/HARP/WP4/ D.4.0

[image: image1.jpg]

	Project Number:
	IST-1999-10923

	Project Acronym:
	HARP

	Project Title:
	Harmonization For The Security Of Web Technologies And Applications

	Nature of Deliverable
:
	Rest.

	Deliverable Number:
	D.4.0

	Workpackage contributing to Deliverable:
	WP4

	Contractual Date of Delivery:
	31.03.2001 (New workplan under acceptance)

	Actual Date of Delivery:
	04.04.2001

	Title of Deliverable:
	Specification of HARP Trials

	History:
	Version 1.0 Date: 01.04.2001

	Editor(s):
	G. Stassinopoulos, K. Koutsopoulos (NTUA) & P. Hoepner (GMD)

	Reviewer(s):
	

	Abstract:
	The HARP Cross-Security Platform (HCSP) is specified and instantiated in medical applications.

	Keyword List:
	HCSP, ECE, SMA, Embedded Security, Roles, Rules, Policies

Executive Summary
The storage and retrieval of medical data cannot be seen in isolation from a more dynamic environment where health related information is continuously updated and processed. Moreover actors have to be strictly distinguished and corresponding roles have to be formally defined and controlled whenever health professionals deal with medical information. This brings the need of all aspects of security to be intimately bound to roles and players and at the same time be embedded into the medical application.
Two technology related conditions make the above functional requirements particularly challenging: (i) the general wish to work over the web as a totally open communication environment and (ii) the generic embedding of security into the application, so as to prevent particular and repetitious exercises for each individual medical application at hand. So we have to see: (i) medical information as distributed over numerous physical/administrative sites and (ii) medical applications as an ever evolving and expanding suite of facilities to health professionals and the general public. HARP does not rely on limitations such as entire health records on personal cards or in large, central databases, but rather opens the way of building up entirely secure applications in client server environments over the web. Moreover, it relies on functionally separated certification procedures; so as to easily subscribe to external services and even to follow the upcoming trend of large constellation of federated servers. Thus HARP aims at ensuring that health telematics will benefit from all developments, present and future, regarding e-based aspects of modern life, under strictly controlled and auditable security features.
HARP heavily relies on emerging standard for content presentation and functional interaction. It uses XML throughout and brings the required client functionality through the downloading of applets. This is particularly appealing in the environment of ever emerging new terminal devices (e.g. PDAs). Applet security from the execution point of view is provided through the secure downloading of policy files, which determine all access rights in the client terminal. This has to be seen on top of the very desirable feature that local code, however performant and versatile, is strictly transient and subject to predefined and securely controlled downloading procedures. All rights corresponding to predefined roles are subject to personal card identification with remote mapping of identity to roles and then to allowed access rights and corresponding security policies. On the server side HARP uses servlet technology for modularity and flexible access to legacy components, mainly existing databases. Attribute certificates and a corresponding Authorisation Manager are extensively used in order to map functions to roles and to implement the security policy. HARP views these features as externally provided enhanced Trusted Third Party (TTP) services and provides the necessary interfaces to these.
Embedding security into any application to be instantiated over the web-based environment outlined above is based on object oriented programming principles. By associating role profiles and security attributes to standard web based interactions, HARP provides one initial degree of ‘automation’ in building secure medical applications over the web. Moreover it clearly separates and demarcates security and policy related issues. This enables administrative bodies acting as ‘policy councils’ to define offline and according to the standing legislation all procedural regulations without entering into implementation details.
HARP intends to demonstrate its ‘HARP Cross-Security Platform (HCSP)’ through two concrete instantiations: the security Support for Medical Applications (SMA) and the Environment for Collaborative Evaluation (ECE). This deliverable describes HCSP, specifies SMA & ECE and defines the operative environment, which is put in place by HARP consortium members in order to realise these two demonstrators.
List of Contributors

	Name
	Company
	E-mail

	Bernd Blobel
	UHM
	Bernd.Blobel@mrz.uni-magdeburg.de

	Boaz Gelbord
	KPN
	B.S.Gelbord@kpn.com

	Christoforos Cavvadias
	NTUA
	cavadias@telecom.ntua.gr

	Geert Klenhuis
	KPN
	G.Kleinhuis@kpn.com

	George Stassinopoulos
	NTUA
	stassin@softlab.ntua.gr

	Hallstein Asheim Hansen
	NR
	Hallstein.Asheim.Hansen@nr.no

	Hiddo Hut
	KPN
	

	John Lam
	UCL
	jolam@ee.ucl.ac.uk

	Konstantinos Koutsopoulos
	NTUA
	kkoutso@telecom.ntua.gr

	Michael Vlachos
	NTUA
	Mike13@telecom.ntua.gr

	Panagiotis Sklavos
	NTUA
	psklavos@softlab.ntua.gr

	Periklis Psyllakis
	NTUA
	el97072@central.ntua.gr

	Peter Ryan
	NR
	Peter.Ryan@nr.no

	Petra Hoepner
	GMD
	hoepner@fokus.gmd.de

	Ragni Ryvold Arnesen
	NR
	Ragni.Ryvold.Arnesen@nr.no

	Robert Joop
	GMD
	joop@fokus.gmd.de

	Stamatis Karnouskos
	GMD
	karnouskos@fokus.gmd.de

	Vassilis Velentzas
	Solinet
	v.velentza@solinet.com

	Walter Eaves
	UCL
	Walter.Eaves@bigfoot.com

List of Acronyms

	AC
	Attribute Certificate

	ADO
	Access Decision Object

	API
	Application Programming Interface

	AM
	Authorisation Manager

	ASN.1
	Abstract Syntax Notation 1

	ASF
	The Apache Software Foundation

	CGI
	Common Gateway Interface

	CT-API
	Card Terminal Application Programming Interface

	CVS
	Concurrent Versions System

	DI
	Documentation Instance

	DLL
	Dynamic Linked Library

	DN
	Distinguished Name

	DTD
	Document Definition Type

	DV
	Document Validator

	ECE
	Environment for Collaborative Evaluation

	EDI
	Electronic Data Interchange

	EDIFACT
	Electronic Data Interchange for Administration Commerce and Transport

	GUI
	Graphic User Interface

	HCSP
	HARP Cross Security Platform

	HL7
	Health Level 7

	HPC
	Health Professional Card

	HTML
	Hypertext Markup Language

	HTTPS
	Secure HyperText Transfer Protocol

	HXDT
	HARP XML Data Translator

	IETF
	Internet Engineering Force Task

	IP
	Internet Protocol

	ISO
	International Organization for Standardization

	JAXP
	Java API for XML Processing

	JDBC
	Java Database Connectivity

	JDK
	Java Development Kit

	JSSE
	Java Secure Sockets Extension

	LDAP
	Lightweight Directory Access Protocol

	MIME
	Multipurpose Internet Mail Extensions

	MOSS
	MIME Object Security Services

	MS
	Microsoft

	ODBC
	Open Database Connectivity

	OLE
	Object Linking and Embedding

	OSI
	Open System Interconnection

	PDA
	Personal Digital Assistant

	PGP/MIME
	Pretty Good Privacy / Multipurpose Internet Mail Extensions

	PI
	Proof Instance

	PKI
	Public Key Infrastructure

	RFC
	Request For Comments

	S/MIME
	Secure / Multipurpose Internet Mail Extensions

	SECUDE
	Security Development Environment for Open Systems

	SFTP
	Secure File Transfer Protocol

	SFTPC
	Secure File Transfer Protocol Client

	SFTPD
	Secure File Transfer Protocol Daemon

	SMA
	Support for Medical Applications

	SNMP
	Simple Network Management Protocol

	SQL
	Structured Query Language

	SSL
	Secure Sockets Layer

	TCP
	Transmission Control Protocol

	TLS
	Transport Layer Security

	TTP
	Trusted Third Party

	UML
	Unified Modeling Language

	VPN
	Virtual Private Network

	X12
	Standards of the Accredited Standards Committee X12

	xDT
	German Standard for the standardised message transfer between GP offices in Germany

	XML
	Extensible Markup Language

	XSL
	Extensible Stylesheet Language

	
	

	
	

	
	

Table of Contents

2Executive Summary

List of Contributors
3
List of Acronyms
4
Table of Contents
6
Introduction
9
1
Scope of the deliverable
10
2
Security embedded into the application
11
2.1
HARP work as opposed to standalone security solutions
11
2.2
The scope of HARP Cross-Security Platform (HCSP)
11
2.2.1
Application area for clinical studies
11
2.2.2
Application area for collaborative evaluation
13
2.2.3
Security requirements/challenges
14
3
The HARP Cross-Security Platform (HCSP)
14
3.1
The HCSP elements
16
3.1.1
Security support for medical Applications (SMA)
16
3.1.1.1
Clients
17
3.1.1.2
Servers
18
3.1.1.2.1
Web Server/Servlets
19
3.1.1.2.2
Authorisation Manager (AM)
19
3.1.1.2.3
Attribute Certificate Server
21
3.1.1.2.3.1
Background and Motivation Behind Attribute Certificates
21
3.1.1.2.3.2
Functionality of Attribute Certificates
22
3.1.1.2.3.3
Comments on Attribute Certificate Fields
23
3.1.1.3
Database
24
3.1.1.4
Smart Cards
24
3.1.1.5
Data Interchange Formats
26
3.1.1.5.1
XML
26
3.1.1.5.2
Certificates
27
3.1.1.5.2.1
Identification Certificates
28
3.1.1.5.2.2
Attribute Certificates (ACs)
29
3.1.1.6
Communication Protocols
33
3.1.1.6.1
SSL
33
3.1.1.6.2
SFTP
33
3.1.1.7
Interfaces
34
3.1.1.7.1
Authorisation Manager (AM)-Servlet
34
3.1.1.7.2
Applet / XML component – Servlet
35
3.1.2
Secure environment for collaborative evaluation (ECE)
36
3.1.2.1
Clients
36
3.1.2.2
Servers
37
3.1.2.2.1
Web Server
37
3.1.2.2.2
Certificate Server
37
3.1.2.2.3
Attribute Server
37
3.1.2.2.4
Database Server
38
3.1.2.3
Data Interchange Formats
38
3.1.2.3.1
Certificates
39
3.1.2.4
Communication Protocols
39
3.1.2.4.1
IPSec
39
3.1.2.4.1.1
FreeS/WAN
39
3.1.2.4.2
SSL
40
3.1.2.5
Interfaces
40
3.1.2.5.1
Web site
40
3.1.2.5.2
Applet
40
3.1.2.5.3
CA
40
3.1.2.6
Development Environments
40
3.1.2.6.1
UCL test bed
41
3.1.2.7
Operation Environments
41
3.1.2.7.1
Windows
42
3.1.2.7.2
Linux
42
4
The HARP Applications
42
4.1
SMA Concepts
42
4.1.1
Clinical studies performed in HARP
43
4.1.1.1
Quality assurance in paediatric endocrinology – HARP demonstrator
43
4.1.1.1.1
User groups addressed by the SMA demonstrator
44
4.1.1.2
Comparison of laparoscopic appendectomy versus conventional appendectomy – A Related Example
44
4.1.1.3
Security Policy for Clinical Studies
45
4.2
The HCSP instantiation
46
4.2.1
Authentication
46
4.2.2
Service Selection
47
4.2.3
Clinical Study - Remote Data Entry
50
4.2.4
Clinical Study - Quality Assurance
51
4.2.5
Collaborative Evaluation in the concept of HCSP
52
4.2.5.1
Educational/Medical scope
52
4.2.5.2
User groups addressed by the ECE demonstrator
53
5
Testing and Validation Environment
53
5.1
SSL Validation
53
5.2
X.509 Certificates Monitoring
54
6
Conclusions
55
7
References
56
Annex 1: Remarks on Security policies
57
Annex 2: HPC specification PK certificate ASN.1 structure
74
Annex 3: Installation Notes
78
Annex 4: Utility Scripts
81
Annex 5: UML Diagrams for SMA
84
Annex 6: Other ASN.1 Types
95
Annex 7: Authorisation Manager
96

Introduction

This Deliverable D.4.0 complements D.3.1 delivered on 31.01.2001. According to the new work plan it maps the technologies identified there on the targeted demonstration applications. This mapping evolves in two steps. Firstly the ‘HARP Cross-Security Platform (HCSP)’ is presented. This is the generic part, where care has been taken to harmoniously combine and integrate the available technologies and which constitutes the basis of every application or, in project terms, demonstrator. The harmonization claimed in the HARP work plan and project title refers to the combination of appropriate security and web based interaction technologies. HARP’s playground is the open Internet and HARP’s ambitions are to enable health telematics applications to enjoy all modern web based techniques and features without compromising security.

