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Abstract We present an approach for modeling facies bodies in which a highly con-
strained stochastic object model is used to integrate detailed seismic interpretation of
the reservoir’s sedimentological architecture directly in a three-dimensional reservoir
model. The approach fills the gap between the use of seismic data in a true determin-
istic sense, in which the facies body top and base are resolved and mapped directly,
and stochastic methods in which the relationship between seismic attributes and fa-
cies is defined by conditional probabilities. The lateral geometry of the facies bodies
is controlled by seismic interpretations on horizon slices or by direct body extraction,
whereas facies body thickness and cross-sectional shape are defined by a mixture of
seismic data, well data, and user defined object shapes. The stochastic terms in the
model are used to incorporate local geometric variability, which is used to increase
the geological realism of the facies bodies and allow for correct, flexible well condi-
tioning. The result is a set of three-dimensional facies bodies that are constrained to
the seismic interpretations and well data. Each body is defined as a parametric object
that includes information such as location of the body axis, depositional direction,
axis-to-margin normals, and external body geometry. The parametric information is
useful for defining geologically realistic intrabody petrophysical trends and for con-
trolling connectivity between stacked facies bodies.
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1 Introduction

Conventional seismic interpretation involves interpretation of stratigraphic horizons
and faults in vertical cross sections. With increasing quality and resolution, seismic
data can also be used to interpret facies architecture in map view. The interpretation
in map view is generally based on using horizon slices that are aligned parallel to
geological time lines. Interpreted facies elements, including turbidite channels and a
variety of bars and lobes, have been used very successfully for well targeting in many
significant discoveries during the last decade or so, and have also been integrated in
static three-dimensional models used for development planning and reservoir man-
agement. Integration of seismic interpretation in a three-dimensional reservoir grid
is straightforward for thick, well-resolved facies bodies, but can be more challenging
for thinner facies bodies.

Where seismic quality is high, it is often possible to interpret sedimentological
features on horizon slices also in places where the facies bodies are thinner than the
seismic resolution. Although the tops and bases of the bodies cannot be resolved in-
dependently from the seismic data, the total seismic response, including interference
effects, often produces a pattern that clearly responds to the facies architecture. The
patterns seen on horizon slices can then be interpreted in terms of facies architecture.
The approach described in this paper aims at providing a methodology that enables
integration of these facies interpretations in three-dimensional reservoir models. The
facies model is used as input to the petrophysical model, which again is used as input
for flow studies.

Our approach is based on using a stochastic object model (Deutsch and Wang
1996; Holden et al. 1998) to represent facies as objects with a geometry that is highly
constrained from the seismic interpretations. The parameters of the object model are
primarily used to control thickness and shape of cross sections. In general terms, the
seismic interpretation defines the facies shape in map view and the parameters of the
object model control the shape in cross-section. As will be shown later, seismic and
well data can also be used to constrain thicknesses. The stochastic terms in the model
are used to incorporate local geometric variability from the idealized object model
shapes to increase the geological realism of the facies architecture and allow for cor-
rect, flexible well conditioning. Object models can be conditioned to a variety of data
types including well and seismic data. Conditioning to seismic data is usually done
by establishing conditional probability functions that define the probability of finding
a particular facies type given the seismic value; see Skare et al. (1996). Conditional
probability functions can then be used to transform seismic attribute cubes into facies
probability cubes, which are used to constrain stochastic facies simulation. This ap-
proach proposes objects independent of facies probabilities, and uses an accept/reject
step to keep the good matches. It works nicely for a smooth probability cube, for
which the seismic data define general facies volume fraction trends, but is useless
if the facies geometries can be seen directly from the seismic data. In these cases,
another approach for conditioning object models is to use the seismic data directly
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Fig. 1 Illustration of
parameterization and intrabody
trends. (a) A polygon.
(b) A petrophysical property is
sampled on a regular grid.
(c) The petrophysical property is
mapped cell by cell to the
polygon object

in the parameterization of the objects. Examples are given in Rabelo et al. (2007) for
point bars and Viseur et al. (2001) for channels.

