.

5.1.2 Step two

In the second step, ψ = (a, b) is estimated using the correctly specified log-likelihood
in (32), given the estimated parameters from step one. The second stage quasi-likelihood
function is then:

ln(L2(ψ)) = −1
2

T∑
t=1

(
nln(2π) + 2ln(|Dt|) + ln(|Rt|) + aTt D−1

t R
−1
t D

−1
t at

)

= −1
2

T∑
t=1

(
nln(2π) + 2ln(|Dt|) + ln(|Rt|) + εTt R−1

t εt

) (34)

Since Dt is constant when conditioning on the parameters from step one, we can exclude
the constant terms and maximize:
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ln(L∗2(ψ)) = −1
2

T∑
t=1

(
ln(|Rt|) + εTt R−1

t εt

)

It can be shown under certain conditions that the pseudo-maximum-likelihood method
yields consistent and asymptotically normal estimators [11]. A full maximum likelihood
estimation is considered in [14] as well as the two-step procedure, and they found that
both provided very similar results.

5.2 Multivariate Student’s t-distributed errors

There exists many candidates for the multivariate generalization of the univariate Stu-
dent’s t-distribution. In this theis the most commonly used distribution is considered.

When the standardized errors, zt, are multivariate Student’s t-distributed, the joint density
of z1, ..., zT is:

f(zt|ν) =
T∏
t=1

Γ(ν+n2 )
Γ(ν2 )[π(ν − 2)]n/2

[
1 + zTt zt

ν − 2

]−n+ν
2

where Γ( · ) is the Gamma function.

Again, by using the transformation rule, the likelihood function of at = H
1/2
t zt is:

L(θ) =
T∏
t=1

Γ(ν+n2 )
Γ(ν2 )[π(ν − 2)]n/2|Ht|1/2

[
1 + aTt H

−1
t at

ν − 2

]−n+ν
2

where θ denotes the parameters of the model.

The log-likelihood is obtained by taking the logarithm and substituting Ht = DtRtDt:

ln(L(θ)) =
T∑
t=1

(
ln
[
Γ(ν + n

2 )
]
− ln

[
Γ(ν2 )

]
− n

2 ln
[
π(ν − 2)

]
− 1

2 ln
[
|DtRtDt|

]

− ν + n

2 ln
[
1 + aTt D

−1
t R

−1
t D

−1
t at

ν − 2

])
(35)

As for the Gaussian, standardized errors in Section 5.1 θ is divided in two groups; (φ,ψ) =
(φ1, ...,φn,ψ), where φi = (α0i, α1i, ..., αqi, β1i, ..., βpi) are the parameters of the univariate
GARCH model for the ith asset series, i = 1, ..., n and ψ = (a, b, ν).

The optimization of (35) is difficult. Hence, also in this case the parameters are obtained in
two steps. In the first step, the parameter φ is estimated assuming that the standardized
errors are Gaussian distributed, while the parameter ψ is estimated in the second step
using the correct log-likelihood in 35, given the parameter φ.
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5.2.1 Step one

Several authors have shown that the change of the error distribution does not virtually
affect the parameters, see e.g. [6] and [19]. Hence the parameters φ = φ1, ...,φn of the
univariate GARCH models are fitted using the pseudo-maximum-likelihood; assuming the
errors to be Gaussian distributed.

Assuming Gaussian distributed errors, the first stage quasi-likelihood is the same as in
(33):

ln(L1(φ)) =
n∑
i=1

(
−1

2

T∑
t=1

[
ln(hit) + a2

it

hit

]
+ constant

)

and the parameter set φi, i = 1, ..., n are estimated assuming univariate GARCH models
with Gaussian distributed errors.

The parameters that remain to be estimated are a, b and ν. These are estimated in the
second step.

5.2.2 Step two

The parameters ψ = (a, b, ν) are estimated in the second step using the correctly specified
log-likelihood in (35), given the estimated parameters in step one. The second stage quasi-
likelihood function is:

ln(L2(ψ)) =
T∑
t=1

(
ln
[
Γ(ν + n

2 )
]
− ln

[
Γ(ν2 )

]
− n

2 ln
[
π(ν − 2)

]
− 1

2 ln
[
|DtRtDt|

]

− ν + n

2 ln
[
1 + aTt D

−1
t R

−1
t D

−1
t at

ν − 2

])

=
T∑
t=1

(
ln
[
Γ(ν + n

2 )
]
− ln

[
Γ(ν2 )

]
− n

2 ln
[
π(ν − 2)

]
− 1

2 ln
[
|Rt|

]

− ln
[
|Dt|

]
− ν + n

2 ln
[
1 + εTt R

−1
t εt

ν − 2

])

Since Dt is constant when conditioning on the parameters from step one, we can exclude
the constant term and maximize:

ln(L∗2(ψ)) =
T∑
t=1

(
ln
[
Γ(ν + n

2 )
]
−ln

[
Γ(ν2 )

]
−n2 ln

[
π(ν − 2)

]
−1

2 ln
[
|Rt|

]
−ν + n

2 ln
[
1 + εTt R

−1
t εt

ν − 2

])
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5.3 Multivariate skew Student’s t-distributed errors

Like for the multivariate Student’s t-distribution, there also exists also many candidates
for the multivariate skew Student’s t-distribution. Here we use Azzalini’s skew Student’s
t-distribution described in [4].

When the standardized errors, zt, are multivariate skew Student’s t-distributed, the joint
distribution of z1, ..., zT is:

f(zt|ν, ς) =
T∏
t=1

2td(zt; ν, ς)T1

{
δTD−1(zt − ξ)

[
ν + n

Qzt + ν

]1/2
; ν + n

}
(36)

where D is the diagonal matrix with the square root of the diagonal elements of Ω on the
diagonal,

Qzt = (zt − ξ)TΩ−1(zt − ξ),

td(zt; ν, ς) =
Γ(ν+n2 )

|Ω|1/2(πν)n/2Γ(ν/2)

[
1 + Qzt

ν

]−(ν+n)/2

T1( · ; ν+n) denotes the scalar Student’s t-distribution with ν+n degrees of freedom and
Γ( · ) is the Gamma function. The joint density (36) is well-defined if ν > 2.

We shall denote the skew Student’s t-distribution (36):

Y ∼ Std(ξ,Ω, δ,ν)

Define:

ς = D−1δ (37)

[15] shows that Azzalini’s skew Student’s t-distribution may be standardized to have mean
vector 0 and covariance matrix In, by letting:

Ω =


ν−2
ν

[
In + 1

ςT ς

(
−1 + πΓ( ν2 )2(ν−(ν−2)ςT ς)

2ςT ς(ν−2)[πΓ( ν2 )2−(ν−2)Γ( ν−1
2 )2] (−1 +K)

)
ςςT

]
for ς 6= 0

ν−2
ν In for ς = 0

(38)

Here

K =

√√√√1 +
4ν(ν − 2)

[
πΓ(ν2 )2 − (ν − 2)Γ(ν−1

2 )2
]
ςT ς

πΓ(ν2 )2(ν − (ν − 2)ςT ς)2
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and

ξ = −
√
ν

π

Γ(ν−1
2 )

Γ(ν/2)
Ως√

1 + ςTΩς
(39)

By using the transformation rule, the likelihood function of at = H
1/2
t zt is:

L(θ|F t) =
T∏
t=1

2td(H−1/2
t at; ν, ς)T1

{
δTD−1(H−1/2

t at − ξ)
[
ν + n

Qat + ν

]1/2
; ν + n

}
1

|Ht|1/2

where

Qat = (H−1/2
t at − ξ)TΩ−1(H−1/2

t at − ξ),

and θ denotes the parameters of the model.

We get the log-likelihood by taking the logarithm and substituting Ht = DtRtDt:

ln(L(θ)) =
T∑
t=1

(
ln(2) + ln

[
td(H−1/2

t at; ν, ς )
]

+ ln
[
T1

{
δTD−1(H−1/2

t at − ξ)
[
ν + n

Qat + ν

]1/2
; ν + n

}]
− 1

2 ln
[
|Ht|

]) (40)

θ is divided in two groups; (φ,ψ) = (φ1, ...,φn,ψ), where φi = (α0i, α1i, ..., αqi, β1i, ..., βpi)
are the parameters of the univariate GARCH model for the ith asset series, i = 1, ..., n
and ψ = (a, b, ν, ς).

The optimization of (40) is difficult. Hence the parameters are estimated in two steps.
In the first step, the parameter φ is estimated assuming that the standardized errors are
Gaussian distributed, while the parameter ψ is estimated in the second step using the
correct log-likelihood in (40), given the parameter φ.