More concretely,

Section 2 gives the general motivation: On one hand an abstract exposition of what is meant by security embedded into an applications and on the other concrete bottom up features through the description of typical medical applications.

Section 3 is the key section describing the Cross-Security Platform (HCSP). It presents its elements the functions assigned to each of these, architectural issues, the presentation and exchange of data to be employed as well as the development and operational environment. It also touches issues of off-line policy assignment into the application and where further automation steps might be profitable to employ.

Section 4 deals with the HCSP instantiations where the concrete demonstrators within the HARP project are specified via use case models and corresponding diagrams. Concrete features of the demonstrator layout as will be seen in the context of HARP demonstrators and in conjunction with its real day-to day use by health professionals.

Section 5 deals with the HARP Testing and Validation Environment. A TTCN-specified SSL test suite is described.

This deliverable is seen as a handbook for the implementers and entails all necessary technical choices related to the realization of the demonstrators. The technologies employed have been reviewed and partly evaluated with hands-on experience in previous project stages and reported mainly in D.3.1. An exception is a new contribution on security policies, which for the sake of clarity and separation of scope, is included in Annex 1.

Scope of the deliverable

The scope of this Deliverable D.4.0 is to present in detail the functionality, architecture and key components of the HARP Cross Security Platform (HCSP). HCSP is based on the technology presented in D.3.1. It combines the mechanisms identified there into a coherent set providing a comprehensive security environment over a large range of health telematics applications. Consequently the scope of this deliverable is to present the general aspects of this family of health telematics applications and to demonstrate how HCSP can provide their security framework. Following that, the instantiation procedure onto concrete demonstrators is developed in several levels, ending with specific implementation dependent issue.

The general aim is to have HCSP as generic as possible and to validate that it is appropriate to ‘generate’ the particular real life demonstration scenarios, which are under implementation within the HARP project. At several stages, this instantiation description can in principle become more automated and this deliverable draws attention to these far reaching issues, which can be the target of further research and implementation effort. Connections to generic and challenging health telematics issues, beyond the scope and possibilities of HARP are also presented, the Electronic Health Care Record, being the most prominent example. Security is embedded into the application at several levels, as this deliverable intends to demonstrate.

So, this Deliverable handles the general concept of securing a health telematics application and how this concept is entailed in the target telemedicine applications. As a basis, the exchange of trustworthy documents is upgraded to the securely controlled conduction of clinical studies over the public Internet and also supplemented by trustworthy components. This is the first of the two streams into which the implementation work of HARP has been split. This stream, i.e. the Support for Medical Applications (SMA), is characterised by a top down approach where pre-existing applications are newly designed by a priori taking into account all features of the HCSP. On the other hand aiming at the provision of a more generic secure framework, which is education oriented but can be easily extended towards other Information Society needs, a similar application can be realised with the desired security features in a much wider geographical area. The field of operation for this approach, i.e. the secure Environment for Collaborative Evaluation (ECE), is again the public Internet. The two streams are complementary providing a concrete solution for applications either in need for a security fine-grained environment (SMA) or in need for a secure environment with many players in a wide geographic area (ECE).

At an administrative level, this Deliverable D.4.0 complements the one delivered 31.01.01 (D.3.1) according to the new work plan and maps the technologies identified there directly on the targeted demonstration applications.

Security embedded into the application

Security covers all aspects found in society and human being such as legal, social, ethical, behavioural, organisational, technical views. Therefore, also in the technical scope security must be considered as related to complex systems and their interactions with actors. Actors are any principals influencing or interacting with systems such as persons or living subjects in general, organisations, systems, applications, components, objects. Security must be an integrated part of a system and its behaviour including interactions with actors. Reflecting the technical approach based on the ISO-OSI reference model for open systems interconnection, security must be integrated at all layers in an integrated way.

1.1 HARP work as opposed to standalone security solutions

HARP embeds security into the applications and goes beyond standalone security solutions. The notion of roles associated with different professions and specialisations in the medical world, is key to securing applications in the current strict regulatory framework associated with medical data and health professional actions. It starts with a smart card providing certified identifications and then follows a sequence of steps, where according to established policies and practices access rights are enforced with all aspects of data manipulation. Although all these features are highly reminiscent of standard database access notions, all issues become much more involved whenever the environment is distributed and functions (security, application related and their combinations) are provided by different parties and over the web. Last but not least the final user has to be confined and bound in his actions exactly to the degree determined by his personal card.

Standalone security solutions have been enumerated previously in the early stages of the HARP project (deliverables D.2.1 & D.2.2). Later, in D.3.1 these were combined in a so-called ‘client’, ‘server’ or ‘network’ centric approach, without close functional harmonization between these three. As a final step, D.4.0 links all three approaches into a concrete harmonized combination without gaps or overlaps within the framework of the HARP Cross-Security Platform (HCSP). Beyond the architectural viewpoint, HCSP comprises the object oriented development environment, the enforcement of offline decisions on policies and rules on each particular instantiation as well as some aspects, which could lead in the future in a largely automated methodology for building applications with embedded security.

1.2 The scope of HARP Cross-Security Platform (HCSP)

1.2.1 Application area for clinical studies

Medical Statistics

Generally, statistics is the science of obtaining, summarising, analysing and making inferences from both counted and measured observations, termed data. It deals with designing experiments and surveys in order to obtain main characteristics of the observation, especially kind and magnitude of variation and type of dependencies in both experimental and survey data. The defined total set of all possible observations, about which information is desired, is termed population. Commonly available is at best a representative part of the population, termed a sample, which may give a tentative incomplete view of the unknown population. Accordingly, the science of medical statistics or biostatistics deals with

1. presenting and summarising medical data in tabular or graphic form to understand the nature of the data and to facilitate the detection of unexpected characteristics;

2. estimating unknown constants associated with the population, termed parameters, providing various measures of the accuracy and precision of these estimates; and

3. testing hypotheses about populations.

Statistical methods are necessary wherever results cannot be reproduced exactly and arbitrarily often. The sources of this non-reproducibility lie in uncontrolled and uncontrollable external influences, in the disparity among the test objects, in the variability of the material under observation, and in the test and observation conditions.

Studies are used to obtain and evaluate the mentioned results of experiments or surveys in a way that clinicians can make use of them. So these studies are simply termed clinical studies.
Clinical Studies in general

Generally, clinical studies in the medical field are normally used, e.g., to objectively evaluate new medication methods or therapies respectively. For example, each newly developed (deployed) medicament for any kind of human medication needs to be evaluated within a clearly defined clinical study in order to prove its medical effectiveness towards human beings on the one hand and its innocuousness on the other. Commonly stated bases for this kind of studies is both the guidelines for good clinical practice (GCP) and the so-called Declaration of Helsinki (1964).

During a long time of invitro tests and tests with animals (which are still necessary for several kinds of medication), the new medication has to prove its usefulness without reasonable side effects. Afterwards, human beings are introduced to perform a different clinical examination. This is normally done in the following four phases:

Phase 1:
Proof of tolerance and compatibleness of the medicament for human beings starting with a rather low dose used only for healthy volunteers;

Phase 2:
Small-scale involvement of human beings examining the effectiveness and investigating the optimal medication dose discovering possible general side effects as well as side effects towards other medicaments (interdependencies);

Phase 3:
Large-scale involvement of human beings, clearly planned, performed and proved following pre-defined criteria as well as statistical evaluation methods;

Phase 4:
Monitoring of the use of the medicament and the medication procedure (dose) in everyday life situations in both ambulatory and stationary care after the medicament has its official permission.

Beside the examination of both medical effectiveness as well as quality and safety of medicaments, patient-related clinical research contains a large number of further scientific aims and goals concerning prevention and prophylactics, investigation and detection, prognosis and diagnosis, therapy and treatment, and rehabilitation of diseases. For medical purposes, three different types (or groups) of clinical studies are essential:

Diagnosis Studies:
Studies in order to compare new medication methods and an existing and established standardised reference for the deduction of diagnoses;

Prognosis Studies:
Studies in order to derive prognoses only for specific patients with a clearly defined status of their disease (for the examination purpose, one or more representative cohorts of patients need to be established considering their disease at a similar status or point in time);

Therapy Studies:
Studies in order to prove the medical effectiveness of a therapy comparing the currently medicated patient group and another (control) group having got a placebo medication or an already well-confirmed medication.

Taking into consideration what was said earlier, clinical studies in most of the medical fields can be distinguished using in minimum three different categories:

· Observation or experimental studies respectively focusing on a randomised or non-randomised mode to allocate patients to patient groups (samples);

· Prospective or retrospective studies respectively;

· Longitudinal or transversal studies respectively.

Depending of specific aims and goals at the one hand and of practical conclusions on the other, a large number of types of studies can be derived. In the following, only a few of them should be explicitly mentioned:

· Supervised clinical studies for the introduction of either drugs and medicaments or new therapies;

· Observation studies for the evaluation and validation of medicaments after they have become available for medication purposes;

· Longitudinal studies for the purpose of realisation of quality assurance standards;

· Case-control studies for the evaluation of under diagnosed diseases (rare illnesses);

· Cohort studies for the evaluation of expositions in occupational medicine (radiation, dust, asbestos, etc.);

· Interventional studies for the investigation of consequences of changed behaviour (e.g. diet);

· Epidemiological studies for the registration of influences caused by environmental conditions.

All these types of studies can of course be performed using rather different design conditions:

· Analysis of either the behaviour of just one patient group during a long time or the comparison of several patient groups respectively;

· Cross-over design taking into consideration periodical effects or effects caused by training;

· Matched-pairs design for a reduction of any inter-individual variance;

· Laminational design in order to reduce or eliminate the influence of the age of human beings by classifying patients into different age levels;

· Sequential or adaptive decision process in order to achieve the expected results using as few cases as possible (used for very expensive, extensive or expansive studies).

The aforementioned supervised clinical studies are of special importance for the medical field as they are used to draw conclusions concerning causal connections. These prospective studies need to be exactly planned. Patients involved need to be allocated to the different groups or treatment methods on a strictly randomised basis, and a criterion has to be defined in order to measure the success or the disappointment of the study.