In this paper, we will instead use facies boundary polygons derived from seis-
mic interpretations in the parameterization of the object model. The polygons are
assumed as given, and hence we do not focus on how to extract them. Facies objects
are then generated with edges and pinchout lines defined directly by the seismically
interpreted polygons. The thickness profiles and the depth location of the object can
be modeled using stochastic methods, and hence prior distributions for these parame-
ters must be specified. The thickness can be conditioned to a thickness map extracted
from the seismic data, or alternatively, the top and base of the object may be given
as maps. The method will still give a parameterization of the body, as opposed to
only a volume of cells. An advantage of this method compared to deterministic and
pixel-based approaches is that the parametric representation allows for petrophysical
trend modeling. This is illustrated in Fig. 1. With a parametric representation of the
polygon, a petrophysical property sampled on a regular grid can easily be mapped to
the polygon object; see also Hauge et al. (2003). The parametric shape is also useful
for mapping thickness trends across and along the body, as in Lia et al. (1996).

2 Object Parameterization

Figure 1 illustrates both the horizontal parameterization of our object and the advan-
tage of using an object. Although the geometry of the body is defined from the seis-
mic data, the use of an object to define this geometry enables intrabody petrophysical
modeling on a grid that conforms to the object. Stochastic property modeling on such
an object-conforming grid can improve the geological realism, even without the intra-
body trends illustrated in Fig. 1, by producing porosity and permeability anisotropy
following the body geometry.

Our objects are parameterized horizontally along a piecewise linear curve repre-
senting the local x-axis for y = 0 and with the direction of the local axis defined at
the endpoints of the linear segments as seen in Fig. 1. At regularly spaced locations,
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Fig. 2 Branching object that
cannot be parameterized. From
the red points, it is impossible to
draw a line to the other edge so
that the line is inside the
polygon

the distance to the edge is measured along the local y-axis. This object is closely re-
lated to the one used in Hauge et al. (2006), but the local y-axis is more flexible here,
allowing for a greater range of objects. Although it is desirable that the local y-axis is
perpendicular to the reference line, there is a tradeoff between this and being able to
have wide and turning objects. If we look at Fig. 1 again, we see that the y-axes of the
object start reacting to the turn before it occurs. If we do not do that, the local y-axes
would intersect before we reached the edge of the object in the inside turn. This will
give problems when going from a local to a global coordinate system because there
will be no one-to-one correspondence between the two coordinate systems. We will
come back to the parameterization in the next section.

Vertically, we add a top and bottom surface to the object. These surfaces have
uncertainty in the form of two-dimensional Gaussian fields that enable well condi-
tioning, following the approach in Lia et al. (1996) and Hauge et al. (2006). The
difference is that the surfaces there were the product of independent one-dimensional
curves along and across the object, whereas here we use full two-dimensional sur-
faces.

2.1 Generating the Horizontal Body Shape

Horizontally, the challenge is to define the internal grid shown to the right in Fig. 1,
relying only on the outline being the polygon shown to the left. That is, we need to
define the piecewise linear reference line and the local y-axes along this line. First,
observe that we are not able to parameterize all kinds of polygon using this approach.
For polygons that are branching, as shown in Fig. 2, it is impossible to define a legal
set of y-axes. The condition for a polygon to be valid is as follows: For a definition
of right and left edge, it must be possible to draw a line from any point on one edge
to some point on the other edge so that the line is inside the polygon and does not
intersect any other such line. The final y-axes we use for the object is one solution
of this. There can be many such solutions, with different right and left edges and
different y-axes, but as long as at least one such solution exists, the polygon can be
parameterized using our approach.
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Fig. 3 (a) A valid edge
definition. (b) An invalid edge
definition. Right edge is red and
left edge is blue. The black line
is the reference line

Fig. 4 Graph used to find left
and right edge. The dashed lines
are possible ways to go directly
from point C. Similar paths are
made for all other points. The
two points furthest apart are A
and H, and the shortest way goes
via K, J and I

Whether a polygon is valid or not may depend on the choice of right and left edge,
e.g. as shown in Fig. 3, where the polygon is valid when using the edge definition
on the left, but not with the one on the right, for which we cannot draw a line from
the points furthest to the right to the red edge without crossing the polygon. We do
not take this into consideration when trying to parameterize a polygon. Instead, we
define the right and left edges as separated by the two points that are furthest apart
when measuring the distance inside the polygon. We approximate this distance by
creating a graph. Each polygon point is a node in the graph, and there is an edge
between two nodes if a straight line between the corresponding polygon points lies
completely inside the polygon (Fig. 4). The weight of each edge is the length of the
corresponding line, and we can find the distances between any two points by using
Dijkstra’s algorithm; see Dijkstra (1959). This generally works well as long as it is
natural for the reference line to start and end at a polygon point.