5.3.1 Step one

The parameters φ is estimated under the assumption of Gaussian distributed errors as
discussed in Section 5.2.1. Hence the first stage quasi-likelihood is:

ln(L1(φ)) =
n∑
i=1

(
−1

2

T∑
t=1

[
ln(hit) + a2

it

hit

]
+ constant

)

The parameters remain to be estimated are a, b, ν, ς. These are estimated in the second
step.
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5.3.2 Step two

The parameters ψ = (a, b, ν, ς) are estimated in the second step using the correct specified
log-likelihood in (40), given the estimated parameters in step one. The second stage quasi-
likelihood function is then:

ln(L2(ψ)) =
T∑
t=1

(
ln(2) + ln

[
td(H−1/2

t at; ν, ς )
]

+ ln
[
T1

{
δTD−1(H−1/2

t at − ξ)
[
ν + n

Qat + ν

]1/2
; ν + n

} ]
− 1

2 ln
[
|DtRtDt|

])

=
T∑
t=1

(
ln(2) + ln

[
Γ(ν + n

2 )
]
− 1

2 ln
[
|Ω|

]
− n

2 ln
[
πν

]
− ln

[
Γ(ν2 )

]
− ν + n

2 ln
[
1 + Qat

ν

]

+ ln
[
T1

{
δTD−1(H−1/2

t at − ξ)
[
ν + n

Qat + ν

]1/2
; ν + n

} ]
− 1

2 ln
[
|Rt|

]
− ln

[
|Dt|

])

Dt is constant when conditioning on the parameters from step one. We exclude the con-
stant terms and maximize:

ln(L∗2(ψ)) =
T∑
t=1

(
ln
[
Γ(ν + n

2 )
]
− 1

2 ln
[
|Ω|

]
− n

2 ln
[
πν

]
− ln

[
Γ(ν2 )

]
− ν + n

2 ln
[
1 + Qat

ν

]

+ ln
[
T1

{
δTD−1(H−1/2

t at − ξ)
[
ν + n

Qat + ν

]1/2
; ν + n

} ]
− 1

2 ln
[
|Rt|

])

inserting (38) and (39) for Ω and ξ respectively.

5.4 Estimation problems

Often in multivariate data the choice of start values is extremely important. When the
number of parameters to estimate is large, the likelihood function becomes flat, and there
is a great danger of reaching a local optimum. To secure that we really have found a
global maximum one should run the estimation with many different starting values. One
way to choose the starting values is to make a grid of the possible values the parameters
may take, and choose the starting values to be the combination of values that yields the
highest likelihood.

Another convergence problem can occur if we have outliers in the data. Then the gradient
algorithm used for the maximation may hit a boundary. To deal with this problem one
should try to remove the outliers. If there is still a problem with convergence after removing
the outliers, one should try to change the starting values.
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6 Forecasting and Value-at-Risk
using DCC-GARCH

In this chapter we will consider forecasting and Value-at-Risk using the DCC-GARCH
model with Gaussian, Student’s t- and skew Student’s t-distributed errors.

6.1 Forecasting

After the parameters of the model are estimated, we might be interested in determine the
forecast of the conditional covariance matrix,Ht+k = Dt+kRt+kDt+k, at time t+k when
the history up to time t is known. When forecasting the covariance matrix, the forecasts
of Dt+k and Rt+k can be done separately, see e.g. [16].

6.1.1 Step one; forcasting the conditional variances in Dt+k

The forecasts of the univariate variances inDt+k = diag(
√
h1,t+k, ...,

√
hn,t+k) can be done

separately for each of the n assets. As seen in Section 2.5 the k-step ahead forecast for the
general GARCH(q, p) will be:

E[hi,t+k|Ft] = α0 +
max(p,q)∑
j=1

(αj + βj)E[hi,t+k−j |Ft]

where
E[hi,t+k|Ft] = a2

i,t+k for k < 0, i = 1, .., n

Often the easiest GARCH(1,1) model is adequate. From (18) the k-step ahead forecast for
the GARCH(1,1) is:

E[hi,t+k|Ft] =
k−2∑
i=0

α0(α1 + β1)i + (α1 + β1)k−1E[hi,t+1|Ft]

where

E[hi,t+1|Ft] = α0 + α1a
2
i,t + β1hi,t

The memory will decline with exponential rate (α1+β1). Compared with empirical studies
the GARCH(1,1) model has been criticized to have too short memory, especially with high
frequency data [16].

The forecast of the conditional variance is:
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E[Dt+k|Ft] = diag(
√
E[h1,t+k|Ft], ...,

√
E[hn,t+k|Ft])

6.1.2 Step two; forecasting the conditional correlation matrix Rt+k

The elements in the conditional correlation matrix, Rt+k, are not themselves forecasts,
but they are the ratio of the forecast of the conditional covariance to the square root of
the product of the forecasts of the conditional variances, i.e. ρ̂ij = q̂ij

q̂iiq̂jj
, where q̂ij , q̂ii and

q̂jj are the forecast elements in Qt+k. Thus unbiased forecasts are not easily computed.

The expectation of Qt+k is:
E[Qt+1|Ft] = (1− a− b)Q+ aεtε

T
t + bQt for k = 1

E[Qt+k|Ft] = (1− a− b)Q+ aE[εt+k−1ε
T
t+k−1|Ft] + bE[Qt+k−1|Ft] for k > 1

(41)

where E[εt+k−1ε
T
t+k−1|Ft] = E[Rt+k−1|Ft] = E[Q∗−1

t+k−1Qt+k−1Q
∗−1
t+k−1|Ft].

Since E[Q∗−1
t+k−1Qt+k−1Q

∗−1
t+k−1|Ft] is unknown, we cannot directly compute the k-step

ahead forecast in (41). However, there exists two methods that approximates this forecast:

1. Method 1; Assumes that E[εt+iεTt+i|Ft] ≈ E[Qt+i|Ft] for i = 1, ..., k

2. Method 2; Assumes that R ≈ Q and E[Rt+i|Ft] ≈ E[Qt+i|Ft] for i = 1, ..., k

Method 1

In this method we assume that E[εt+iεTt+i|Ft] ≈ E[Qt+i|Ft] for i = 1, ..., k.

The expectation of Qt+k for k > 1 is:

E[Qt+k|Ft] = (1− a− b)Q+ aE[εt+k−1ε
T
t+k−1] + bE[Qt+k−1]

≈ (1− a− b)Q+ (a+ b)E[Qt+k−1]

≈ (1− a− b)Q+ (a+ b)
[
(1− a− b)Q+ (a+ b)E[Qt+k−2]

]
= (1− a− b)Q+ (1− a− b)Q(a+ b) + (a+ b)E[Qt+k−2|Ft]
≈ ...

≈
k−2∑
i=0

(1− a− b)Q(a+ b)i + (a+ b)k−1E[Qt+1|Ft]

= (1− (a+ b)k−1)Q+ (a+ b)k−1E[Qt+1|Ft]
= Q̂t+k
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where E[Qt+1|Ft] = (1− a− b)Q+ aεtε
T
t + bQt from (41).

Then

R̂t+k = E[Rt+k|Ft] ≈ Q̂
∗−1
t+k Q̂t+kQ̂

∗−1
t+k (42)

where Q̂∗t+k is a diagonal matrix with the square root of the diagonal elements of Q̂t+k.

A feature to notice is that Q̂t+k decay with ratio (a+ b).

Method 2

In this method we assume that R ≈ Q and E[Rt+i|Ft] ≈ E[Qt+i|Ft] for i = 1, ..., k.

The expectation of Rt+k for k > 1 is:

E[Rt+k|Ft] ≈ E[Qt+k|Ft]
= (1− a− b)Q+ aE[Rt+k−1|Ft] + bE[Qt+k−1|Ft]
≈ (1− a− b)R+ (a+ b)E[Rt+k−1|Ft]

≈ (1− a− b)R+ (a+ b)
[
(1− a− b)R+ (a+ b)E[Rt+k−2|Ft]

]
= (1− a− b)R+ (1− a− b)R(a+ b) + (a+ b)E[Rt+k−2|Ft]
≈ ...

≈
k−2∑
i=0

(1− a− b)R(a+ b)i + (a+ b)k−1E[Rt+1|Ft]

= (1− (a+ b)k−1)R+ (a+ b)k−1E[Rt+1|Ft]

where E[Rt+1|Ft] ≈ Q̂
∗−1
t+1 Q̂t+1Q̂

∗−1
t+1 , Q̂t+1 = (1 − a − b)Q + aεtε

T
t + bQt and R = Q

∗
Q

Q
∗, where Q∗ is a diagonal matrix with the square root of the diagonal elements of Q on

the diagonal.

By using the notation Ĥt+k = E[Ht+k|Ft], R̂t+k = E[Rt+k|Ft] and D̂t+k = E[Dt+k|Ft]
we finally calculate Ĥt+k = D̂t+kR̂t+kD̂t+k.

A feature to notice is that R̂t+k decay with ratio (a+ b).

An empirical study by Engle and Sheppard [11] shows that Method 2 has better bias
properties for almost all correlation matrices.

For both methods, the forecast of the conditional correlation matrix, R̂t+k, will in the
long run converge to the unconditional correlation matrix of the standardized residuals,
Q.
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6.2 Value-at-Risk

In financial applications one is often interested in the probability that the return of a
portfolio falls below a certain limit, or equivalently, the smallest number l such that the
probability that the return is lower than l is α. The number l is denoted Value-at-Risk with
confidence level α. Hence to determine VaR one first has to determine the distribution
of the portfolio return, pt = wT rt. In this section we show this is done for the three
distributions of the error; multivariate Gaussian, Student’s t and skew Student’s t.

6.2.1 Multivariate Gaussian distributed errors

We want to determine the distributions of at and pt. We use that a linear combination of
zt ∼ Nd(0, In), is also Gaussian distributed. Since E[at]=0 and Cov[at] = Ht, we have
that:

at ∼ Nd(0,Ht)

For the portfolio return, pt = ωTrt we get the expectation:

E[pt] = ωTE[µt] + ωTE[at]
= ωTE[µt]

(43)

and the covariance:

Cov[pt] = Cov[ωTrt]
= Cov[ωT (µt + at)]
= Cov[ωTat]
= ωTCov[at](ωT )T

= ωTHtω

(44)

Hence:

pt ∼ N1(wTE[µt],wTHtw)

6.2.2 Multivariate Student’s t-distributed errors

To determine the distribution of at and pt, we use that a linear combination of zt ∼
tν,d(0, In), is also Student’s t-distributed. Since E[at]=0 and Cov[at] = Ht, we have that:

at ∼ tν,d(0,Ht)
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The expectation and the covariance of pt is the same as given in (43) and (44), respectively.