Talking about clinical studies means almost always a study following the phase 3 criteria. Any kind of biomedical research close to human beings needs to be based on a very detailed plan (the so-called study protocol) and has to follow well-established common research rules. Not only for studies concerning medication and medicaments but for any other clinical study there is finally an ethical reason to design and develop this study protocol as complete and concrete as possible.

This protocol must contain the following items:

1. Definition of the basic aims and goals of the clinical study including hypothesises (beside the definition of the main objective, expected intentions and recommendations concerning medical practice have to be formulated);

2. Presentation of state-of-the-art standards and references (available methods for diagnoses and therapies as well as prognostics shall be illuminated);

3. Definition of investigation intervals as well as of inclusion and exclusion criteria;

4. Definition of, and decision about, the design of the clinical study (type of study, type and number of control groups, recruitment of patients, methods of randomisation, single or double blind trials, and truncation criterion);

5. Definition of all traits and measurands (including observation interval and points in time for measuring specific items whereby the gradients of the measurands have to consider both the main objectives and other items influencing or even disturbing the measurement);

6. Description and discussion of potentially disturbing influences as well as means to control these influences during runtime and validation of the clinical study;

7. Description of the biometrical (statistical) validation process (based on the main objective of the clinical study, the zero-hypothesis and the alternative hypothesis as well as their required test methods and value methods need to be defined);

8. Organisational and responsibility definitions for the clinical study (e.g. time intervals between investigations, a complete list of all partners and establishments involved, responsible persons, organisational structures, and data flow);

9. Ethics, data protection and data security;

10. Means to ensure the safety of volunteers and patients;

11. Discussion of the chances to successfully perform the clinical study (approximation of the number of cases required, calculation of the costs, financial balance sheet, time to perform the study); and

12. Publication of the results (recipients of periodic result overviews during the runtime of the study, final report, concrete date and concrete content of publications, authors, endorsement matters, etc.).

For statistical evaluation and validation of clinical studies, aspect #7 is the most important one. The description has to incorporate, e.g., statements about the likelihood of obvious errors. It needs to be clearly shown whether the study intends to prove a difference or equivalence. Last but not least the evaluation and validation strategy needs to state whether any kind of validation can be performed after the acquisition of all results, at specific points in time during the runtime of the study, or if it is indeed a sequential study.

1.2.2 Application area for collaborative evaluation

Online teaching is an application of the Internet that is a useful tool to aid the traditional and primary methods of instruction. It is not a new form of teaching, rather a new delivery medium; the Internet, that is used to offer more depth and content than previous transmission mechanisms e.g. radio, television. The main problem with these technologies, are that it is not possible to provide feedback. Although 2-way technologies exist through audio and video conferencing or broadcast implemented through various transmission systems or even using bulletin boards, the Internet possesses the advantage of superior interactivity and cost effectiveness.

This type of teaching is of most interest where the users of such a system are thinly distributed. It is also termed distance education, and falls into the term tele-teaching, which classifies activities where the lesson is brought to the user, for example a virtual lecture room allows students to take part in lecture which their local university may not offer.

Utilizing the latest technologies, online teaching has become a viable complementary teaching tool, as shown by its application by larger institutions. The institutions that offer online teaching resources are typically universities or organizations whose aims are to progress the general education through multimedia or the Internet, there are many that are related to medicine. The scope of these resources are often limited to case studies for reference study. In effect theses act as large reference depositories of patient data such as x-rays and body image scans etc. Another type of resource is the online test. It is this application that the HARP ECE will address. Online tests are not the most popular of resources to execute on the Internet, due to the commitment required to do so. Therefore, the minority of institutions which offer this truly interactive teaching resources are however often limited in depth and size, or are subject to strict requirement for access, such as membership & professionalism. Examples of online teaching facilities are those belonging to the major institutions such are Duquensne University, Pittsburgh and Trauma.org. These allow sites access to the public.

Duquensne University, Pittsburgh (http://www.duq.edu/PT/RA/SelfTest.html)

Trauma.org (http://www.trauma.org/)

1.2.3 Security requirements/challenges

Medical studies and online teaching as envisaged in the context of HARP applications involve a big number of online transactions taking place over the public Internet. The selection of Internet as the communication platform is based on the fact that Internet is currently the most ubiquitous information exchange network that can provide all the means for future extensions independent from the underlying technologies. On the other hand the public nature of Internet puts at risk all the established communications from the point of view of confidentiality, integrity and authenticity (the three principles of security). Moreover, a new aspect is added on top of the above. This concerns mainly the roles of the parties involved in the application, medical otherwise. While the three classical security issues (confidentiality, authenticity and integrity) have obviously to be coped with, the new element is independent from the communication security and focuses mainly on the functional security. This newly introduced – in HARP research work – term of functional security points to the embedding of security in the application logic. There is need – both for extendibility and flexibility reasons – for a single application, which can be adapted for the role of each player. In the context of functional security, as embedded into the application, this can be stated in a more specific way. The application is designed and implemented once and contains the full set of functionality; then, according to rules, roles and associated policies, the security environment provides restrictions. These are imposed on the code actually presented on the client machine. The main characteristic of such an application is its capability of adjusting both functionality and appearance according to the role of the current user. The role issue can be resolved externally and independently according to a predefined set of rules. Finally in order to set the whole picture of such a web based environment, the need for security in the application logic dictates that the same logic is embedded both at the user/client side and at the service/server side. Although there is a certain correspondence between the two sides the realisation may differ since the security logic should form interfaces of different nature in each case.

2 The HARP Cross-Security Platform (HCSP)

The HARP Cross-Security Platform (HCSP) description as well as the usage scenario (numbered in terms of steps to be followed) state that the communication model is based on a component architecture enhanced, however, with many security features regarding both communication (data transmission and endpoints authentication) and functional/operational application security (including access control and rights). The enhancements are modular and the Client, Server and Network centric approaches (introduced in HARP deliverable D.3.1) are clearly visible. From HARP’s point of view the architecture covers many Web components (as the project has initially promised to deal with) that can be instantiated in a wide area of Web technologies and application domains.

The basic components of the HARP platform as identified in HARP deliverable D.3.1 are arranged in the HCSP. The HCSP (Figure 1) is composed of:

· A client environment. This is fully under server control and accessible only to players holding the appropriate smartcard.

· A Web server. The ‘entrance’-point for the user.

· Application (central) server. The core of the server-centric approach. User tasks are delegated to servlets, therefore an application server must also host a web server. In our approach, for simplicity reasons, both web and application server are hosted by the same machine.

· Policy server. Policies and policy related functions are provided.
· Attribute Certificate Server. The Attribute Certificate Server provides and manages (i.e. issuance, revocation, etc.) attribute certificates.
· Database Server. All medical data is stored. Control of access to data is policy-regulated.
· Archive Server. All messages communicated are stored for accountability reasons.

[image: image2.wmf]User Site

Policy Server

(

including

 ADF)

Attribute Certificate

Server

HTTPS

Secure

Connection

User

Authentication

Point

Role/Privileges

based

authorisation

Certificate +

Policy

Roles / Privileges

Authentication

via

Web

Browser

 and

Smartcard

Web

+ Application

Server

 (

including servlets

)

1

2

Applet (

plug

-in)

Download,

authentication

and

framework

instantiation

DB

Database Server

SQL over

a Secure

Connection

3

4

Secure Connection

SSL/TLS

Authorisation

Point

5

Archive

 Server

Figure 1 – The HCSP

The HCSP components are thus realised with different servers distributed in varying domains and connected via secure connections (Note, that for simplicity and performance reasons servers may be co-located in one physical machine). HARP has adopted a generic scenario with the following properties (step numbering relates to Figure 1):

· The user connects to a dedicated web server via his browser and uses of course a secure protocol such as HTTPS. (step 1)

· The certificate of the user is read from the smartcard or from software PSE (prerequisite for the mutual authentication in a SSL/TLS connection). (step 1)

· The web server may accept or deny a connection request based on its policy and the user certificate presented. User and server authenticate with the mutual-authentication scheme of the SSL/TLS protocol. The SSL/TLS protocol does not prescribe client authentication in order to establish a secure connection, but the policy defines this (i.e., the Web server is configured such as to request a client certificate). (step 1)

· The web site provides a Java applet execution policy that the user should install on his computer in order to allow the HARP applets to function without problems. This is again up to the site’s policy to decide. Please note that this feature is described in detail in D.3.1 and a preliminary version has been demonstrated at the October 2000 review. Finally the applet is automatically downloaded. (step 2)

· The application applet is downloaded to the user’s site and further tasks are initialised. The applet initiates a secure connection to the Web server in order to take advantage of the available services running within the server in form of servlets. (step 2)

· User certificate and policy (for accessing data) retrieved from the policy server are used to identify the roles the user is able to take up. This is done via the Authorisation Manager (AM) and depends on the attribute certificates stored in the Attribute Certificate Server. (step 3,4)

· Access to the database server is controlled by the role of the user, e.g. documentation instance, proof instance, student. The database is a relational one. For the clinical study application the existing database scheme residing at UHM will be re-used, extended and re-designed according to the needs of the project. This will also ease the deployment of a prototype using real data. (step 5).

· Correspondingly, on the client side, the presentation of the application to the user is again controlled by his role.

· The specific assignment of users to roles mentioned in the previous step uses attribute certificates (in order to certify the role for a specific user identity), which reside in an Attribute Certificate Server. This is the appropriate approach to have the substantiation of roles well demarcated. As a consequence the effect of roles can be clearly separated from the development of the underlying application.

· Connections to databases and servers will of course be secured and see the HCSP elements description where the concrete choice is elaborated. The whole testbed could run over a VPN with IPSec.

· The generic document (e.g. a study or examination) presented to the user, consists of a form containing various fields, figures and dynamic data. The presentation of these forms may have shaded fields, i.e. fields the user is not allowed to change or see (due to policy) and a set of fields for input/output.

· The presented forms may support a local validation check (enforced by the applet) to verify for example that the user did not enter garbage (e.g. a temperature of 76 °C for a patient is garbage). A second verification of the data is executed at the server’s site (via servlets) to ensure that no corrupted or falsely modified data is stored in the database.

Additional security is provided by replicating the implementation of the same policy in a twofold manner: (a) at the client – application server interaction and (b) at the application server – database interaction. This is equivalent to incorporating security via XML signing on the client side and/or through the classical database access rights on the server - database side.

2.1 The HCSP elements

2.1.1 Security support for medical Applications (SMA)

The following figure (Figure 2) describes the sequence of actions among the HCSP components during the application session in the context of SMA. This figure provides a more technical view of the activity flow than what was presented in a generic form in Figure 1.

[image: image3.wmf]WEB Server

Servlets

AM

WEB Browser

Applet (plug

-

in)

DB

ACs

1

2

3

4

5

6

7

8

9

User

WEB Server

Servlets

AM

WEB Browser

Applet (plug

-

in)

DB

ACs

1

2

3

4

5

6

7

8

9

User

Figure 2: HCSP Interaction Sequence

The explanation of the steps in the above figure is given below:

1. The service user loads a Web page from a Web server over an https connection.

2. The Java plug-in is invoked by the browser and loads the service applet.

3. The applet establishes a mutually authenticated SSL connection with the Web server in order to communicate with the Servlets that will provide the server side functionality hereafter.

4. The Servlet contacts the Authorisation Manager (AM) in order to resolve the role of the user according to his certificate.

5. The AM determines the roles of the user according to his Identification Certificate and the available Attribute Certificates and returns the role to the Servlet.