With the edges defined, the next step is to find a set of valid y-axes that moves
reasonably straight across the object, and set the reference line to the center of these.
This is visually simple, but requires a rather technical algorithm, which is given in
Appendix. The key step is to define a temporary curve to give an idea of the local
x-direction, and use this as a guide to where we want the local y-axes to go. This is
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then conditioned to the requirement that y-axes should not intersect with each other
before they have intersected with the polygon.

Instead of automatically generating the reference line, it is possible to control this
by a piecewise linear trend line defined by the user. This line will be used to define
the right and left edge, with the two polygon points furthest apart along this line as
the dividing points. Furthermore, we use normality to this line as our ideal y-axis
direction. We then generate the final y-axes as before.

2.2 Generating the Vertical Body Shape

With the horizontal parameterization in place, the vertical body shape is given by the
top and bottom surfaces. There are three options for how to specify these surfaces
depending on what can be seen in the seismic data:

1. Top and bottom surface given as a general shape, when they cannot be seen from
the seismic data. In this case, the global thickness of the object and the depth
location must be given by prior distributions (Fig. 5a).

2. Thickness is mapped from the seismic data, but the distribution of the thickness
above and below the plane is given as a general trend. Here, the global thickness is
specified, but the depth location must be defined by a prior distribution (Fig. 5b).

3. Both top and bottom surface are mapped from the seismic data. This gives both
global object thickness and location in depth (Fig. 5c).

Again, we do not concern ourselves with how these maps are created from the seismic
data; we use them as input data for our model. For the full three-dimensional body,
the parameterized polygon will be the outline of the body when projected into the
xy-plane. We now have the trend shape for the top and bottom of the object, and
add Gaussian random fields to give the final complete shape. These fields have the
trend as expectation, and relatively small standard deviations. They are there to give
a smooth random variation in the body. These local deviations make it much easier
to match well observations, particularly when an object passes through several wells;
see Syversveen and Omre (1997).

2.3 Generating Objects from Invalid Polygons

The top and bottom surfaces can be utilized to parameterize polygons that are not
valid in the sense defined above; that is, polygons for which no set of y-axes going
from edge to edge without intersecting is found. Observe that all convex polygons are
trivially valid. This means that we can make a local convex closure in the problematic
area, and set the top and bottom equal in the area that is outside the original polygon,
but inside the new closure. The local convex closure is a straight line between two
points on the polygon that lie entirely outside the polygon (Fig. 6). The final object
will have zero thickness in this area. Trends and anisotropy in intrabody modeling
will be relative to the extended polygon, giving a behavior as if the zero-thickness
area has been eroded away.

The algorithm for generating objects from invalid polygons is as follows:
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Fig. 5 The three alternative
ways to model thickness of
objects. (a) No seismic
thickness information. User
specified top and bottom profile
along and across object.
(b) Thickness given from
seismic data. User specifies
percentage of thickness above
and below reference plane. (c)
Both top and bottom of object
are given from seismic data

1. Identify a point from which no legal y-axis can be drawn.
2. Find a possible local convex closure in the vicinity of this point.
3. Implement this closure, and proceed to Step 1 until no further problems are de-

tected.
4. Remove unnecessary closures. These can be found since no y-axis in the closure

interval intersects the original polygon more than twice (once for each edge).

This approach is useful if the closures are small and/or irrelevant for the modeling
(they mainly interfere with trends across the body). It is, of course, also useful if
erosion is actually a relevant explanation for the invalidity of the original polygon.

2.4 Adding Uncertainty to the Horizontal Edges

If the horizontal outline of the body is not seen clearly, three polygons may be given
instead of one, representing the maximum, the mean and the minimum of the body.
First, we use the algorithm described above on the maximum polygon. Then, we
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Fig. 6 Local convex closure of
a branching polygon. The final
object will have zero thickness
in the red area

associate the mean polygon with zero in a standard Gaussian distribution and the
maximum and minimum with a user-specified number of standard deviations. Mainly,
the idea is to draw a one-dimensional standard Gaussian field and map it to a location
between the polygons. Zero is the mean, negative values go toward the minimum
and positive values toward the maximum. The minimum and maximum polygons
truncate the value, so values beyond the given number of standard deviations will
result in following the minimum or maximum polygon locally there. The range of
the Gaussian fields controls the smoothness of the objects. A point on the left edge
can be correlated with the corresponding point on the right edge, and this correlation
controls how well the edges will follow each other.