Hence:

pt ∼ tν(wTE[µt],wTHtw)

6.2.3 Multivariate skew Student’s t-distributed errors

To determine the distribution of at and pt, we use the following result:

Let Xt ∼ Std(ξ,Ω, δ, ν) and A be an m × n constant, matrix of rank m. Then a linear
combination Y t = b +AXt is Std(ξ̃, Ω̃, δ̃, ν̃). The parameters ξ̃, Ω̃, δ̃, ν̃ is determined by
Azzalini and Capitanio [4]:

ξ̃ = b+Aξ

Ω̃ = b+AΩAT

ν̃ = ν

δ̃ = D̃Ω̃−1
BTδ

[1 + δT (C −BΩ̃−1
BT )δ]1/2

(45)

where

B = D−1ΩAT and C = D−1ΩD−1

D is the diagonal matrix with the square root of the diagonal elements of Ω on the
diagonal as described in Section 5.3, and D̃ is the diagonal matrix with the square root
of the diagonal elements of Ω̃ on the diagonal.

When Xt = zt, the distribution of Y t = at is:

at ∼ Std(ξ̃, Ω̃, δ̃, ν̃)

by setting b = 0 and A = H
1/2
t in the expression for ξ̃ and Ω̃ in (45).

And when Xt = at, the distribution of Y t = pt is:

pt ∼ St1(ξ∗,Ω∗, δ∗, ν∗)

by setting b = ωTc+ ωTKrt−1 and A = ωT in the expression for ξ∗ and Ω∗ in (45).
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7 Goodness of Fit
To check whether the fitted DCC-GARCHmodel is appropriate we may check the goodness
of the errors zt separately for each asset series and the goodness of the multivariate fit.

7.1 Goodness of fit of marginals

There are several ways to check if the model fits the data. First we will consider the fit of
the marginals. If the model is suitable, the standardized errors, zt, should be iid. This can
be checked by several different tests:

1. Plot of the errors

The errors should look random, if they are iid.

2. The sample autocorrelation function

The 95% confidence interval for the acf of zt can be computed as [−1.96/
√
n, 1.96/

√
n],

where n is the number of observations. The acf should be outside this interval for 5%
of the lags if zt is iid, and the lags that fall out should be random.

3. Ljung-Box test

The Ljung-Box test checks whether the data are autocorrelated based on a number
of lags, m. We want to test whether the autocorrelations, γ1, ..., γm, of zt is 0 or not.
The test can be defined as:

H0: γ1 = ... = γm = 0
Ha: At least one γi 6= 0, i = 1, ...,m

The test statistic is:

Qm = n(n+ 2)
m∑
i=1

ρ̂2
i

n− i

where n is the sample size, ρ̂i is the sample correlation of z2
t , at lag i, and m is the

number of lags being tested. When n is large, then Qm is asymptotically distributed
as a chi-squared distribution with m degrees of freedom under the null hypothesis.
Then for a significance level α, we reject H0 if

Qm > χ2
1−α,m

where χ2
1−α,m is the α-quantile of the chi-square distribution with m degrees of free-

dom.

If we accept H0, we do not reject the hypothesis that the errors are random. In
practice, the selection of the number of lags, m, may affect the performance of Qm.
Therefore are often several values of m tested.
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4. Turning point test

If z1, ..., zn is a sequence of standardized errors, we say that there is a turning point
at time i, 1<i<n, if zi−1 < zi and zi > zi+1, or if zi−1 > zi and zi < zi+1. If T is
the number of turning points of an iid sequence of length n, then the probability of a
turning point at time i is 2/3, and the expected value of T is:

E[T ] = 2(n− 2)/3

Further it can be shown that the variance is:

Var[T ] = (16n− 29)/90

If n is large, T will be approximately N(E[T ], Var[T ]).

5. Difference-sign test

For this test we count the number of times, S, the differenced series zi − zi−1 > 0.
For an iid sequence the expected number of S is

E[S] = (n− 1)/2

and the variance can be shown to be

E[S] = (n+ 1)/12

For large n, S is approximately N(E[S],Var[S]).

6. Q-Q plot

Q-Q plot is a graphical method to check whether a data set is from a given distribution.
One plots the assumed distribution on the horizontal axis and the quantiles of the
data set on the vertical axis. If the data set is from the assumed distribution, then
the plot will approximately be a straight line, especially near the center. If one has
significant deviations from linearity, the null hypothesis of the assumed distribution
for the data set is rejected.

7.2 Goodness of multivariate fit

In Section 7.1 we have described how to validate univariate fit. The multivariate distribu-
tion does not have to fit well, even though the marginals do. Hence it is important also
to validate the multivariate fit. Assessing multivariate fit is however difficult, and there
exists only a few statistical goodness of fit in the literature. The first test considered, the
Baringhaus-Franz multivariate test, is an in-sample test, while the last considered, the
Kupiec and Christoffersen’s Markov test, are out-of-sample tests.

1. Baringhaus-Franz multivariate test

The test described in Baringhaus and Franz [5] checks whether to datasets, X and
Y , are identically distributed or not. The test can be defined as:
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H0: ”X is distributed as Y ”
Ha: ”X is not distributed as Y ”

The test statistic is:

T = mn

m+ n

 1
mn

m∑
i=1

n∑
j=1
||Xi − Y j || −

1
2m2

m∑
i=1

m∑
j=1
||Xi −Xj || −

1
2n2

n∑
i=1

n∑
j=1
||Y i − Y j ||


where ||· || is the Euclidian distance.

When using this test for validation of the goodness of fit for the DCC-GARCH model,
X1, ...,Xm are vectors of errors, zt, of length d, while Y 1, ...,Y n are vectors of sam-
ples from a given distribution, e.g. multivariate Gaussian, Student’s t or skew Stu-
dent’s t.

The critical point is obtained by bootstrapping this statistic with a 95% confidence
level. If the observed test statistic T falls inside the confidence interval, the null-
hypothesis that the DCC-GARCH model explaines the data well is accepted.

2. Backtesting of VaR; Kupiec test and Christoffersen’s Markov test

Kupiec test and Christoffersen’s Markov test can also be used as a measure of the
multivariate goodness of fit using backtesting for VaR.

To evaluate the goodness of the VaR estimates, backtesting can be used. We calculate
the percentage of times that the observed portfolio returns, pt, fall below the VaR
estimate, and compare that number to the confidence level used. If the observed value
of pt fall outside the confidence interval a violation is said to occur.

If the model is correct specified there are two properties that must be satisfied:

a. The total number of violations must be equal to the expected.

b. The violations must be independently distributed over time.

A test proposed by Kupiec [7] consider the first property, and the Markov test by
Christoffersen [2] consider the last property. Christoffersen [2] have also presented a
test that consider both properties. However if this test fails, we do not know what part
that has failed. Therefore we will use the Kupiec test and Christoffersen’s Markov test
instead.

The Kupiec test

We want to determine which of the distributions; multivariate Gaussian, Student’s t
and skew Student’s t, that is best by considering the number of violations. This can
by done by the Kupiec test.

The number of violations follows a binomial distribution:
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p(x) =
(
n

x

)
px(1− p)n−x

where n is the length of the sample, x is the number of violations and p is the
probability of getting a violation.

The Kupiec test can be defined by:

H0: The expected proportion of violations is equal to α
Ha: The expected proportion of violations is not equal to α

Under the null hypothesis the test statistic is:

Kupiec = 2ln
{(n

x

)
pxobs(1− pobs)n−x(n
x

)
αx(1− α)n−x

}

= 2ln
[(

x

n

)x (
1− x

n

)n−x]
− 2ln

[
αx(1− α)n−x

]
∼ χ2(1), as n→∞

Here pobs = x
n , is the estimated probability, and α is the probability of getting a

violation for a given confidence level.

If the estimated probability, pobs, is above the significance level (usually 5%), we ac-
cept the model. If the estimated probability is below the significance level, we reject
the model and conclude that it is not correct.

Christoffersen’s Markov test

Christoffersen’s Markov test checks whether violations are independently distributed
over time. The test can be defined by:

H0: The violations are independently distributed over time.
Ha: The violations are not independently distributed over time.

Under the null hypothesis and the test statistic is:

Christoffersen = 2ln
{(1− π01)n00πn01

01 (1− π11)n10πn11
11

αx(1− α)n−x
}

= 2ln
[

(1− π01)n00πn01
01 (1− π11)n10πn11

11

]
− 2ln

[
αx(1− α)n−x

]
∼ χ2(1), as n→ ∞

Here nij is the number of times there is a transition from i to j in a sequence of
zeros and ones corresponding to non-violations and violations, i.e. i, j = 0, 1. The
corresponding probabilities are πij = nij/

∑
j nij .

Christoffersen’s Markov test considers only the dependence from one day to the next,
i.e. we assume a Markov property. This is a weakness of this test.
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8 Use of DCC-GARCH to Real
Data

In this example we will try to fit DCC-GARCH to a three-dimensional data set consisting
of European, American and Japanese stocks assuming three different error distributions;
multivariate Gaussian, Student’s t and skew Student’s t. The data consists of 4062 time
points.