6. The Servlet according to the role that has been returned by the AM forms an access mask towards the Database, forcing there all the policies that are relevant to the authenticated user. This mask may be of a dynamic form, i.e. each time the Servlet has to modify the Database on behalf of the user consults the AM in order to ensure that the request is legitimate.

7. The role returned to the Servlet is communicated as well to the applet that adjusts its appearance and behaviour according to it. In this way the mask to the Database described above corresponds identically to the applet appearance and behaviour.

8. The applet forwards the user’s changes on the document to the Servlet through the secure channel with the Web server in order to be registered to the Database.

9. The Servlet co-operating with the AM as described above performs a control procedure on the user’s request and updates or not updates the Database.

2.1.1.1 Clients

Inside the HCSP architecture clients are the part of the platform that provide the interface between the service access points and the end users. The embedded security into the application feature as well the need for easy service updates have dictated the use of Java applets, which play the major role in client applications. Everything is initiated by the browser, which acts as the client application that helps the end user in the service selection procedure, i.e. location of the proper web page through which the applet is downloaded.

The Java applets although accessed through web pages loaded on ordinary browsers such as Microsoft Internet Explorer and Netscape Navigator, run inside the Java plug-in that is invoked by the browser during the applet load and execution procedure.

The role of an applet in the concept of the HCSP is the provision of the mechanisms for

· the authentication of the user to the server independently from the browser,

· data exchange between user and server as well as data representation (GUI),

· controlled access of the user to the data,

· signing and encrypting the exchanged messages.

In general an applet offering services in the concept of HCSP consists of functional components as depicted in the following figure:

[image: image4.wmf]

Communication

Component

Java SSL

Extension

XML Processing

Component

Data Processing

and Activity

Controller

G

U

I

Interface

Controller

XML Signing

Component

Applet

Smart Card

Controller

Figure 3: The Applet elements

The data received by the applet over SSL in the form of XML documents are not only medical data but at the beginning of the service session the data contain the mapping of the policy properties for the specific user onto directions that are processed by the Data Processing and Activity Controller (Figure 3), which in the sequel adjusts the applet behaviour in terms both of appearance and functionality. The medical data, on the other hand, are represented to the user according to the previously received policy and consequently the user is allowed to perform only certain actions, again only in compliance to the received policy. At the end of the service session the user may submit back to the Application Server a set of medical data. The applet will check the correctness of the entries before proceeding to submit and report to the user wrong entries.

Most of the applet components presented above are custom software developed in the context of the HCSP realisation. However, certain extensions that regard the provision of the XML processing and signing and the establishment of the SSL connections are integrated with the rest of the functionality, offering in this way a complete framework which can be instantiated in specific medical applications.

The client-side applet will be developed using original Sun’s Java 2 Development Environment (version 1.3). Applet downloading and execution will be done on any browser and handled by the Java Plug-in. In order to be able to deal with issues such as secure sockets, XML parsing, XML signing and smart card reading, other extensions and APIs must be used too. Here is a brief description of those:

Java API for XML parsing (JAXP)

JAXP enables applications to parse and transform XML documents using a pure Java API that is independent of a particular XML processor implementation. The final release supports the latest XML standards including SAX 2.0, and DOM Level 2, as well as including integrated support for XSLT. JAXP is a standard Java extension that can be installed on the client or can be bundled into the applet’s JAR.

Java Secure Socket Extension (JSSE)

The JavaTM Secure Socket Extension (JSSE) is a Java package that enables secure Internet communications. It implements a Java version of SSL (Secure Sockets Layer) and TLS (Transport Layer Security) protocols and includes functionality for data encryption, server authentication, message integrity, and optional client authentication. Using JSSE, developers can provide for the secure passage of data between a client and a server running any application protocol (such as HTTP, Telnet, NNTP, and FTP) over TCP/IP. JSSE is also a standard Java extension that can be installed on the client or can be bundled into the applet’s JAR.

XML Security Suite

The XML Security Suite is an individual API that provides security features such as digital signature, element-wise encryption, and access control to Internet business-to-business transactions. XML Security Suite requires at least Java2 SDK 1.2, Xerces v1.2 and Xalan v1.2 (which are part of the JAXP extension).

SECUDE - Security Development Environment for Open Systems
The SECUDE development kit is a library that offers well known and established symmetric and asymmetric cryptography for popular hardware and operating system platforms. The development kit consists of a set of functions which allows the incorporation of security efficiency in practically any application (e.g. client/server, e-mail, office applications) and a documentation in Hypertext Markup Language (HTML) which describe in detail the C programming interface. There are also various commands collected in a security command shell to ensure an immediate deployment of security.

The development of the client side of the service will be done in Java and therefore the operation environment could be every operating system supporting Java. Support of SmartCards is also requested since SmartCards will provide all the identification information for every user. These characteristics allow the selection of an operating system from the Microsoft Windows family. This of course does not exclude the use of any other OS supporting the above features but the use of SmartCards requires components implemented in C/C++ that reduces the portability of the client end point of the platform. The work will focus on Windows operating systems.
2.1.1.2 Servers

In the HCSP the application logic is partly executed in a server environment. A set of functional servers can be differentiated, comprising generic application-related functions as well traditional and enhanced TTP services (TTPs/ETTPs) securing communications and applications. Besides the Web-/Application Server providing the servlet execution environment, the Authorisation Manager and Attribute Certificate Server support the generic authorisation and access control functionality for a wide variety of applications. The technical realisation is described below.

2.1.1.2.1 Web Server/Servlets

Central parts of the HCSP architecture are the Web server and the servlet engine. They have connections to most of the other components in the system, the applets running inside the Web browser on the client side, the Access Decision Object (ADO) and the database on the server side. The servlets implement one or more services that mediate the data between the users and the study database, while they consult the ADO for the access decisions. It is the place where the user gets authenticated by checking their identity certificate against a list of CA certificates, and where their content signatures get verified.

[image: image5.wmf]Web Server

Servlet

Engine

Database

Web Browser

ADO

Figure 4: Server Components

The base software components to be used shall be the latest stable versions unless they don’t interoperate. The version numbers given below are current as of today, 2001-03-09.

The main server side functionality shall be programmed as Java servlets.

The servlets shall run inside the Apache Software Foundation’s Tomcat 3.2.1 servlet container. It provides the Servlet API 2.2 and Java Server Pages API 1.1 (the latter we do not intend to use as the user interface will be defined by the Applet(s)).

The JDK to be used is version 1.3; Sun’s JSSE 1.0.2 implementation provides the SSL sockets; the XML parser used during compilation and runtime of Tomcat is the ASF’s JAXP 1.1.

An Apache Web Server 1.3.17 provides both static HTML pages and the servlets’ dynamic content. Web server and servlet container get connected via the mod_jk module inside the web server that uses the Ajp13 protocol to the servlet container. The web server’s SSL connections are based on mod_ssl 2.8.0-1.3.17 on top OpenSSL 0.9.6.

The scenario is backed by the PostgreSQL 7.0.3 RDBMS, accessed from the servlets via its JDBC2 interface.

Please see Annex 3 for installation notes for these components.

2.1.1.2.2 Authorisation Manager (AM)

The purpose of the Authorisation Manager (AM) is to provide authorisation and access control services to the servlet. When activated, the AM uses the identity certificate of the user, corresponding attribute certificates and stored access policy information to derive its responses.

The Authorisation Manager (AM) will not be a separate server in the demonstrator. Instead it will be incorporated into the web server described above. The AM will essentially consist of a set of Java classes, an attribute certificate repository (database, described below), and a database with policy information to support the access decisions.
In a full-scale implementation of the HCSP, an on-line AC server is required for returning ACs on request from the AM. The ACs can be generated in advance and stored by (or in connection to) the AC server, or ACs can be generated on the fly containing the requested attributes.

[image: image6.wmf]On-line

Attr

.

Cert

.

Server

Authorisation

Manager

Access query

UserID

, (required

attributes)

Attribute

certificate(s)

Servlet

Figure 5: On-line Attribute Certificate server

For the demo-trial an on-line AC server will not be available, and we must therefore make some simplifications. We have access to an off-line AC server from which we can request ACs by sending an identity certificate by e-mail. The requested AC is then generated and sent back, also by e-mail. Using this service, we will build up a local repository of ACs for all the participants in the demo-trial in advance. This local repository will simulate an on-line AC server by responding to the same requests one would expect from an on-line AC server, as shown below.

[image: image7.wmf]Off-line

Attr

.

Cert

.

Server

Authorisation

Manager

Access query

UserID

Attribute

Certificate(s)

Servlet

Local

Attr

.

Cert

.

Repository

Attribute certificates

for all users taking

part in the demo-trial

(sent by e-mail).

Figure 6: Local repository of Attribute Certificates

We need identity certificates and corresponding attributes for all persons taking part in the demo-trial to build up a repository of all relevant ACs.
The repository will be implemented using the PostgreSQL
 database, and will contain parsed representations of ACs and Java objects. This database will also contain mappings from roles and operations to the conditions that must be fulfilled in order to grant access to specific objects (health records).

Here follows a short description of the tools that will be used in the development of the AM:

Design: UML

UML is used for the design process.

Version control: CVS
For version control and co-development with the servlet developers, CVS
 will be used. A CVS repository will be provided.

Database: PostgreSQL
As a database for storing SQL tables, PostgreSQL
 will be used. PostgreSQL is in addition to SQL also an Object-relational DBMS.

Programming language: Java
With Java as a programming language we can also profit from using the JDBC driver for PostgreSQL
.

2.1.1.2.3 Attribute Certificate Server

This section provides an overview of attribute certificates. First we consider what the framework in which attribute certificates arose is, within the context of the motivation for developing the system within X.509. The advantages that attribute certificates solve with regards to functionality are presented.

The attribute certificate ASN.1 structure can be found in 3.1.1.5.2.2.

We begin with some remarks on the type of information contained in attribute certificates. In generality, attribute certificates convey several different categories of information. These can be found in [4], in which further information contained in this section can be found:

Roles – define the various roles a user may be entitled to perform. These roles are closely linked to the issue of authorization.

Groups – defines the user groups to which a user may belong. These groups may be geographically based, role based, organizationally based, subscription based, etc.

Access identities – provide a means of conveying additional user identification information in the attribute certificate. One example of such is to securely hold a user identity and password which are required to access a particular system. This class is particularly useful when considering legacy systems and single sign-on applications. By means of access identities, legacy systems can be carried over to an attribute certificate framework.

Custom attributes – a means to specify attributes that do not naturally belong to one of the predefined categories.

Restrictions – a mechanism for rescinding some of the attributes implicitly assigned to a user through membership in a group and so forth.

2.1.1.2.3.1 Background and Motivation Behind Attribute Certificates

One of the primary commercial motivations behind the notion of attribute certificates is the fact that in many e-commerce environments one’s attributes are more important than one’s identity. Thus for example, on an e-commerce B2B site, entrance may be restricted to those who are members of a certain commercial organisation, or those who have paid a certain membership fee to a professional association. In such a context, the authorisation process is not based on identity per se, but rather on attributes. In other portions of this document other examples surface of where this distinction is relevant, such as when medical records are made available based on position rather than identity.

The need for attribute certificates has, on the practical level, arisen from the need to use a viable PKI in multi-hierarchy organisations with a wide variety of different authorisations and roles. PKI has not proved itself to be a particularly viable solution in these contexts. Originally, X.509 public key certificates were meant to provide non forgeable evidence of a person’s identity. However, it quickly became evident that in many situations (commercial and other), information about a person’s privileges or attributes can be much more important than that of their identity.