The detailed algorithm is as follows:

1. Let a be the number of standard deviations associated with minimum or maxi-
mum.

2. Draw two numbers x1 and x2, one for each end of the object, from a standard
normal distribution.

3. Use these points to find the length of the object:
a. If x is greater than a, use the maximum polygon at this end.
b. If x is between 0 and a, map to the point that lies x/a of the way between the

mean and the maximum.
c. If x is negative, do a similar mapping between the mean and minimum.

4. Draw two one-dimensional Gaussian fields, one for the left edge, and one for the
right.

5. Do a similar mapping for each sample of the edges.

An example is shown in Fig. 7. When conditioning on wells, the Gaussian fields are
conditioned to include or exclude well positions depending on whether the object
should match them or not.
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Fig. 7 Object with uncertainty
on horizontal edges. The object
is shown in red; the pink,
turquoise and blue lines show
the maximum, expected and
minimum polygon

3 Well Conditioning

We use standard object model methods for well conditioning; see Syversveen and
Omre (1997) and Hauge et al. (2007). The idea is to first condition global pa-
rameters to the well data and then let the edge uncertainty and two-dimensional
top and bottom uncertainty fields handle the detailed match. We start by scanning
through a discretized set of possible depth locations. At each depth, we find well
intersections and see if these are of a facies that we may condition upon or pass
through as a locally eroded object (the facies seen in the well erodes the object
facies). At each location, we compute the likelihood for creating an object that
matches the wells at that depth. This likelihood contains the likelihood for the top
and bottom surfaces, and if the thickness follows a priori, the likelihood for this
is included as well. This likelihood is multiplied by the prior likelihood for hav-
ing the object at this depth. Even in the case with given top and bottom surfaces,
we set an uncertainty on the depth and follow this procedure. If the surfaces are
inconsistent with well observations, we still get a realization that fulfills well con-
ditioning, but the top and bottom surfaces will not be reproduced at well loca-
tions.

A depth value is drawn from the normalized likelihoods that define a distribution
for depths. The object is then created conditional to the well observations at this
depth, avoiding illegal observations by using edge uncertainty, and passing through
wells either by conditioning or as eroded. A conditioning intensity parameter is used
to define a bonus the object will receive for conditioning observations. If intensity
is set high, the object will try to condition as many observations as possible while
keeping the shape defined by the model. This can give undesirable results, since all
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Fig. 8 Seismic cube shown with base reservoir map

prior distributions are more or less ignored, giving large flexibilities in depth and
uncertainty of top and bottom. With a more modest setting, the object will condition
observations that fit the specified shape reasonably well, but avoid observations that
are too narrow and pass eroded through those that are too wide. In general, how to
set the intensity parameter should depend on the number of bodies assumed to be in a
full model. If this object is the only one that can fit the well observations, it should be
high, in order to ensure that all observations are covered. The more bodies that could
fit the observations, the more relaxed the setting should be. The final result should
be checked, considering whether the polygon body covers a reasonable number of
observations compared to its size, well density and the number of other objects that
might have covered these observations.

Instead of trusting this auto detection of suitable observations, the user may also
specify a set of observations that the object must condition. This information is then
used when drawing depth, and if applicable, thickness, and the two-dimensional fields
will ensure matching with these observations. The algorithm handles any number of
wells, and will always give a valid object unless there is an explicit conflict between
the defined object and the well data, for example, if a vertical well inside the mini-
mum polygon contains only shale, and we are modeling sand objects.

4 Case Study

The case study is based on a deep-water turbidite slope deposit. The seismic (Fig. 8)
and well data presented are synthetic. The seismic data indicate the presence of tur-
bidite slope sands. Intrabody petrophysical trends are important for turbidite bodies,
because grain size differs along and across bodies, so our method is well suited. Six
potential reservoir bodies have been interpreted from the seismic data; see Fig. 9. The
thicknesses of the bodies are close to or lower than the seismic resolution. We will see
examples of the three different thickness and depth models mentioned above. Three
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Fig. 9 Polygon and trend line (dashed red line) of Body 1 to Body 6 displayed with acoustic impedance
at different depths. The black dots and line are wells

synthetic exploration wells have been drilled based on the body interpretations. The
exploration wells support the presence of turbidite sand bodies.