K. Aas, I. H. Haff and X. K. Dimakos at the Norwegian Computing Center have previously
used a CCC-GARCH model to fit these stocks [15]. As discussed in Chapter 3, CCC-
GARCH is a simple version of the DCC-GARCH, where the conditional correlation matrix
Rt is assumed constant, i.e. Rt = R. It is interesting to see whether the more general
DCC-GARCH model is a significantly better model for these data. Not all tests have been
done with the CCC-GARCH model, we only have results for the Kupiec test. To model
the geometric returns, rt = logY t− logY t−1, where Y t is the vector of index values at
time t, K. Aas et al. [15] proposed the model:

rt = c+Krt−1 + at

where c = (ceur, cusa, cjpy), E[at] = 0 and Cov[at] = Ht. They modelled Ht assuming the
CCC-GARCH model.

To ensure that at is the same in the CCC-GARCH and the DCC-GARCH models, we will
in this example use the same c andK as in [15], but model at with DCC-GARCH instead
of CCC-GARCH. The elements in the diagonal matrix Dt are modelled with a univariate
GARCH(1,1) model.

The K-matrix is on the form:

K =


0 deur 0
0 0 0
ejpy djpy 0


From the K-matrix we see that the European return depends on the American return the
previous day, and the Japanese return depends on both the European and the American
returns the previous day. In this way the Japanese returns also depends indirectly on the
American return two days earlier. Because of the time zones, the US market is the latest
to close within the day. This explains why it affects other markets the next calendar day.
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8.1 Data summary statistics

The three series of at are shown in Figure 1. We see that all the three series have volatility
clustering, i.e. periods with high volatility and periods with low volatility, which indicates
that a GARCH model can be used to fit the data.
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Figure 1. American, European and Japanese at series of the period January 1, 1987 to May 28, 2002.
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Figure 2 shows the autocorrelation function of at and Figure 3 shows the autocorrelation
function of a2

t . If at is serially uncorrelated, 5% of the lags in the acf-plot in Figure 2
is expected to fall outside the limits (the blue dotted lines). With 100 lags only 5 lags
are expected to fall outside. In Figure 2 we see that more than 5 lags fall outside for all
the series, but the lags that fall outside does not make a pattern, i.e it is random which
lag that fall outside, and most of the lags that fall outside are just barely outside the
limits. Hence we can conclude that at is approximately uncorrelated. But the lags that
fall outside the limits in the acf of a2

t in Figure 3 do make a pattern. We see that the first
lags are greatest, and then the acf decreases. Because the number of lags that fall outside
is large and the lags that fall outside make a pattern, a2

t is not uncorrelated. If at is serially
independent, a2

t should be uncorrelated, but it is not, which means that at is dependent.
Hence a GARCH model is a good choice of modelling at, because at is uncorrelated, but
dependent.
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Figure 2. The acf-plots for the American, European and Japanese at series.
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Figure 3. The acf-plots for the American, European and Japanese a2
t series.

The excess kurtosis of the European, American and Japanese at series are 8.15, 52.2 and
5.30 respectively. Since all excess kurtosis are greater than 0, the distribution of at has
heavy tails, which is a requirement for the GARCH models as described in Section 2.3.2.
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8.2 Parameter estimation

Starting values for the parameters are chosen by calculating the likelihood by different
combinations of values of parameters.

Starting value for the matrix Qt is set to Q0 = Q.

The K-matrix used is:

K =


0 0.362 0
0 0 0

0.178 0.323 0


and c = (ceur, cusa, cjpy) = (0.000122, 0.000316,−0.0000260).

8.2.1 Gaussian distributed errors

First we fit at assuming Gaussian distributed errors, zt. When zt ∼ N(0,I), at ∼ N(0,Ht).

The estimated parameters from step one are given in Table 1.

Table 1. Parameters from step 1 when assuming Gaussian distributed errors.

α0 α1 β1

Europe 2.28e-06 0.116 0.854
USA 1.39e-06 0.091 0.903
Japan 3.99e-06 0.117 0.863

We see that α0 is small for all the assets. α1 and β1 are about the same values for the
three different assets.

The estimated parameters from step two are a = 0.0115 and b = 0.948.

8.2.2 Student’s t-distributed errors

Since we, as described in Section 5.2.1, assume Gaussian distributed errors in step one, the
estimated parameters in this step are exactly the same as the parameters given in Table
1.

The estimated parameters from step two are a = 0.00716, b = 0.963 and ν = 6.75. The
estimated parameters a and b are close to the parameters estimated with the Gaussian
distribution for the errors. The parameter b is a bit larger, and a a bit smaller.
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8.2.3 Skew Student’s t-distributed errors

Since we, as described in Section 5.2.1, assume Gaussian distributed errors in step one, the
estimated parameters in this step are exactly the same as the parameters given in Table
1.

The estimated parameters from step two are a = 0.00867, b = 0.677, ν = 6.68 and
ς = [−0.604,−0.532,−0.0169].

By inserting ν and ς into (38) we compute the dispersion matrix Ω:

Ω =


0.805 0.092 0.003
0.092 0.781 0.003
0.003 0.003 0.701


We see that the elements on the diagonal in the Ω-matrix is close to 1, and small on the
off-diagonal.

The skewness vector δ = [−0.542,−0.470,−0.0142] is obtained by putting ς and D calcu-
lated from Ω into (37).

Since the skewness vector is not equal to the 0-vector, the distribution of the returns is
not symmetric.

Finally, inserting ν, ς and Ω in (39), we get the location vector ξ = [0.385, 0.339, 0.0108] .
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8.3 Forecasting

When forecasting the covariance matrix, Ht+k, k steps ahead, the forecasts of Dt+k and
Rt+k can be done separately, as described in Section 6.1. First we will consider the two
different methods of forecasting.

8.3.1 Difference between Method 1 and Method 2 of forecasting

As described in Section 6.1, the correlation matrix Rt+k may be forcasted using two
different methods. We will consider both methods.

A DCC-GARCH model with Gaussian distributed errors, zt, is used to fit the whole data
set, t = 1, ..., 4062. Forecasts of the off-diagonal of R4062+k, k = 1, ..., 365, is shown in
Figure 4 for both Method 1 (black line) and Method 2 (red line). The blue line is the
unconditional correlation matrix, R. The numbers 1, 2 and 3 stands for Europe, USA

R4065+k[1,2]

Time step k

C
or

re
la

tio
n

0 50 100 150 200 250

0.
39

0.
41

0.
43

R4065+k[1,3]

Time step k

C
or

re
la

tio
n

0 50 100 150 200 250

0.
18

0.
22

0.
26

R4065+k[2,3]

Time step k

C
or

re
la

tio
n

0 50 100 150 200 250

0.
05

0.
10

0.
15

Figure 4. 365 forecasts of the Gaussian model, both Method 1 and Method 2. Black: Method 1, Red:
Method 2.
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and Japan, respectively. For example R4062+k[1, 2] is the correlation between Europe and
USA. The diagonal of Rt+k is by definition 1 for both methods.

If we look close at Figure 4, we see that Method 2 (red line) is a bit closer to the uncondi-
tional correlation (blue line) than Method 1 (black line), but the difference is very small.
In this example we see that the forecasts need approximately 80 time steps to converge to
the unconditional correlation for both methods.

There are no big difference in the plots of the forecasts of the DCC-GARCH with Gaussian
and Student’s t-distributed errors, hence the plots of forecasts when we assume Student’s
t-distributed errors is not shown. This is because the estimated value of a and b are quite
similar.

The forecasts of R4062+k, k = 1, ..., 365, of the DCC-GARCH with skew Students’s t-
distributed errors is shown in Figure 5. Comparing these forecasts with the forecasts made
for the Gaussian assumption in Figure 4, we see that the forecasts of the skew Student’s
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Figure 5. 365 forecasts of the skew Student’s t model, both Method 1 and Method 2. Black: Method
1, Red: Method 2.
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t-distributed errors converge faster to the unconditional value of R4062+k. It only need
approximately 15 time points to converge. This is because the estimated value of b is
smaller for the DCC-GARCH with skew Student’s t-distributed errors than for the model
with Gaussian distributed errors. As mentioned in Section 6.1, Rt+k decay with ratio
(a+ b).
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8.3.2 Forecasts with Method 2

The forecasts of Ht+k is calculated as explained in Section 6.1. When forecasting the
covariance matrix, Ht+k, k step ahead, the forecasts of Dt+k and Rt+k may be done
separately. We choose Method 2 when forecasting because Method 2 has shown to have
better bias properties for almost all correlations as mentioned in Section 6.1.2.

A DCC-GARCH model with assumption of Gaussian, Student’s t- and skew Student’s
t-distributed error, zt, is used to fit the whole data set, t = 1, ..., 4062.

Forecasts of D4062+k

Forecast of D4062+k, k = 1, ..., 365, with Dt, t = 1, ..., 4062, fit to the data is shown in
Figure 6. The black lines are Dt, t = 1, ..., 4062, fit to the data and the red lines are the
forecastsD4062+k, k = 1, ..., 365. The green, horizontal lines are the unconditional variance
calculated from (6) with parameters given in 8.2.1. Dt+k is the same for all the
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Figure 6. Plot of Dt from the data with 365 forecasts. Gaussian distributed error
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three distributions since we assume Gaussian distributed errors.