This led to extensions of X.509, to enable additional information such as attributes to be kept in a certificate. Notably, X.509 Version 3 introduced the new concept of certificate extensions-formatted blocks of data that could hold any additional data required. Many systems have taken advantage of this to introduce additional information in private extension fields. However, the somewhat haphazard manner in which this occurred has led to a fragmented system which lacks some interoperability, jurisdiction, and revocation functionality. Streamlining and standardising this process will be an important part of both extending the use of these certificates and taking better advantage of the current systems.

We close this subsection with some words on the issue of interoperability, which is fundamental to the widespread use of certificates. Though the X.509 standard went a long way in enabling disparate systems to interoperate, the introduction of the certificate extension-formatted blocks led to the situation in which different systems could easily define and implement their own private extensions. This plethora of private extensions without a suitable interoperability mechanism has proved a significant flaw.

The approach of X.509 to the issue of interoperability was a lowest common denominator approach based on the concept of “criticality”. In this approach, applications that do not understand an extension simply ignore it. This to a large extent eliminates the benefits of the extensions, except in smaller environments where applications can be programmed to mutually recognise extensions. While for organisations using an internal PKI scheme this can be useful, it does not facilitate the goal of a universal PKI structure.

2.1.1.2.3.2 Functionality of Attribute Certificates

The concept of attribute certificates as has been described here is simple enough. On many levels, however, this relatively simple modification to a standard authentication certificate can facilitate extended functionality that the latter cannot. This is partially due to the fact that as systems expand, the back-office management involved in authorising each individual authorisation request becomes a daunting task. As such, a single Public Key Certificate solution becomes an increasingly less attractive option in such a scenario.

In [3], the following analogy has been made to describe the difference between Public Key Certificates (as issued by today’s PKI’s) and attribute certificates. A Public Key Certificate can be considered as a passport – it identifies the owner, it is usually valid for a long period, it is difficult to forge, and it has a strong authentication process to establish the owner’s identity. An attribute certificate, on the other hand, may be likened to an entry visa – it is usually issued by a different authority than the passport issuing authority, and it doesn’t have as long a period of validity as a passport. To obtain an entry visa usually requires the applicant to present a passport that authenticates the owner’s identity. As such, acquiring the entry visa becomes a simpler procedure. The entry visa will refer to the passport as a part of how that visa specifies the terms under which the passport owner is authorised to enter a country.

The attribute certificate solution thus addresses the jurisdiction issue, and addresses the fact that the most volatile information in a certificate is attribute information (indeed, one changes roles in society and an organisation much more frequently than one changes name). This is done by splitting the X.509 certificate into two certificates, one holding identity information and one holding attribute information. The issuing process thus becomes much simpler, and in some cases the revocation problem as well. Indeed, very short-lived attribute certificates (say of 1 day or even shorter) need never be revoked, since they simply expire.

This approach has many advantages with regards to RBAC (Role Based Access Control) as stated in this section. As an aside, we note that while attribute certificates facilitate RBAC, their use is not necessarily restricted to such. There are potentially uses of attribute certificates that fall into certain billing schemes which do not strictly fall into the framework of RBAC.

There are also challenges with this approach, such as for example how to manage and issue such short-lived certificates. At present there is still debate as to whether short-lived certificates are a better solution than managing longer term certificates and the better choice is often system dependent.

We now consider some of the specific functional components of attribute certificates such as issuing, distribution, revocation, and identity/attribute relationship.

At present, the basic structure of attribute certificates is defined in X.509 (see 3.1.1.5.2.2 of the present document). A number of standards are being drafted with regards to the more detailed implementation of attribute certificates. Beyond the present work and related items within ETSI, see also the IETF draft for attribute certificates over the Internet [6].

Issuing AC’s. The X.509 definition explicitly states that the authority issuing AC’s is a CA. This sometimes leads to the implicit assumption that the authority issuing AC’s will be the same one issuing identity certificates, or at least will be operating under similar rules and procedures. There are however many reasons why this should not be the case, as also outlined elsewhere in the present section. For one, identity certificates are often issued by government run authorities, or by authorities with a very strong regulation from the government. The distance between the end-user and such an organisation is often great. An AC, however, requires a more local knowledge of a user’s rights and privileges. Also, the frequency with which short-lived certificates are issued is not facilitated by the aforementioned CA. Thus AC are best issued internally within an organisation, where they can be issued on a regular and nearly automatic basis. The fundamentally different nature of identity and attribute traits should be reflected in the issuing model that each one uses.

Attribute Certificate Distribution. There are two primary models for the distribution of attribute certificates. The “pull” model reflects standards contained in X.509. Attribute Certificates are published in a directory (eg. X.500) at the time of issue. When an application requires the use of an AC, they retrieve or “pull” it. On the other hand, the “push” model involves the user supplying their AC directly to the application at the time of request of access (similar to the manner in which users present a password in conventional access control systems). The choice to use the “pull” or “push” method is usually dependent on system requirements and the available infrastructure. Both models have their advantages and disadvantages within certain implementation contexts.

Attribute Certificate Revocation. X.509 calls for the use of attribute certificate revocation lists (ACRL’s) to deal with revoking AC’s. This is done in an analogous manner as for identity certificates. Note that when attribute certificates have a very short life span, it may not be necessary to maintain an ACRL at all. The question of whether to revoke certificates is also system dependent.

Identity/Attribute Relationship. Attribute certificates depend of course on identity certificates. Typically, the verification process the application performs involve the following steps:

The application validates the user’s identity certificate, verifying that it is correctly signed by a CA, and by determining that it trusts one of the CA’s in the hierarchy under which the certificate was issued. Details of this hierarchy can be found by following the information contained within the certificate.

The application then verifies the identity of the user, usually by performing a cryptographic challenge-response protocol. The application can verify the responses in this protocol by means of user’s public key as provided in their identity certificate. The nature of the public key/ secret key combination assures the application that only the valid party could have provided the correct responses with the challenge-response protocol. These challenge-response protocols cannot be replayed at a later date since the challenge will in each instance be different.

The application then obtains the attribute certificate, and verifies its identity by determining that it was issued by a trusted entity, that its signature is valid, and that it has not expired. Most importantly, the application checks that the owner of the AC is the same as the owner of the validated identity certificate. This step is indeed critical, since often attribute certificates are public (and even if they are not explicitly public, in many organisations the nature of a certain employee’s authorisations and roles will be common knowledge).

Lastly, the application checks the attributes within the attribute certificate and then determines whether or not the given user is allowed to access the requested service. There are other variations possible at this stage, such as billing and so forth.

2.1.1.2.3.3 Comments on Attribute Certificate Fields

In section 3.1.1.5.2.2 the attribute certificate structure is described in detail. The interested reader is referred to that section for a detailed description of the Attribute Certificate ASN.1 structure.

Here we make mention of some complementary points regarding AC’s, with relation to the points made in the previous paragraphs. In an attribute certificate, as in a Public Key Certificate, the data structure is defined using ASN.1 notation. The issuer information and the serial number from the holder’s Public Key Certificate define the holder information in the AC. When this field is completed, the AC is then bound to the corresponding PKC. As mentioned in the previous subsection, this binding is critical since without it, someone who has been properly identified could still attempt to make use of another party’s attributes.

The AC issuer field contains information relating to the AC issuer. In this way it plays a comparable role to that of the issuer field in public key certificates. Note that the AC time-life is defined in the validity field, and as such separates the privilege life-time from the user information life-time. As mentioned earlier, the lack of distinction between these fields in PKC is a major disadvantage when using PKC to determine access control. Indeed, the different nature of privilege information and user information justifies this separation. As well, this separation facilitates the use of privilege information for other uses such as billing.

Within the RBAC model, authorisation information is placed in the attributes field. This information contains a set of attributes. Such attributes can relate to group membership, roles, subscription status, and so forth. This information always relates to the holder of the certificate. For a list of standard attributes, the interested reader is referred to [7].

2.1.1.3 Database

For implementing health telematics applications aim to collect, record, store and process (mostly personal and sensitive) medical data, a database system behind is needed. Also in the context of the medical HARP scenario for clinical studies and trials including collection of medical data, a well-developed data structure must be specified. Criteria for selecting a database are the architectural paradigm defined for the application environment (object-oriented vs. non-object-oriented), availability, license fee, intended use of data, user friendliness, tools, interfaces provided etc.

Regarding the use of data, we have to meet different intentions related to security requirements for health telematics applications. Most of them concern communication security services, such as mutual strong authentication of principles, integrity, confidentiality, and availability of information, accountability for data transfer and notary’s services. These services have to be established in the communication context. Contrary to communication security services, application security services, e.g., authentication of origin, integrity, availability and confidentiality of stored data, authorisation, access control, and accountability for data and functions, are mostly related to database functionality. Some of the services mentioned are commonly implemented using digital signature mechanisms. For establishing a legally binding archive of data exchanged, two ways can be offered:

· the information exchanged is not allowed for being transformed or manipulated in any way during or after transfer of data as well as in context of information use on database level or

· the information is signed on the data item level not allowing any changes at this level.

Considering the scenario of information transfer within HARP, the XML standard set will be deployed. Therefore and because of the unacceptability of signing single items by the user, two databases will be established (see Archive Server and Database Server in Figure 1):

· at the one hand database serving as an electronic archive which contains only signed and transferred information as a record of XML messages as well as some key and management data and

· at the other hand the active database containing the relevant data items in a structured form.

The two-database approach has been implemented successfully in the UHM ONCONET solution and will be used also in the HARP demonstrator context.

Especially the properties of availability, license fee, interfaces and user friendliness led to the decision of using MS Access as database. In the future, this decision may be changed towards object-orientation.

Because of not fulfilling the relations’ paradigm completely, MS ACCESS is often called a quasi-relational database. Nevertheless, as a part of MS Office Suite sold as OEM license with PCs, it provides run-time modules for applications and is Windows-embedded using tools and mechanisms like OLE and ODBC, by that way being a favourite. Finally, MS Access provides the interface needed to export data to SPSS which is the widely accepted application for exploring data statistically.

A major disadvantage seems to be that MS ACCESS is not platform-independent but requires MS Windows operating systems such as MS Windows 9x, MS Windows NT, MS Windows 2000. In the future, a switch to open systems such as Linux may be expected.

The database contains the application data items, such as data about the actors involved (personal and organisational data), further demographics and medical data of patients, as well as their relatives, primary, secondary and foreign keys for organising the database and facilitating data retrieval, flags to control the application’s behaviour, but also data to administrate the database including users authorisations (create, read, write, update, delete, lock, audit) depending on the actors’ roles.

The database structure has been developed starting with a single sheet of items, which has been transformed to the third normal form. The final structure has been practically implemented in a MS Access database.

2.1.1.4 Smart Cards

In the different implementation models for health information systems’ (HIS) architecture as well as access models towards electronic health care record systems (EHCR), professional cards and data cards as a secure token on the one hand and health telematics services on the other are synergetic. A development and implementation of both technologies in a co-ordinated manner is required for two main reasons:

· the card is a physical carrier of data and a medium able to supplement and integrate the existing physical infrastructure for data transfer: where the network is not available, the patient or professional, moving from one point of services or business to another and carrying in a card his or her own data and pointers to remote databases, actually „makes“ a sort of „virtual“ flexible infrastructure that can substitute and complement the „physical“ infrastructure;

· the card is a key to access the telematics infrastructure, providing the necessary user identification and authentication and other security requirements: both the patient’s card (containing the pointers to federate remote databases) and the doctor’s professional card (containing the profile of the user and the associated rights to access the system and its services) are essential elements for the overall networked system.