4.1 Seismic Information

The information we can extract from the seismic data differs for the different objects
and depends on the resolution of the seismic wavelet, as well as on the contrast be-
tween the different facies associations within the zone of interest. For all objects, we
have interpreted a polygon describing the outer limit of the body from the seismic
data. The polygons for all six bodies can be seen in Fig. 9. A trend line has also been
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Fig. 10 Main body (Body 4)
shown with extracted points and
top and base map defining the
volume

interpreted for each body. This line describes where to expect the thickest area of the
bodies. The petrophysical trend will also follow this line. The trend lines are shown
as dashed lines in Fig. 9.

Some objects are interpreted as very thin (in the range of 10–20 meters), whereas
others range from 10–40 meters in thickness. The main sand body in the reser-
voir is well defined, and its thickness has been interpreted to be at a maximum of
around 50 meters. Because of this difference in response, we have used different in-
terpreted input data when simulating the bodies. The thicker, main body has been
easily mapped by geo-body extraction (Fig. 10), whereas the thickness of the inter-
mediate objects is described by a thickness map derived from seismic response. The
thinner, less defined bodies are described by an expected thickness based on well
observations and interpretations.

4.2 Well Data

All observed objects have been conditioned to wells. Some wells have several ob-
servations, and we can assign one of the observations to an object by specifying the
prior distribution for depth accordingly. From the seismic data (Fig. 9), we can also
see that Body 1 and Body 4 can possibly have observations in more than one well;
see the black dots. Well logs are shown in Fig. 11. Observations at same stratigraph-
ical level have been conditioned to the same object (Fig. 11/Fig. 12). By correlating
observations, we ensure that the object will exist at these locations after simulation.

4.3 Facies Bodies and Three-Dimensional Model

The resulting model can be seen in Fig. 13, where the bodies are coded by a discrete
index. Figures 14 to 16 show the resulting body thickness of three of the turbidite
bodies. These have all been modeled using different thickness distributions. Figure 14
shows Body 1, which is one of the thinner bodies. The (global) thickness is drawn
from a normal distribution with an expected value of 17 meters. Body 2, shown in
Fig. 15, is of intermediate thickness, and its thickness distribution is described by a
thickness map. The difference in maximum thickness between the input and the result
is due to variability added to the thickness map. For Body 4, shown in Fig. 16, a top
and a base map have been used as input. This is the thickest body that is modeled.
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Fig. 11 Correlation of Body 1 in well EXPL1 and EXPL1_ST1 (blue) and correlation of Body 4 in well
EXPL1 and EXPL2 (red). Both correlations are shown in stratigraphical simbox depth

Fig. 12 Correlation of Body 1 in well EXPL1 and EXPL1_ST1, and of Body 4 in well EXPL1 and EXPL2

4.4 Petrophysical Modeling

The resulting facies model has been used as input for petrophysical modeling. The
parametric representation of the bodies makes it possible to include intrabody trends
in the petrophysical properties. Figure 17 shows the simulated porosity for all six
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Fig. 13 Simulated bodies shown with discrete indexing

bodies, conditioned to well data. The porosity trend decreases from axis to margin,
and from proximal to distal end of the object. Simulated porosity based on Body 4 is
shown in Fig. 18.

5 Conclusions

We have presented a method for modeling objects seen in seismic data. Both infor-
mation about lateral extent and thickness extracted from the seismic data can be taken
into account. Objects are given a parameterization that enables intrabody modeling
of petrophysical trends. Conditioning and correlation of any number of wells is also
taken care of.

The method fills the gap between deterministic and stochastic facies modeling.
When the seismic resolution is high, the uncertainty is low, and purely deterministic
models can be used. When the seismic resolution is low, facies probability cubes
can be extracted from the seismic data, and stochastic models can be conditioned to
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Fig. 14 Body 1 shown with the seismic on top of the base reservoir map

Fig. 15 Body 2 shown with the seismic on top of the base reservoir map

the facies probability cubes. Our approach works well when the seismic data are of
intermediate quality, for example if the lateral extent of the object can be seen, but no
information about depth and thickness is available. The stochastic model handles this



778 Math Geosci (2011) 43:763–781

Fig. 16 Slices of Body 4 with body base map underneath. The thickness described by the body top/base
map is shown to the left. The difference in maximum thickness is due to variability added to the body
top/base map

uncertainty, and the parametric approach gives a realistic body shape when we add
top and bottom. Even when a full body can be extracted from the seismic data, the
method presented here has an advantage over pure pixel-based methods. By having
internal body geometry, we can do intrabody modeling of petrophysical trends, and
also get intrabody anisotropy when simulating petrophysical properties. This can be
important for flow simulation.