The forecasts for USA use longer time to converge to the unconditional variance than
for Europe and Japan, since the estimated values of α1 + β1 in Section 8.2.1 is larger for
USA. As mentioned in Section 6.1, the memory of Dt+k decline with exponential rate
(α1 + β1). Further, the estimated values of α1 + β1 is larger for the Japanese data than
for the European data, hence the European data converges fastest to the unconditional
variance.

Forecasts of R4062+k

Forecasts of R4062+k, k = 1, ..., 365, with Rt, t = 1, ..., 4062, fit to the data is shown in
Figure 7. The diagonal of R4062+k, k = 1, ..., 365 is not shown, since it is 1 by definition.
The black, red and light blue lines are Rt, t = 1, ..., 4062 fit to the data with the Gaussian,
Student’s t- and skew Student’s t-distributed errors, respectively. However, the difference
between Rt, t = 1, ..., 4062 fit to the data for the three distributions are are not easy to
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Figure 7. Plot of Rt from the data with 365 forecasts.

Multivariate DCC-GARCH Model -With Various Error Distributions 55



distinguish in this figure. The green, horizontal lines are the unconditional correlations. The
grey, dark red and blue lines are the forecasts R4062+k, k = 1, ..., 365 assuming Gaussian,
Student’s t- and skew Student’s t-distribution, respectively. It is also hard to distinguish
the forecasts for the three distributions in this figure. But we see that all forecasts reach
the unconditional correlations (green lines) when k →∞.

To more easily distinguish the forecasts, the forecasts R4062+k, k = 1, ..., 100, is shown in
Figure 8 with the last 30 points of Rt fit to the data. In all the three plots the model with
skew Student’s t-distributed errors (blue lines) reach the unconditional correlations (green
lines) faster than the model with Gaussian (grey lines) and Student’s t-distributed errors
(dark red lines), and the model with Student’s t-distributed errors (dark red lines) reach
the unconditional correlations (green lines) faster than the model with Gaussian
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Figure 8. Plot of Rt from the last 30 datapoints with 100 forecasts.
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distributed errors (grey lines). As mentioned earlier, this is caused by the difference in the
estimated values of a and b.

Forecasts of H4062+k

The forecasts of the diagonal ofHt+k are the same for the model with Gaussian, Student’s
t- and skew Student’s t-distributed errors.

Since Ht+k = Dt+kRt+kDt+k, the diagonal elements of Ht+k are:

Ht+k[i, i] = Dt+k[i, i]2Rt+k[i, i] = hi,t+k

Since Rt+k is 1 on the diagonal, the diagonal elements of Ht+k depends only of the
elements of Dt+k. Since the elements of Dt+k is the same for the model with Gaussian,
Student’s t and skew Student’s t-distributed errors, the diagonal elements of Ht+k is the
same as Dt+k and shown in Figure 6.

Ht[1,2]

Time

C
ov

ar
ia

nc
e

0 1000 2000 3000 4000

0.
00

00
0.

00
10

Ht[1,3]

Time

C
ov

ar
ia

nc
e

0 1000 2000 3000 40000.
00

00
0

0.
00

02
0

Ht[2,3]

Time

C
ov

ar
ia

nc
e

0 1000 2000 3000 4000

0.
00

00
0

0.
00

01
5

Figure 9. Plot of Ht from the data with 365 forecasts.
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Forecasts of H4062+k, k = 1, ..., 365, with Ht, t = 1, ..., 4062, fit to the data is shown in
Figure 9. In Figure 9 the black, red and light blue lines are Ht, t = 1, ..., 4062 fit to the
data with Gaussian, Student’s t- and skew Student’s t-distributed errors, respectively. The
grey, dark red and blue lines are the forecasts H4062+k, k = 1, ..., 365 assuming Gaussian,
Student’s t- and skew Student’s t-distribution, respectively. The green, horizontal lines
are the unconditional covariance, H = D R D, where D is the unconditional standard
deviation, and R is described in Section 6.1.2. It is hard to distinguish the forecasts for the
three distributions in this figure. However, we see that all forecasts reach the unconditional
covariances (green lines) when k →∞.

To more easily distinguish the forecasts, H4062+k, k = 1, ..., 100, is shown in Figure 10
with the last 30 points of Ht fit to the data. The forecasts use many time points to reach
the unconditional covariances (green lines), even 100 time points is not enough.
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Figure 10. Plot of Ht from the last 30 datapoints with 100 forecasts.
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8.4 Goodness of fit

We test the goodness of fit using the methods described in Chapter 7.

8.4.1 Goodness of marginal fits

In this section we will check whether the errors, zt, for each of the three time series;
Europe, USA and Japan is iid or not. The errors is jointly calculated from zt = H

−1/2
t at.

1. Plot of the standardized errors, zt
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Figure 11. Plot of the errors

The standardized errors, zt, are shown in Figure 11 for the three time series, Europe,
USA and Japan and the three different distributions; Gaussian, Student’s t and skew
Student’s t. There are no distinct difference between the errors of the three different
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error distributions. The plot of the European and American errors have some large

negative values, and do not quite look like white noise. It seems like the models have
not explained all the variation in the data, especially in the negative direction for these
two series. The Japanese errors on the other hand, look random and iid distributed.

2. The sample autocorrelation function

The autocorrelation function for the errors, zt, of the Gaussian, Student’s t- and skew
Student’s t-distribution is computed for 100 lags. It is expected that 5 acf-values
should fall outside the 95% confidence-limits. The number of acf-values that falls out-
side is binomial distributed with number of trials equal to 100 and probability 5%.
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Figure 12. Acf of the European errors

The acf-plot for the European errors is shown in Figure 12. The acf-plot for the three
different distributions; Gaussian, Student’s t and skew Student’s t looks similar, and
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there are only a small difference. For the Gaussian and the Student’s t-distribution,
2 of the acf-values fall outside the limits, i.e. the blue dotted line. For the skew

Student’s t-distibution 3 of the acf-values fall outside. The acf-values that fall outside
the limits are the same for the different distributions. The acf-value that in addition
falls outside for the skew Student’s t-distribution is just barely outside, and barely
inside for the two other distributions. The p-values is 0.25, 0.25, 0.49 for Gaussian,
Student’s t- and skew Student’s t-distribution, respectively. Hence we can accept that
the European errors are random from this test at level 5%.

USA

The acf-plot for the American errors, zt, is shown in Figure 13. 9 of the acf-values fall
outside the limits for all the three distributions. The acf-values that fall outside the
limits are the same for the different distributions. The p-value of 9 acf-values to fall
outside is 0.10. Hence we can accept that the American errors are random from this
test at level 5%.
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Figure 13. Acf of the American errors
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Japan

The acf-plot for the Japanese errors, zt, is shown in Figure 14. 3 of the acf-values
fall outside the limits for the Gaussian and the Student’s t-distribution. For the skew
Student’s t-distibution 4 of the acf-values fall outside. The acf-values that fall outside
the limits are the same for the different distributions. The acf-value that in addition
falls outside for the skew Student’s t-distribution is just barely outside, and barely
inside for the two other distributions. The p-values is 0.49, 0.49, 0.82 for Gaussian,
Student’s t- and skew Student’s t-distribution, respectively. Hence we can accept that
the Japanese errors are random from this test at level 5%.
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Figure 14. Acf of the Japanese errors

From this test, the skew Student’s t-distributions performes a bit better than the
Gaussian and Student’s t-distribution. There was no different between the Gaussian
and the Student’s t-distribution. The p-values for the Japanese errors is highest, and
indicates that the model is better fit for the Japanese data than the European and
American data for all the three distributions. The results from the acf-plots indicates
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that the model is less well fit for the American data.

3. Ljung-Box test

The results of the Ljung-Box test is shown in Figure 15. The red line indicates the
5% level. There is no visible difference between the three distributions in this test.

This test accept the hypothesis that the errors, zt, are uncorrelated for some of the
lags for the European series. Hence there is no clear conclusion whether the European
errors are uncorrelated or not from this test. For the American series on the other
hand, this test concludes that the errors of the American series is not uncorrelated,
since the hypothesis of uncorrelateness is rejected for all lags tested. The hypothesis
of uncorrelateness is accepted for almost all the lags for the Japanese errors. Here the
errors of the Japanese data seems to be uncorrelated.
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Figure 15. p-values from the Ljung-Box statistics
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4. Turning point test

The expected number of turning points, T , for an iid sequence of size n = 4061 is:

E[T ] = 2(n− 2)/3 = 2(4061− 2) = 2706

and the variance is:

Var[T ] = (16n− 29)/90 = (16 · 4061− 29)/90 = 721.6

Since n is large, T will be approximately N(E[T ], Var[T ]). A 95% confidence interval
for T is [2653, 2759].

Europe

For the European errors, zt, TEur is 2697, 2691 and 2701 for the Gaussian, Student’s t-
and skew Student’s t-distribution respectively. TEur is inside both the 95% confidence
interval for T for all the three distributions. Hence we accept the hypothesis that the
European errors, zt, is iid for all three distributions.

USA

For the American residulas, zt, TUSA is 2689, 2687 and 2683 for the Gaussian, Stu-
dent’s t- and skew Student’s t-distribution respectively. TUSA is inside the 95% con-
fidence interval for T for all the three distributions. Hence we accept the hypothesis
that the American errors, zt, is iid for all three distributions.