From the professionals’ point of view the smart card is considered to be some sort of a licence for health professionals (HP). Several national and European projects have already been using this technique. Secret keys are stored on the card; public key certificates can be stored there as well. But that’s only one aspect. To address a cardholder as an HP the most important professional data (e.g. qualification, speciality, additional medical experience, etc.) are stored in the card. From the patients’ point of view the smart card could be considered as a database. Bearing medical data as, e.g., information items about diseases, allergies, specific prescriptions and other important data related to the health of a person, the card is able to improve the mobility of individuals within Europe and the world.

Within several projects and standardisation initiatives (German DIN, European CEN, international ISO, etc.), prototype solutions for a specific health care and welfare smart card have been designed. Based on the work of defining and specifying card structure and content, and on the experience of one of the most important security-related European projects called „Trustworthy Health Telematics” (TrustHealth), the Medical Informatics Department of the Otto-von-Guericke University of Magdeburg, Germany, has finally introduced a professional smart card for physicians and other medical staff - the Health Professional Card (HPC) - and the related Trusted Third Party (TTP) security services. In co-operation with current regional, national, and international projects in the area and close to the legal courts and the standardisation bodies (DIN, CEN, ISO), the Magdeburg pilot will help to improve the communication security as well as the application security in the context of a real medical application - for sure that could be interesting also for several other business sectors. Nevertheless, each new implementation process or preparation needs to carefully investigate the current market situation for smart card and smart card terminals because different card solutions (including their operating systems) might provide different cryptographic algorithms. One important item is the maximum storage space in the card. The available products have been evaluated, the requirements of the pilot defined before have been updated. At least the cards and card terminals of a well-known German vendor are chosen to be used.

To ensure communication as well as application security, the HPC and related Trusted Third Party (TTP) services are used within a European security infrastructure according to the TrustHealth project as well as the HARP project aims and goals. Hereby, the HPC is a defined as a microprocessor card with an additional co-processor specialised for cryptographic algorithms. The authentication provided concerns both the identity and the authorisation of the Health Professionals (HP). The identity-related certificate(s) issued by a market-driven and evaluated CA following the new German legislation for both data protection and data security as well as on electronic signatures at all guarantees the first. The latter is expressed by several attribute certificates issued by the Physicians’ Chamber (specific domains of care or specific qualifications), by the Statutory Health Care Administration “Kassenärztliche Vereinigung” (specific permissions), or by employers (hospitals, health insurance companies, etc.). The card contains secret keys with dedicated usage as, e.g., for authentication, digital signature and encryption (e.g. of the session key) as well as the X509 v3-based certificates mentioned. In the card’s Master File, the global profession (physician, nurse, etc.) is specified. Beside the authentication, the HPC facilitates also the other communication security services addressed above. Based on the identity and the roles of the user on the one hand and the decision rules agreed in the security policy on the other, the HPC also enables the application security services which are related to the person as authorisation, access control, integrity, confidentiality, accountability and audit. Details of the German HPC specification and specific additions required for the UHM pilot implementations will be provided in the next paragraphs. The full text of the specification can be found in Annex 2.

The German specification for an electronic doctor’s license as a prototype for a European HPC defines among others the technical characteristics, several conventions of data transmission, the complete file and data structures, related security mechanisms, all required commands belonging to the HPC usage and the structure and content of certificates. This is done explicitly an HPC type suitable for physicians. It is defined using a generic approach in order to allow the specification to be adaptable also to the needs of other health professionals. The HPC specification takes into account the German signature law (SigG) and associated regulations (SigV), the DIN specification for Digital Signature Cards (SigI) and for an office identity card (OIC), the relevant ISO-Standards (especially ISO / IEC 7816 Parts 4, 8 and 9), several existing HPC specifications (e.g. TrustHealth specification TH.HPC) and other sources (e.g. information from German health care projects).

German HPCs, as used in Magdeburg, are contact based smart cards capable of processing PK algorithms. The physical characteristics complies to ISO/IEC 7816-1 and other related standards.

Before access to the security services is possible, the HP authentication is required, i.e. the health professional has to present his verification data (PIN or password, in future possibly also biometrical data). For knowledge based authentication (PIN or password presentation) a minimum length of 6 characters is required, a maximum length of 8 is already supported. The PIN or password can (and shall periodically) be changed at any time and the retry counter which allows no security service usage after 3 subsequent fault presentations of the verification data can be reset, if the related resetting code is typed in by the HP.

After successful HP authentication the HPC is ready to provide security services in principle without limitations, i.e. computations of digital signatures, possible interactions with patient data cards (not considered here), cipherment operations, and reading of certificates (for certificate information see chapter 3.1.1.5.2). The software system running e.g. on the doctors’ office computer or a hospital information system provides configuration possibilities for using security services due to the usage requirements of the HP requested by German law (in the following the digital signature is a placeholder for any kind of security service):

· HP authentication only once after application selection;

· HP authentication before each digital signature;

· HP authentication before the n-th digital signature, or

· before a digital signature, if a defined time span has passed without a signature.

The actual type of smart cards used has been produced by the German vendor Giesecke & Devrient, Munich. A 16 kB card is used managed by the card operating system STARKOS 2.3.

2.1.1.5 Data Interchange Formats

2.1.1.5.1 XML

One of the interfaces between the components of the HCSP and probably the most important is the interface between the client applet and the servlets. This interface is the most vulnerable since it is exposed over the public Internet and additionally the most complicated since messages regarding both medical data transfer and policy related information is transferred over it. This complicated nature has dictated the use of a flexible format according to which the exchanged information is compiled; therefore XML has been selected as the most appropriate format. The use of XML allows for future extensions of the application in a way that leaves intact the communication mechanism and the XML processing component requiring only update of the service logic that can be achieved through work that is clearly distinct from the security and networking part of the applet.

Since the XML affects both the client and server side it is obvious that in both sides there are equivalent components that deal with the XML processing and signing procedure providing the service related components with the appropriate data in an easily usable form.

Below is a sample application screenshot (Figure 7) from the applet, as it has been preliminarily developed in WP4, and the corresponding XML document containing the relevant data for a patient (the data fields presented here correspond to the data of the demographic table described in Annex 5)

This file is not accompanied by the relevant DTD. It is assumed that after the file has been processed by the XML parsing module, the service related components would easily access the appropriate fields. A DTD can validate the exchanged document structure.

[image: image8.png]Patient Basic Information | Medical Data 1 | Medical Data 2.

Organization ID:

Organization Name:

Patient ID:

———
e T E—
T |
T T

Patient Sex:

P e —)

Mather's Heigt

Father's Height:

Docurment Type:

Figure 7
	<?xml version="1.0" encoding="utf-8" ?>

<reply status="OK">
 <PatientData>
 <Identification>
 <OrganizationId visible="true">14565</OrganizationId>

 <OrganizationName>Org. Name</OrganizationName>

 <PatientID>3456</PatientID>

 <UniversalPatientId>5678</UniversalPatientId>

 <PatientDateOfBirth>11/1/1980</PatientDateOfBirth>

 <PatientSex>Male</PatientSex>

 <PatientMultituplets>Second in the set of multituplets </PatientMultituplets>
 </Identification>
</PatientData>
</reply>

2.1.1.5.2 Certificates

Among others, health-related security mechanisms for the medical applications considered here do require both server (application) certificates and user certificates. This requirement includes different certificate types for different services foreseen. So both key certificates and keyless ones have to be taken into account when a secure application is designed. The former certificates are often termed public key certificates because they contain a public key for an asymmetric cryptographic algorithm as, e.g., RSA whereas the latter are often called attribute certificates. Within the German health professional card (HPC) specification for the issuance of a nation-wide electronic doctor’s license, certificates for three different services or functions are required. In the context of HARP, the UHM demonstrator application is using at least the following certificates:

· one digital signature (DS) certificate (X.509 v3 digital signature certificate), and several attribute certificates;

· one authentication (AUT) certificate (X.509 v3 authentication certificate), and

· one key exchange (KE) certificate (X.509 v3 key encipherment certificate).

Both types of certificates have to be designed, specified and implemented according to national and international specifications and standards. Here, X.509 v3 is for sure one of the most important well-established standard frameworks for certificates.

Generalising the concept of security according to the generic security model [e.g. B.Blobel, F.Roger-France: A Systematic Approach for Secure Health Information Systems. International Journal of Medical Informatics (2001) (in print)], communication between principals (users, organisations, systems, devices, applications, components, objects) must be considered. Following, certificates have to be issued for principals in general. In the HARP demonstrator context however, this generalisation can be neglected.

Another issue is cross-certificates, referencing between different certificate domains.

2.1.1.5.2.1 Identification Certificates

In this chapter, only identity-related certificates will be considered. Attribute certificates (to be seen as an addition to identity (PK) certificates because they are valid only in connection with in minimum one PK certificate) will be explained in more detail in chapter 3.1.1.5.2.2.

The three PK certificates used have a rather similar structure only distinguished because of their key usage field. The following table shows the digital signature (DS) certificate in table format. Only fields relevant to a PK certificate for a health professional within the context of the German specification are listed. This finally means that other additional fields are feasible. In such a certificate all fields classified as mandatory according to the German electronic signature legislation (SigG and SigV) specification (SigI) are also qualified as mandatory for an HP certificate in order to completely fulfil German legislation demands. The field contents written in italic differ from the general HPC specification and illuminate special adaptations and clarifications made for the UHM ONCONET pilot application.

Table 1: Fields and content of PK certificates for German HP in general and for UHM
	CertificateField
	Content

	version
	X.509v3

	serialNumber
	Serial number
	

	signature
	AlgorithmIdentifier for CA signature
	

	issuer

· countryName

· organisationName
	Certification Authority:

· DE for Germany

· GMD (as example for a German CA)
	

	validity

· notBefore

· notAfter
	Validation period:

· Generalized Time

· Generalized Time
	

	subject

· countryName (C)

· D

· SN

· commonName (CN)
	Certificate holder:

· DE for Germany

· Registration Authority

· Serial Number

· Common name in its full form (Vorname Name)
	

	subjectPublicKeyInfo

· algorithm

· subjectPublicKey
	PK data:

· OID of algorithm incl. parameters if any

· Coding of PK with modulus and public Exponent
	

	extensions

· basicConstraints

· key usage

- certificatePolicies

· authorityKeyIdentifier

· subjectKeyIdentifier

subjectAltName
- PersonalData
- ...
- admission
	Extensions

· Classification as end user certificate

· non-repudiation, i.e. usage of certificate restricted to digital signatures according to SigG requirement

- Indication of SigG Conformance

- KeyIdentifier

· KeyIdentifier

· Subject alternative name with surname, given name, date of birth, gender and possibly e-Mail address of certificate holder

· professional admission

· others: not yet

	

	signatureAlgorithm
	AlgorithmIdentifier for CA signature

(Value identical to signature field in
Certificate Content)
	

	signature
	Signature of CA
	

The AUT certificate and the KE certificate are X.509v3 public key certificates. The AUT certificate contains information suitable for either user identification, if access rights at the server side are UID oriented, or for proving access rights, if no UID is registered and access rights are bound to authorisations denoted in the certificate (i.e. the profession indication PHYSICIAN). The KE certificate contains information about the receiver of a confidential document. The coding is identical to the DS public key certificate with the following changes:

· there is no policy field indicating SigG conformance;

· key usage is set to "authentication" in the AUT certificate;

· key usage is set to "key encipherment" in the KE certificate, and

· the OID has to be set according to the use of the PK certified.