The methodology has some limitations. First of all, it requires that we be able to
draw a complete polygon from the seismic data, and not just a partial object. Fur-
thermore, the parameterization limits the set of valid polygons to those with a well-
defined left and right edge. The latter limitation can be overcome, but at the cost of
no longer being able to use trends across the body in any meaningful manner.

Modeling of intrabody trends is important in turbidite deposits, because the grain
size varies along and across the turbidites. We have demonstrated the use of our model
on synthetic seismic data from a turbidite deposit. Six turbidite objects are simulated,
conditioned to polygons and thickness maps extracted from the seismic and well data.
The polygon shapes are recreated, and well conditioning is fulfilled. Our parametric
approach allows the generation of intrabody porosity trends in objects.

Appendix: Algorithm for Defining Local x- and y-Axes in the Polygon

The polygon and the edges are given; the goal here is to find a parameterization
that gives realistic intrabody behavior. This means finding the reference line, that is,
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Fig. 17 Simulated porosity shown for all turbidite bodies. Note the intrabody trends (decreasing proximal
to distal/axis to margin)

a central x-axis that runs centrally along the object, and local y-axes that are approx-
imately perpendicular to this. Note that in the following, a point may be anywhere; if
we mean on the polygon, we say polygon point.

1. Find legal intervals for each polygon point:
a. Find the points on the opposite edge that can be reached by a straight line from

this point without leaving the polygon. This gives one or more intervals.
b. Truncate the intervals for explicitly pointwise legality:

i. When going from one end to the other, a polygon point cannot have a legal
interval that extends further than the minimum end point of the intervals of
all later polygon points. Remove such intervals.

ii. Similarly, a polygon point may not have a legal interval starting before the
maximum start point of the intervals of all earlier polygon points. Remove
such intervals.

c. To ensure that all points between the polygon points are also legally mapped,
set the legal interval for a polygon point equal to the intersection of the legal
interval for the polygon point and its closest neighbor to the left and right from
point b. This ensures that all points between two polygon points can be legally
mapped.
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Fig. 18 Intrabody porosity of Body 4

2. Do the following for all polygon points on the right: For the first interval belonging
to polygon point no i on right hand side, check that the polygon points on the left
before this interval have an interval starting before i. If they do not, the polygon
is invalid. Similarly, check the polygon points after the end of the last interval
belonging to i. They should have an interval ending after i.

3. Check that all the polygon points still have valid intervals and that each polygon
point is in a legal interval for another. If not, the polygon is invalid.

4. If a reference line is given, use this as a temporary x-axis.
5. Otherwise, find a temporary reference line (x-axis):

a. For each polygon point along each edge, find its relative position along the
edge.

b. Draw a line to the same relative position on the opposite edge.
c. Let the center point of this line be a point on the temporary piecewise linear

reference line.
6. At each point where there is a change of direction in the reference line, draw a

line halving the angle between the neighboring pieces. At the edges, draw this
line normally to the first and last piece. If these lines intersect before leaving the
polygon, tilt them so that this no longer happens.

7. Move from one end of the polygon to the other:
a. Find the first unused polygon point on each edge.
b. Draw a line from each of these polygon points to the opposite edge. The ideal

line will, when extended, pass through the intersection point of the lines in
Step 5 at each edge of the piece. However, this line may not be legal due to the
intervals from Step 1. In this case, move the end point the minimum distance
possible to make the line legal.
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c. We have now defined two possible y-axes. If they do not intersect, use the one
that comes first.

d. If the possible y-axes intersect, resolve this by moving the end point for one of
them so that it comes before the polygon point that the other starts at. If this is
possible for both points, do it so that the lines are closest to the ideal.

This gives a set of valid y-axes. If such a local y-axis intersects its neighbors in
the same point, or if it is parallel to both its neighboring axes, it is removed, since
the interpolated local y-axis will give the same result. Finally, the piecewise linear
x-axis is set as the curve going linearly between the midpoints of the remaining y-
axes. This, together with the directions of the remaining y-axes, defines the horizontal
parameterization.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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