Japan

For the Japanese errors, zt, TJap is 2718 for all the three distributions. TJap is inside
the 95% confidence interval for T . Hence we accept the hypothesis that the Japanese
errors, zt, is iid for all three distributions.

5. Difference-sign test

The expected number of times when the differenced series zi − zi−1 > 0, S, of size
n = 4060 is iid is:

E[S] = (n− 1)/2 = (4060− 1)/2 = 2029.5

and the variance is:

Var[S] = (n+ 1)/12 = (4060 + 1)/12 = 338.4
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Since n is large, S will be approximately N(E[S], Var[S]). A 95% confidence interval
for S is [1994, 2066].

Europe

For the European errors, zt, SEur is 2018, 2018 and 2017 for the Gaussian, Student’s t-
and skew Student’s t-distribution respectively. SEur is inside both the 95% confidence
interval for S for all the three distributions. Hence we accept the hypothesis that the
European errors, zt, is iid for all three distributions.

USA

For the American errors, zt, TUSA is 1974, 1974 and 1967 for the Gaussian, Student’s t-
and skew Student’s t-distribution respectively. SUSA is not inside the 95% confidence
interval for S for any of the three distributions. Hence this test concludes that the
American errors, zt, is not iid. This test indicates that our models have not explained
all the dependence in the data.

Japan

For the Japanese errors, zt, TJap is 2010, 2011 and 2010 for the Gaussian, Student’s
t- and skew Student’s t-distribution respectively. SJap is inside the 95% confidence
interval for S for all the three distributions. Hence we accept the hypothesis that the
Japanese errors, zt, is iid for all three distributions.
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6. Q-Q plot

Europe

The upper panel of Figure 16 shows that the European errors, zt, are more heavy-
tailed than the Gaussian distribution in both tails. The left tail is more heavy than
the right tail, so the European data seems to be skew.

The middle panel of Figure 16 shows that the Student’s t-distribution gives a bet-
ter fit for the European errors. However, the Student’s t-distribution also seems to
underestimate the left tail. The right tail is now slightly overestimated. Because the
Student’s t is symmetric it can not take into account different tails.

Finally, the lower panel in Figure 16 shows that the skew Student’s t-distribution
gives the best fit to the errors, although even this distribution underestimates the left
tail. The right tail is here good explained.
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Figure 16. QQ-plot of the European errors, zt.
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USA

The upper panel of Figure 17 also shows like the upper panel of Figure 16 that
the American errors, zt, are more heavy-tailed than the Gaussian distribution in both
tails. The left tail is more heavy than the right, which indicates that also the American
data is skew.

The middle panel of Figure 17 shows that the Student’s t-distribution gives a bet-
ter fit for the American errors. However, the Student’s t-distribution also seems to
underestimate the left tail, and the right tail is slightly overestimated.

The lower panel of Figure 17 shows that the skew Student’s t-distribution gives the
best fit for the American data. The right tail is here good explained. However, the
left tail is still underestimated.
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Figure 17. QQ-plot of the American errors, zt.
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Japan

The upper panel of Figure 18 also shows that for the Japanese errors, zt, are more
heavy-tailed than the Gaussian distribution in both tails. It is not clear which tail is
the most heaviest from this plot, as seen for the upper panel in Figures 16 and 17.

The middle panel of Figure 18 is similar to the middle panels of Figures 16 and 17,
it shows that the Student’s t-distribution gives a better fit for the Japanese errors.
However, the Student’s t-distribution also seems to underestimate the left tail, and
the right tail is slightly overestimated.

The lower panel of Figure 17 shows that the skew Student’s t-distribution gives the
best fit for the Japanese data in both tails. Both tails seems to be a bit underestimated,
however, the points do not deviate much from the red line. The DCC-GARCH model
with skew Student’s t-distributed errors seems to better fit the Japanese data, than
the European and American data.
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Figure 18. QQ-plot of the Japanese errors, zt.
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8.4.2 Goodness of multivariate fit

The tests in Section 7.2 will be considered. In this section we will check the errors, zt
jointly.

1. Baringhaus-Franz multivariate test

The test statistic is used to test if the errors, zt, are Gaussian, Student’s t- or skew
Student’s t-distributed with the estimation parameters found in Section 8.2. The di-
mension of zt is 4061× 3.

Gaussian distributed errors

First we will test whether zt is from the multivariate Gaussian distribution. We test
zt against a data set of simulated multivariate standardized Gaussian variates of the
same dimension as zt.

With 1000 bootstrap replicates, the critical point is estimated to be 1.98. The ob-
served statistic is T = 9.15, which gives a p-value of 0.00. Hence the hypothesis that
zt is distributed as multivariate standardized Gaussian is rejected.

Student’s t-distributed errors

We then test whether zt is from the multivariate Student’s t-distribution. We test zt
against a multivariate data set of simulated standardized Student’s t-variates of the
same dimension as zt with the ν-parameter estmated in Section 8.2.2.

With 1000 bootstrap replicates, the critical point is estimated to be 2.00. The ob-
served statistic is T = 7.3, which gives a p-value of 0.00. Hence the hypothesis that
zt is distributed as multivariate standardized Student’s t is rejected.

Skew Student’s t-distributed errors

Finally, we test whether zt is from the multivariate skew Student’s t-distribution.
We test zt against a data set of simulated multivariate standardized skew Student’s
t-variates of the same dimension as zt with the parameters estimeated in Section
8.2.3. How to simulate from a multivariate skew Student’s t-distribution is described
in Azzalini [4] on page 15.

With 1000 bootstrap replicates the critical point is estimated to be 1.98. The observed
statistic is T = 2.30, which gives a p-value of 0.012. At the 5% level the hypothesis
that zt is distributed as multivariate standardized Student’s t is rejected, but at the
1% level the hypothesis is accepted. A great difference between real data and simu-
lated data is that with real data it is often hard to obtain a p-value larger than 1%.
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Obtaining a p-value larger than 1% is actually not that bad.

2. Backtesting of VaR; Cupiec test and Christoffersen’s Markov test

This will be discussed in Section 8.5.

8.5 1-day ahead Value-at-Risk

In this section VaR is computed at different confidence levels as described in Section 6.2.
The confidence levels used are q ∈ {0.005,0.01,0.05,0.95,0.99,0.995}.

If the observed value of pt fall outside the confidence interval a violation is said to occur,
i.e. if VaRqt for q ∈ {0.005,0.01,0.05} is greater than the observed value of pt this day, or
VaRqt for q ∈ {0.95,0.99,0.995} is less than the observed value of pt this day, we have a
violation.

To measure how well the VaR-forecasts are, we extract six training and test sets for six
corresponding experiments, as shown in Table 2. Based on each training set, a model is
estimated. Then this model is used to forecast 1-day ahead VaR at different confidence
levels for each day in the test set.

Table 2. Training and test sets

Experiment Training set Test set
no First day Last day First day Last day
1 1 1000 1001 1500
2 500 1500 1501 365
3 1000 365 2001 3650
4 1500 3650 3651 3000
5 365 3000 3001 3500
6 3650 3500 3501 4000

The test procedure is as follows:

• Estimate the parameters of the DCC-GARCH model based on the training set.

• For each day t in the test set:

1. Compute the 1-day ahead forecast, Ht+1, given information up to time t.

2. Compute the observed portfolio value of pt = wTµt. We follow Aas et al. [15]
and choose µt = (c +Krt−1) where rt−1 is the observed return at time point
t− 1.

3. Calculate the expected value of pt; E[pt], and the variance of pt; Var[pt]. Then
compute the VARqt for the portfolio return pt at confidence level q at time t.
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4. Calculate the number of violations at each quantile level.

All six experiments were run using the different error distributions; multivariate Gaussian,
Student’s t and skew Student’s t.

For each training set the K-matrix and c is given in Table 3.

Table 3. K-matrix and c for the training sets.

Experiment c1 c2 c3 deur djpy ejpy
1 -0.000041 0.000221 -0.000036 0.390 0.388 0.162
2 -0.000030 0.000442 -0.000705 0.395 0.253 0.109
3 0.000275 0.000452 -0.000295 0.350 0.325 0.180
4 0.000309 0.000447 0.000003 0.368 0.228 0.205
5 0.000442 0.000909 -0.000524 0.394 0.298 0.127
6 0.000577 0.000824 -0.000403 0.379 0.310 0.145

Gaussian distributed errors

The estimated parameters when assuming a multivariate Gaussian error distribution for
step two of the estimation procedure are given in Table 4, for the six different experiments.
The estimated values of b differ a lot for the different experiments. The value of a does
not differ that much for the different experiments.

Table 4. Estimated parameters for the DCC-GARCH when the errors are multivariate standardized
Gaussian distributed.

Experiment a b
1 0.0224 0.923
2 0.0407 0.482
3 0.0333 0.229
4 0.0155 2.88e-06
5 0.0037 0.987
6 0.0046 0.954

If we consider experiment 4, the parameter b is estimated to be approximately 0. The
parameter a is also close to 0. Consider the case when both a → 0 and b → 0. Then we
get the following expression for Qt:

Qt = (1− a− b)Q+ aεt−1ε
T
t−1 + bQt−1 ≈ Q (46)
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We see that in this case, Qt will be approximately constant, and equal to Q. In experiment
4 we nearly have this case. Figure 19 shows Qt for the whole dataset. Qt for experiment
4 is between the blue lines, t = 1500, ..., 3650. We see that in this period Qt is close to
being constant, there are no big peaks. Hence it seems logical for b to be estimated as
approximately 0 for this period.
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Figure 19. Plot of Qt for the whole dataset when zt is Gaussian distributed. Qt for experiment 4 is
between the blue lines.