In Annex 2, a real ASN.1 certificate structure example and/or a HEX example is given.

2.1.1.5.2.2 Attribute Certificates (ACs)

X.509 public key certificates (PKCs) bind an identity and a public key. An attribute certificate (AC) is a structure similar to a PKC; both an AC and a PKC structure can be specified using ASN.1, both contain fields like Version, Issuer and so on. The main difference being that the AC contains no public key but attributes as its most important asset. An AC may contain attributes that specify group membership, role, security clearance, or other authorisation information associated with the AC holder.

With the use of ACs we intend to separate authorisation information from the PKC. Yet, authorisation information also needs to be bound to an identity. An AC provides this binding; it is simply a digitally signed set of attributes which belong to some identity.

PKCs can provide an identity to access control decision functions. However, in many contexts the identity is not the criterion that is used for access control decisions, rather the role or group- membership of the accessor is the criterion used. Such access control schemes are called role-based access control. For more information see HARP D3.1 section 4.7.1.2.

When making an access control decision based on an AC, an access control decision function may need to ensure that the appropriate AC holder is the entity that has requested access. One way in which the linkage between the request or identity and the AC can be achieved is the inclusion of a reference to a PKC within the AC and the use of the private key corresponding to the PKC for authentication within the access request.

Thus clients can be digitally identified through PKCs issued by CAs. They can be authenticated by the access control decision function by submitting their PKCs and proving their ownership of the corresponding private key. To gain access to resources, the user shall be submitted to an authorisation step, which consists of reading the privileges the authenticated client has and checking if these privileges allow the user to access the requested resource. In this specific scenario the access control decision function pulls the client’s AC(s) from a directory service and extracts the needed privileges. Whether these may be used depends on the access control decision function's security policy.

Terminology

AA
Attribute Authority, the entity that issues and signs the AC.

AC
Attribute Certificate.

AC user
Any entity that parses or processes an AC.

AC verifier
Any entity that checks the validity of an AC and then makes use of the result.

AC holder
The entity indicated (perhaps indirectly) in the holder field of the AC.

CA
Certification Authority, the entity that issues the PKC, synonymous in this context with "PKC issuer".

Client
The entity which is requesting access to a particular resource for which authorisation checks are to be made.

PKC
Public Key Certificate - uses the type ASN.1 Certificate defined in X.509 and profiled in RFC 2459. This (non-standard) acronym is used in order to avoid confusion about the term "X.509 certificate".

KPN X.509 Attribute Certificate Definition

The IETF Attribute Certificate Profile [9] not only specifies the appearance of an attribute certificate but also the generation and handling of one. For example “Each AC issuer
 MUST ensure that each AC that it issues contain a unique serial number” and “AC users MUST be able to handle serialNumber values longer than 4 octets. Conformant ACs MUST NOT contain serialNumber values longer than 20 octets”. Our goal within HARP is to provide ACs for use within the HARP demonstrator. While doing so we will try to be as [9] compliant as possible.

Abstract Syntax Notation One (ASN.1)

Abstract Syntax Notation One (ASN.1) is a formal language for abstractly describing data structures to be exchanged between distributed computer systems (for an introduction see [11]. Previously, ASN.1 was used to write application, national and international standards. However more recently with the advent of ASN.1 software tools, ASN.1 has been used to generate programming language code that forms the core of a wide variety of messaging systems applications. The X.509 standards for public-key and attribute certificates use ASN.1 to define their data-structures.

These structures, described using ASN.1, can be encoded using one of its predefined encoding rules. ASN.1 encoding rules are sets of rules used to transform data specified in the ASN.1 language into a standard format that can be decoded on any system that has a decoder based on the same set of rules. Different encoding rules can be applied to a given ASN.1 definition. Two of the ASN.1 encoding rules currently standardised are Basic Encoding Rules (BER) and Distinguished Encoding Rules (DER). BER was created in the early 1980s and is used in a wide range of applications. DER is a specialised form of BER that is used in security-conscious applications. These applications, such as electronic commerce, typically involve cryptography, and require that there be one and only one way to encode and decode a message.

Attribute Certificate ASN.1 structure

In this section the definition of an AC is stated. All types that are not defined in this document can be found in [8]. For convenience they are repeated in Annex 6: Other ASN.1 Types. Items in italic are NOT implemented in this part of the HARP demonstrator because of optional items like extensions or choice items like AttCertIssuer.

 AttributeCertificate ::= SEQUENCE {

 acinfo AttributeCertificateInfo,

 signatureAlgorithm AlgorithmIdentifier,

 signatureValue BIT STRING

 }

 AttributeCertificateInfo ::= SEQUENCE {

 version AttCertVersion DEFAULT v1,

 holder Holder,

 issuer AttCertIssuer,

 signature AlgorithmIdentifier,

 serialNumber CertificateSerialNumber,

 attrCertValidityPeriod AttCertValidityPeriod,

 attributes SEQUENCE OF Attribute,

 issuerUniqueID UniqueIdentifier OPTIONAL,

 extensions Extensions OPTIONAL
 }

 AttCertVersion ::= INTEGER { v1(0), v2(1) }

 Holder ::= SEQUENCE {

 baseCertificateID [0] IssuerSerial OPTIONAL,

 -- the issuer and serial number of

 -- the holder's Public Key Certificate

 entityName [1] GeneralNames OPTIONAL,

 -- the name of the claimant or role

 objectDigestInfo [2] ObjectDigestInfo OPTIONAL

 -- if present, version must be v2
 }

 ObjectDigestInfo ::= SEQUENCE {

 digestedObjectType ENUMERATED {

 publicKey (0),

 publicKeyCert (1),

 otherObjectTypes (2) },

 -- otherObjectTypes MUST NOT

 -- be used in this profile

 otherObjectTypeID OBJECT IDENTIFIER OPTIONAL,

 digestAlgorithm AlgorithmIdentifier,

 objectDigest BIT STRING

 }
 AttCertIssuer ::= CHOICE {

 v1Form GeneralNames, -- v1 or v2

 v2Form [0] V2Form -- v2 only

 }

 V2Form ::= SEQUENCE {

 issuerName GeneralNames OPTIONAL,

 baseCertificateID [0] IssuerSerial OPTIONAL,

 objectDigestInfo [1] ObjectDigestInfo OPTIONAL

 -- at least one of issuerName,baseCertificateID

 -- or objectDigestInfo MUST be present

 }
 IssuerSerial ::= SEQUENCE {

 issuer GeneralNames,

 serial CertificateSerialNumber,

 issuerUID UniqueIdentifier OPTIONAL

 }

 AttCertValidityPeriod ::= SEQUENCE {

 notBeforeTime GeneralizedTime,

 notAfterTime GeneralizedTime

 }

 Attribute ::= SEQUENCE {

 type AttributeType,

 values SET OF AttributeValue

 -- at least one value is required

 }

 AttributeType ::= OBJECT IDENTIFIER

 AttributeValue ::= ANY DEFINED BY AttributeType

Attribute Certificate visual structure

The AC attribute certificate fields contain Version, Holder, Issuer, SignatureID, Serial Number, Validity Period, Attributes and signatureValue generated by the Attribute Authority. The two figures below show a client’s AC and the corresponding PKC structure.

[image: image9.wmf]issuer

issuer

serialNumber

signature

serialNumber

validityPeriod

attributes

holder

type

value

version

signatureValue

v1

CN=Certificate Authority, O=KPN, C=NL

123456789

CN=Attribute Authority, O=KPN, C=NL

sha1WithRSAEncryption

6394243734

December 10, 2000 - December 10, 2001

2.5.4.72 (role) {id-at-role}

doctor

DE54 023A 4933 FFF7 3EDO ED23 …

Field

Value

Figure 8 KPN Attribute Certificate

[image: image10.wmf]Field

Value

issuer

signature

subject

validityPeriod

SubjectPublicKeyInfo

serialNumber

version

v3

123456789

md5WithRSAEncryption

CN=Certificate Authority, O=KPN, C=NL

September 12, 2000 - December 20, 2001

CN=Hiddo Hut, O=KPN, C=NL

rsaEncryption

AAF1 DE54 CA12 34A7 3EDO EC42 …

…

…

Figure 9 Public-Key Certificate

Authorisation information is placed in the attributes field. It contains a set of attributes that can define group membership and roles among others, as defined by the IETF PKIX AC Profile [9]. All information contained in the attributes field is related to the holder. Our current AC server process generates the ‘role’ attribute ({id-at-role}) and the roleValues can be selected at run-time.

Extensions can be used to facilitate other security services, typically related to the attribute certificate and not to the holder. Extensions are qualified as critical or non-critical, and any AC User application should be able to read and interpret a critical extension before accepting the certificate. One possible extension for example could be the AC Targeting extension ({id-ce-targetInformation}). To target an AC, the target information extension may be used to specify a number of servers/services. The intent is that the AC should only be usable at the specified servers/services. An AC verifier who is not amongst the named servers/services must reject the AC. If this extension is not present, then the AC is not targeted and may be accepted by any server. Extensions are currently not implemented in our ACserver process.
Linking an Attribute Certificate to an identity

An AC User like the access control decision function can retrieve information about the holder of an attribute certificate by examining the AC field ‘holder’. It contains a reference to the holder’s PKC by means of the PKC’s issuer (Certificate Authority) and the PKC’s serial number. That way the attribute certificate is bound to the corresponding PKC. A client's PKC and AC are both needed for the authentication and authorisation steps to succeed. Both the AC and the AC holder's PKC certification paths must be verified. This means that an AC User like the access control decision function needs at least one PKC and one AC for each client as well as access to the corresponding CA and AA public key certificates in order to verify the certification paths.

We chose to let the AC explicitly reference the PKC which means that clients must be authenticated using a PKC and prove their ownership of the corresponding private key.

2.1.1.6 Communication Protocols

2.1.1.6.1 SSL

All the publicly exposed transactions in the context of the HCSP are safeguarded by the use of the SSL. As already mentioned the first action is for the browser to establish a mutually (user and server) authenticated SSL session (step 1 in Figure 2). For all corresponding cryptographic functions, the smart card is accessed. Subsequently, after the applet has been downloaded, an additional SSL session (again mutually authenticated and subject to finding the card in the slot) is established (step 3 in Figure 2).

[image: image11.wmf]WEB Server

WEB Browser

Applet (plug

-

in)

1

2

User

Servlets

3

WEB Server

WEB Browser

Applet (plug

-

in)

1

2

User

WEB Server

WEB Browser

Applet (plug

-

in)

1

2

User

Servlets

3

Figure 10: SSL sessions

2.1.1.6.2 SFTP

In this section a communication protocol is described that offers user and system authentication as well as a secure control and data connection. This protocol is a security enhanced version of the fundamental file transfer protocol (FTP) provided in RFC 959 and is based solely on standards (e.g. ISO, NIST FIPS-PUB, ANSI and IETF/IESG RFCs). The protocol is called the secure file transfer protocol (SFTP). It has been specified in the HL7 community for an informational standard becoming a fundamental solution for open and interoperable EDI communication security.