Student’s t-distributed errors

The estimated parameters when assuming a multivariate Student’s t error distribution for
step two of the estimation procedure are given in Table 5, for the six different experiments.
The estimated values of a and b are close to the ones for the Gaussian distribution in Table
4. There are however some differences in the values of a in experiments 1 and 4. We see
that a is estimated even smaller for the Student’s t-distribution than for the Gaussian
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distribution. Moreover, there is also a difference in b in experiment 3.

Table 5. Estimated parameters for the DCC-GARCH when the errors are multivariate standardized
Student’s t-distributed.

Experiment a b ν

1 0.0061 0.951 5.53
2 0.0478 0.407 5.50
3 0.0374 0.486 6.24
4 0.0033 1.19e-04 7.71
5 0.0034 0.989 8.37
6 0.0066 0.947 8.87

Skew Student’s t-distributed errors

The estimated parameters when assuming a multivariate skew Student’s t error distribu-
tion for step two of the estimation procedure are given in Table 6, for the six different
experiments. The estimated values of ν is close to those for the Student’s t-distribution in
Table 5. There are two big differences between Tables 5 and 6. In experiment 4, b is close
to 0 for the Student’s t-distribution, but close to 1 for the skew Student’s t-distribution.
If we look at the expression of Qt, we get with a approximately equal to 0:

Qt = (1− a− b)Q+ aεt−1ε
T
t−1 + bQt−1

≈ (1− b)Q+ bQt−1

= (1− b)Q+ b(1− b)Q+ b2Qt−2

= ...

=
t−1∑
i=0

bi(1− b)Q+ btQ0

(47)

When b is close to 1, Qt will be approximately equal to Q0 = Q, because the first term,
t−1∑
i=0

bi(1− b)Q, will be approximately 0.

Hence we see that even in this case, Qt will be approximately equal to Q, as for the case
when both a→ 0 and b→ 0 in (46). Hence when a→ 0, there is no big difference between
b close to 1 or 0.

In experiment 1 there is also a big difference in b. Qt corresponding to the Student’s
t-distribution and the skew Student’s t in experiment 1 is shown in Figures 20 and 21,
respectively. Qt of the skew Student’s t-distribution seems to be closest to the correspond-
ing period at time 1 to 1000 in figure 19 of Qt of the whole dataset. The peaks in Figure
21 seems to be closer to the peaks in Figure 19. E.g. in both cases; Student’s t and skew
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Student’s t, there is a peak around time 200 in four of the plots. The peak is larger for
the skew Student’s t-distribution. In figure 19 we see that there is a big peak for Qt also
around time 200, at around same values as for Qt for the skew Student’s t-distribution.

Table 6. Estimated parameters for the DCC-GARCH when the errors are skew multivariate standardized
Student’s t-distributed. The Ω-matrix can be computed from the other parameters using (38).

Experiment a b ν δ1 δ2 δ3 ξ1 ξ2 ξ3

1 0.0197 1.45e-03 5.64 -0.794 -0.770 -0.129 0.501 0.488 0.0910
2 0.0140 0.427 5.60 -0.415 -0.283 -0.110 0.298 0.207 0.0825
3 0.0121 0.558 6.28 -0.266 0.130 0.152 0.198 -0.098 -0.114
4 0.000533 0.9995 7.77 -0.129 -0.456 0.301 0.0995 0.335 -0.228
5 0.00273 0.997 8.28 0.0836 -0.649 0.0273 -0.0650 0.460 -0.0213
6 0.00501 0.957 8.82 -0.353 -0.600 -0.0448 0.267 0.431 0.0350
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Figure 20. Plot of Qt for experiment 1 when zt is Student’s t-distributed.
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Figure 21. Plot of Qt for experiment 1 when zt is skew Student’s t-distributed.

8.5.1 Number of violations

The number of violations is counted for each of the error distributions; Gaussian, Student’s
t and skew Student’s t. Both Method 1 and Method 2 of forecasting provide the same result.

In addition to the number of violations for the DCC-GARCH model, the number of vio-
lations for the CCC-GARCH model is also given here.
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Gaussian distribution

The number of violations of VaR of DCC-GARCH and CCC-GARCH for multivariate
Gaussian distributed errors are given in Table 7.

Table 7. Number of violations of VaR of DCC-GARCH and CCC-GARCH for multivariate Gaussian
distributed errors.

Multivariate Gaussian

CCC
Experiment
no 0.5% 1% 5% 99.5% 99% 95%

1 7 11 25 4 5 21
2 2 5 8 4 7 15
3 2 2 16 1 2 13
4 10 12 28 9 12 37
5 6 7 27 1 2 24
6 6 14 34 3 6 21
Expected number 2.5 5 25 2.5 5 25

Full period 33 51 138 22 34 131
Expected number 15 30 150 15 30 150

DCC
Experiment
no 0.5% 1% 5% 99.5% 99% 95%

1 4 8 20 4 4 16
2 4 7 10 6 8 18
3 2 8 19 2 4 17
4 9 12 26 7 11 33
5 6 9 33 2 3 24
6 6 10 31 1 6 17
Expected number 2.5 5 25 2.5 5 25

Full period 31 54 139 22 36 125
Expected number 15 30 150 15 30 150
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Student’s t-distribution

The number of violations of VaR of DCC-GARCH and CCC-GARCH for multivariate
Student’s t-distributed errors are given in Table 8.

Table 8. Number of violations of VaR of DCC-GARCH and CCC-GARCH for multivariate Student’s
t-distributed errors.

Multivariate Student’s t

CCC
Experiment
no 0.5% 1% 5% 99.5% 99% 95%

1 5 9 27 3 4 21
2 0 2 8 4 4 16
3 2 2 17 1 1 13
4 6 10 30 4 10 38
5 4 6 29 1 1 26
6 3 11 36 0 4 22
Expected number 2.5 5 25 2.5 5 25

Full period 20 40 147 13 24 136
Expected number 15 30 150 15 30 150

DCC
Experiment
no 0.5% 1% 5% 99.5% 99% 95%

1 1 4 22 1 4 20
2 0 4 11 4 5 22
3 2 2 23 1 2 20
4 4 10 28 5 7 34
5 4 7 34 1 3 26
6 2 7 32 0 1 18
Expected number 2.5 5 25 2.5 5 25

Full period 13 34 150 12 22 140
Expected number 15 30 150 15 30 150
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Skew Student’s t-distribution

The number of violations of VaR of DCC-GARCH and CCC-GARCH for multivariate
skew Student’s t-distributed errors are given in Table 9.

Table 9. Number of violations of VaR of DCC-GARCH and CCC-GARCH for multivariate skew Student’s
t-distributed errors.

Multivariate skew Student’s t

CCC
Experiment
no 0.5% 1% 5% 99.5% 99% 95%

1 5 10 27 3 4 21
2 0 2 8 4 4 16
3 2 2 17 1 1 13
4 6 10 30 4 10 38
5 4 6 27 1 1 26
6 3 9 35 0 4 22
Expected number 2.5 5 25 2.5 5 25

Full period 20 39 144 13 24 136
Expected number 15 30 150 15 30 150

DCC
Experiment
no 0.5% 1% 5% 99.5% 99% 95%

1 1 3 20 3 4 21
2 0 3 10 5 8 25
3 2 2 19 1 4 22
4 4 7 24 5 10 39
5 2 4 32 1 3 32
6 1 2 31 1 6 24
Expected number 2.5 5 25 2.5 5 25

Full period 10 21 136 16 35 163
Expected number 15 30 150 15 30 150
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8.5.2 Kupiec test

The p-values for the Kupiec test described in Section 7.2 is calculated, for each experi-
ment and quantile for each of the error distributions; multivariate Gaussian, Student’s t
and skew Student’s t.

Gaussian distribution

The results for the multivariate Gaussian distributed errors are given in Table 10 for both
CCC-GARCH and DCC-GARCH.

Table 10. p-values for Kupiec test for DCC-GARCH and CCC-GARCH with multivariate Gaussian
distributed errors.

Multivariate Gaussian

CCC
Experiment
no 0.5% 1% 5% 99.5% 99% 95%

1 0.02 0.02 1.00 0.38 1.00 0.40
2 0.74 1.00 0.00 0.38 0.40 0.03
3 0.74 0.13 0.05 0.28 0.13 0.01
4 0.00 0.01 0.55 0.00 0.01 0.02
5 0.06 0.40 0.69 0.28 0.13 0.84
6 0.06 0.00 0.08 0.76 0.66 0.40

Full period 0.00 0.00 0.31 0.09 0.47 0.10

DCC
Experiment
no 0.5% 1% 5% 99.5% 99% 95%

1 0.38 0.21 0.29 0.38 0.64 0.05
2 0.38 0.40 0.00 0.06 0.21 0.13
3 0.74 0.21 0.20 0.74 0.64 0.08
4 0.00 0.01 0.84 0.02 0.02 0.12
5 0.06 0.11 0.12 0.74 0.33 0.84
6 0.06 0.05 0.23 0.28 0.66 0.08

Full period 0.00 0.00 0.35 0.09 0.29 0.03
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If we use a 5% level for Kupiec test, the null hypothesis is rejected 12 times for the
CCC-GARCH model and 7 times for the DCC-GARCH model as shown in Table 10.

Further, the null hypothesis is rejected 2 times for the full period for the CCC-GARCH
model and 3 times for the DCC-GARCH model.

Student’s t-distribution

The p-values for the Kupiec test for the Student’s t-distribution for both CCC-GARCH
and DCC-GARCH are given in Table 11.

Table 11. p-values for Kupiec test for DCC-GARCH and CCC-GARCH with multivariate Student’s
t-distributed errors.

Multivariate Student’s t

CCC
Experiment
no 0.5% 1% 5% 99.5% 99% 95%

1 0.16 0.11 0.69 0.76 0.64 0.40
2 0.03 0.13 0.00 0.38 0.64 0.05
3 0.74 0.13 0.08 0.28 0.03 0.01
4 0.06 0.05 0.32 0.38 0.05 0.01
5 0.38 0.66 0.42 0.28 0.03 0.84
6 0.76 0.02 0.03 0.03 0.64 0.53

Full period 0.22 0.08 0.80 0.60 0.25 0.23

DCC
Experiment
no 0.5% 1% 5% 99.5% 99% 95%

1 0.28 0.64 0.53 0.28 0.64 0.29
2 0.03 0.33 0.00 0.38 1.00 0.53
3 0.74 0.13 0.68 0.28 0.13 0.29
4 0.38 0.05 0.55 0.16 0.40 0.08
5 0.38 0.40 0.08 0.28 0.33 0.84
6 0.74 0.40 0.17 0.03 0.03 0.13

Full period 0.60 0.47 1.00 0.42 0.12 0.40
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If we use a 5% level for Kupiec test, the null hypothesis is rejected 12 times for the
CCC-GARCH model and 5 times for the DCC-GARCH model as shown in Table 11.

For the full period the null hypothesis is never rejected, either for the CCC-GARCH model
or the DCC-GARCH model.

Skew Student’s t-distribution

The p-values for the Kupiec test for the skew Student’s t-distribution for both CCC-
GARCH and DCC-GARCH are given in Table 12.

Table 12. p-values for Kupiec test for DCC-GARCH and CCC-GARCH with multivariate skew Student’s
t-distributed errors.

Multivariate skew Student’s t

CCC
Experiment
no 0.5% 1% 5% 99.5% 99% 95%

1 0.16 0.05 0.69 0.76 0.64 0.40
2 0.03 0.13 0.00 0.38 0.64 0.05
3 0.74 0.13 0.08 0.28 0.03 0.01
4 0.06 0.05 0.32 0.38 0.05 0.01
5 0.38 0.66 0.69 0.28 0.03 0.84
6 0.76 0.11 0.05 0.03 0.64 0.53

Full period 0.22 0.11 0.61 0.60 0.25 0.23

DCC
Experiment
no 0.5% 1% 5% 99.5% 99% 95%

1 0.28 0.33 0.29 0.76 0.64 0.40
2 0.03 0.33 0.00 0.16 0.21 1.00
3 0.74 0.13 0.20 0.28 0.64 0.53
4 0.38 0.40 0.84 0.16 0.05 0.01
5 0.74 0.64 0.17 0.28 0.33 0.17
6 0.28 0.13 0.23 0.28 0.66 0.84

Full period 0.17 0.08 0.23 0.80 0.37 0.28
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If we use a 5% level for Kupiec test, the null hypothesis is rejected 11 times for the
CCC-GARCH model and 4 times for the DCC-GARCH model as shown in Table 12.

Further, the null hypothesis for the full period is never rejected, either for the CCC-
GARCH model or the DCC-GARCH model.

For the CCC-GARCH model, the number of failures are 12, 12 and 11 for the Gaussian,
Student’s t- and skew Student’s t-distribution respectively. For the DCC-GARCH model
the number of failures are 7, 5 and 4 for the Gaussian, Student’s t- and skew Student’s
t-distribution, respectively. From this result the DCC-GARCH model performs better
than the CCC-GARCH model for all the distributions. Morever, the test might give an
indication that the DCC-GARCH model with skew Student’s t-distributed errors is best
fit to the data.

8.5.3 Christoffersen’s Markov test

For Christoffersen’s Markov test only the p-values for the full period is computed for
simplicity. These are shown in Table 13 for all the distributions. At 5% significance level,
the model with Gaussian distributed errors is rejected 3 times, and none for the Student’s
t- and skew Student’s t-distributed errors. Hence Christoffersen’s Markov test indicates
that Student’s t and skew Student’s t fit the data better than the Gaussian distribution.
The DCC-GARCH with skew Student’s t-distributed errors has greater p-values than the
model with Student’s t-distributed errors 2 out of 6 times, and Student’s t has greater
p-values than the DCC-GARCH with skew Student’s t-distributed errors 4 out of 6 times.
From this test the model with Student’s t-distributed errors seems to perform best, but
there is no clear indication.

Table 13. p-values for Christoffersen’s Markov test of DCC-GARCH.

DCC

Distribution 0.5% 1% 5% 99.5% 99% 95%

Multivariate Gaussian 0.00 0.00 0.25 0.07 0.15 0.03
Multivariate Student’s t 0.53 0.25 0.71 0.39 0.10 0.35
Multivariate skew Student’s t 0.16 0.07 0.15 0.62 0.20 0.18
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8.6 Conclusion

In all tests for marginal goodness of fit the DCC-GARCH with skew Student’s t-distributed
errors outperformed the DCC-GARCH with Gaussian and Student’s t-distributed errors.
For the Ljung-Box test, Turning point test and the Difference-sign test, there was no
significant difference between the models with Gaussian, Student’s t- and the skew Stu-
dent’s t-distributed errors. The acf-plot and Q-Q-plots, however indicate that the model
with skew Student’s t-distributed errors give a better fit to the data than the model with
Gaussian and Student’s t-distributed errors.

The marginal distribution of the European, American and Japanese series seemed to be
a bit different. For the Japanese data all the three models gave an appropriate fit, but
the model with skew Student’s t-distributed errors gave best fit. All tests accepted the
fitted models for the Japanese data. For the European data the test acf-plot, the Turning
point test and the Difference sign test indicated appropriate fit for all models, while the
Q-Q-plot and Ljung-Box test did not give clear indications. For the American data none
of the models gave a very good fit.

Concerning multivariate fit, both the Baringhaus-Franz multivariate test and the Kupiec
test favourized the model with skew Student’s t-distributed errors. This model was the
only one that got a p-value different from 0 for the Baringhaus-Franz multivariate test. The
model with skew Student’s t-distributed errors was accepted with a 1% significance level.
The results of the Christoffersen’s test did not give a clear indication what model best
fitted the data. However, the models with Student’s t- and skew Student’s t- distributed
errors performed much better than the model with a Gaussian error distribution.

Comparing the DCC-GARCH model with the CCC-GARCH model using the Kupiec test
showed that the DCC-GARCH model gave a better fit to the data.
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9 Concluding Remarks and Future
Work

In this thesis we have studied the DCC-GARCH model with Gaussian, Student’s t and
skew Student’s t-distributed errors. For a basic understanding of the GARCH model, the
univariate GARCH and multivariate GARCH models in general were discussed before the
DCC-GARCH model was considered.

The Maximum likelihood method is used to estimate the parameters. The estimation of
the correctly specified likelihood is difficult, and hence the DCC-model was designed to
allow for two stage estimation. Usually Gaussian distributed errors are assumed in the
first stage independent of the choice of the error distribution in the correctly specified
likelihood. In the second stage, the parameters a and b of the dynamic correlation matrix,
and the parameters of the error distribution, are estimated using the correctly specified
likelihood.

After the parameters of the DCC-model have been estimated, the forecast of the condi-
tional covariance matrix is obtained by forecasting the conditional variances and the con-
ditional correlation matrix separately. The forecasts of the conditional variances is done by
assuming Gaussian distributed errors. The forecast of the conditional correlation matrix
can not be directly calculated. In this thesis, two different methods of approximating this
matrix have been discussed.

An important issue is how to evaluate goodness of fit for the DCC-GARCH model. This
might be done by checking both the marginal and multivariate goodness of fit. One specific
approach considered is the backtesting of Value-at-Risk, this is used to measure risk of
loss of a portfolio of financial asset series.

After precenting the theory, DCC-GARCH models were fit to a portfolio consisting of
European, American and Japanese stocks assuming three different error distributions;
multivariate Gaussian, Student’s t and skew Student’s t. The European, American and
Japanese series seemed to have a bit different marginal distributions. The DCC-GARCH
model with skew Student’s t-distributed errors performed best. But even the DCC-GARCH
with skew Student’s t-distributed errors did explain all of the asymmetry in the asset series.
Hence even better models may be considered. Comparing the DCC-GARCH model with
the CCC-GARCH model using the Kupiec test showed that the first model gave a better
fit to the data.

There are several possible directions for future work. It might be better to use other
marginal models such as the EGARCH, QGARCH and GJR GARCH, that capture the
asymmetry in the conditional variances. If the univariate GARCH models are more correct,
the DCC-GARCH model might yield better results. Other error distributions, such as a
Normal Inverse Gaussian (NIG) might also give a better fit. When we fitted the Gaussian,
Student’s t- and skew Student’s t-distibutions to the data, we assumed all the distributions
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to be the same for the three series. This might be a too restrictive criteria. A model where
the marginal distributions is allowed to be different for each of the asset series might give
a better fit. One then might use a Copula to link the marginals together.
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