SFTP has been developed and implemented for TCP/IP-based networks at the Magdeburg Medical Informatics Department. Following the client/server architecture, SFTP is composed of the Secure File Transfer Program Client (SFTPC) for the client systems, and the Secure File Transfer Program Daemon (SFTPD) running on the server. SFTPC is developed as a separate component (DLL) that can be integrated into virtually any application. Therefore, a graphical user interface (GUI) has been developed for this component offering comfortable access.

SFTP realises communication security for file-based end-to-end transmission including strong mutual system authentication, message integrity (including data origin authentication), message confidentiality, and accountability in the sense of non-repudiation of origin and receipt.

The software is written in C/C++ (MS Visual C++ 5.0) and based on Windows9x/Windows NT. Several software packages and some hardware devices are needed for realisation. Security mechanisms are supplied by the security engine SECUDE offered through various application programming interfaces (APIs). SECUDE has originally been adjusted by the GMD Darmstadt for the usage of Health Professional Cards (HPC) and is currently under development by SECUDE GmbH Darmstadt, a GMD spin-off. The smart card and the card terminal is accessed through the CT-API included by SECUDE.

According to communication security, SFTP wraps messages applying various selectable cryptographic message syntax as PKCS#7, security multiparts for MIME, S/MIME, MOSS or PGP/MIME. Security based on MIME takes advantage of the object-based features of MIME and allows secure messages. In general, SFTP is independent of the cryptographic syntax used, thus any other syntax can be implemented without much effort. Moreover, since SFTP is file-oriented, it can be used in any desired environment for the secure delivery of data files containing any type of data (such as HL7, EDIFACT, X12, xDT
, XML messages or arbitrary binary data). This openness is achieved by messages wrapping realising communication security and protocol negotiation using tag-length-value encoded data.

Different operation modes, i.e. plain text, signed‑only, encrypted-only or signed-and-encrypted can be selected for message transmission according to the security policy given. Character encoding using the Base64-encoding scheme and canonicalisation are applied for system interoperability preventing loss of data bits that may lead to invalidation of the digital signature. For establishing a public key infrastructure (PKI) using trusted public keys, all public keys are embedded into a certificate whose structure is following X.509, and the distinguished names (DN) used therein conform to X.501. The certificates are stored and managed in X.500 or LDAP directories.

For system authentication, a strong mutual three-way challenge-response authentication protocol (applying token identifiers, sequence numbers, timestamps) based on the ISO standards has been implemented.

The control connection transmitting commands and reply codes is secured by integrity and non-repudiation services using e.g. token identifiers, sequence numbers and timestamps to enhance the level of security.

SFTP offers different cryptographic protocols for the data connection like PKCS#7-only, Security Multiparts for MIME (RFC 1847) and S/MIME. However, any desired cryptographic syntax can be implemented additionally for the data transmission (as PGP/MIME or other). In general, this connection is secured by confidentiality, integrity and the non-repudiation services.

An application‑independent interface for data exchange between the application program and the chipcard terminal driver is offered by the Card Terminal API (CT-API). Furthermore, this API is independent of the physical I/O-interface used by the chipcard terminal (here a serial interface following ISO 7816-3 is utilised) and is capable of accessing different kinds of chipcards (like memory or processor cards).

Chipcard commands for basic function support (just as chipcard terminal reset and status, chipcard request and ejection, display access for showing informational text and handling of the PIN-pad for PIN input, PIN verification and modification) and their structure (following ISO 7816-4) are described in an application‑independent way by the Card Terminal Basic Command Set (CT-BCS). Both specifications of the CT-API and the CT-BCS are contained in the Multifunctional Card Terminal (MCT) specification enabling chipcard-based applications and their interoperability for health care by providing application-independent access to chipcards using different communication protocols and standardised interfaces.

For more details, please refer, e.g., to [13] and [14].

2.1.1.7 Interfaces

2.1.1.7.1 Authorisation Manager (AM)-Servlet

The AM will be a set of classes incorporated as part of the server. Interaction will then be simple method calls and we need not worry about transport security.

The interface will consist of a class named AM (Authorisation Manager) with three public methods:

getRoleList():

Input: User.

Output: Role(s).

getServiceList():

Inputs: User, Role(s).

Output: Service(s) (i.e. Clinical trial and/or Remote examination).

accessAllowed():

Inputs:
ResourceName, Operation, AttributeList

Output: Boolean (i.e. "yes" or "no")

ResourceName: List of (type, value). Types used in the demo: Data entry identifier, Patient ID, Documentation instance ID, Validity flag and Proof instance ID.

Operation: In the demo: create, validate, accept and view.

AttributeList: List of (type, value). Types used in the demo: User ID and Role.

The accessAllowed() method uses the same type of interface as is defined in a draft from the Object Management Group, "Resource Access Decision Facility Specification".

2.1.1.7.2 Applet / XML component – Servlet

The HARP XML Data Translator Component (HXDT) will be used on the server side as an XML interface component between the client applet and the servlet-based server. Technically speaking, the HXDT will consist of a package or a simple set of classes that will provide two kinds of services:

a) The HXDT will provide the functionality for extracting information from the XML document sent by the client applet. Specifically it will extract information about the fields that must be updated in the database and the respective new values. The HXDT will not translate the XML document into SQL code; however, it will provide all the necessary information in order to help the servlet side to create this code.

b) The HXDT will provide functionality for creating an XML document containing the necessary information that has to be sent to client by the servlet-based server. Specifically, the component will be responsible for gathering all information provided by the server concerning database fields, respective values, read/write access rights etc. and construct the appropriate XML document that will be sent to the client.

The following paragraph describes the technical details concerning the main class (object) that will be used, input output parameters/objects etc.

Technical description

The description provided in this section is a first draft, the purpose of which is to show the component’s functionality in technical terms with the help of the Java programming language. Those specifications will be reviewed an adjusted according to the needs.

Implementation of service (a)

The servlet will instantiate an object of the XMLDataTranslator class, as shown in the code snippet below:

XMLDataTranslator dataTranslator=new XMLDataTranslator();

The servlet will call the parse method of the XMLDataTranslator class, in order to initiate the parsing procedure. The parse method will have as input argument an java.io.OutputStream object that will provide the XML document to be parsed. The method’s return type will be a boolean value that will indicate the success or failure of the parsing procedure. The parse method will have the following declaration:

public boolean parseXMLDocument(OutputStream xmlDocumentStream)

Parsed data will be encapsulated in an internal structure of the XMLDataTranslator class and the servlet will be able to access them via the getFieldData method. The method will have the following signature:

public FieldData[] getFieldData()

FieldData is a custom helper class that will hold all the data regarding the SQL update procedures. The class will function as a three-dimensional array (or with more dimensions if needed) as shown in the figure below.

The class will provide the following methods.

public boolean hasMoreFields()

public void next()

public String getFieldName()

public String getFieldValue()

public int getValueType()

public String getFieldDataName()

The functionality provided by the methods described above is obvious. As far as the last method is concerned, the return value will indicate the data type of the respective field value. Standard field types that map to respective SQL types (static Java constants) must be defined. For example, the FieldData class may contain the following declarations:

static int INTEGER=1;

static int FLOAT=2;

static int DOUBLE=3;

static int STRING=4;

static int DATE=5;

A sample code snippet that can be used for the field/value retrieval procedure is the following.

String fieldname, fieldvalue;

while(fieldData.hasMoreFields()) {

fieldname=fieldData.getFieldName();

fieldvalue=fieldData.getFieldValue();

//
Execute the appropriate SQL update procedure

fieldData.next();

}
Finally it is necessary to mention that an XMLDataTranslator object can contain one or more FieldData objects. FieldData object can contain other FieldData objects too. Therefore some of them can just represent data categories (or empty tags in XML) whereas other contain actual data.

Implementation of service (b)

The servlet will instantiate an object of the XMLDataTranslator class, as shown in the code snippet below:

XMLDataTranslator dataTranslator=new XMLDataTranslator();

The servlet will instantiate an object of the FieldData class and associate it with the XMLDataTranslator object instance. The association of the two objects is done via the setFieldData method of the XMLDataTranslator class. The method has the following signature:

public void setFieldData(FieldData fieldData)

The following code snippet shows the instantiation and association steps:

FieldData fieldData=new FieldData(String fieldDataName);

dataTranslator.setFieldData(fieldData);

When used as a helper class for constructing XML documents, FieldData class will provide the following methods for entering field/value pairs:

public void next()

public void setFieldName(String fieldName)

public void setFieldValue(String fieldValue)

public void setValueType(int valueType)

After all necessary data has been entered; the createXMLDocument method of the XMLTranslator class should be called. The method has the following declaration:

public OutputStream createXMLDocument()

The XML document is received via a java.io.OutputStream.

2.1.2 Secure environment for collaborative evaluation (ECE)

2.1.2.1 Clients

The location of the clients that connect to the Jigsaw web-server is yet to be agreed upon with the ECE user group. The clients themselves are signed applets that are down loaded into a web browser, therefore there must be a prior arrangement with the establishments so that a suitable security policy can be pre-configured to accept the signed applets.

Applet Abilities:

· Authentication. This is mainly used to authenticate the client to the server and vice versa.

· Some form of access control. User profiles that can run these applets fall into two categories, the Student and Examiner profile. The Examiner would need to invoke a more complex GUI, also the student may or may not have the benefit of the “correctness checking” function of the applet. This means the applet will adapt its functionality in accordance with the type user.

· Securely transmit data. The applet would use a SSL connection to securely transmit certificates and XML documents to and from the ECE web server.

· Display of data. This may be dependant on the what type of user is using the applet, for example additional case notes may or may not be needed for the tests.

· Check data. The applet will have some form of rudimentary checking on the data inputted from users.

2.1.2.2 Servers

2.1.2.2.1 Web Server

The Jigsaw is an object oriented web server that runs on Java to provide HTTP 1.1 service and a modular design. The fact that it is open source means it is suitable for use in demonstrate upcoming features and protocols. Take for example how traditional methods use CGI scripts to collect information. The advantage of Jigsaw is that it features servlet APIs, which allows a more integrated and efficient method of processing data or creating pages.

In the ECE the main function of Jigsaw will provide a secure http sever using SSL. Users will log into the server The server will be the user’s first and only contact mechanism into the VPN. It will be role of jigsaw to initialise the VPN when an authorised use is logged on.

The main website can be found at www.w3c.org/Jigsaw.

The SSL variant can be found at http://jcewww.iaik.tu-graz.ac.at/Jigsaw/jigsaw.htm.

2.1.2.2.2 Certificate Server

OpenCA is an on going project using that aims to improve the security model for Certification Authorities and to develop open source software to implement these models. Like many open source software the work is collaborative.

The main key points about OpenCA, are that it is similar to pyCA, but uses Perl CGI scripts instead of Python. This means that it follows the standard layout for a Certification Authority, where the Certification Authority is not networked. Open SSL for cryptographic functions

The main website is located at OpenCA is an on going project using that aims to improve the security model for Certification Authorities and to develop open source software to implement these models. Like many open source software the work is collaborative.

The main key points about OpenCA, are that it is similar to pyCA, but uses Perl CGI scripts instead of Python. This means that it follows the standard layout for a Certification Authority, where the Certification Authority is not networked. OpenSSL for cryptographic functions

The main website is located at www.openca.it.

2.1.2.2.3 Attribute Server

The use of an attribute server is not necessarily required, as the Jigsaw software possesses a feature that defines the user or groups as belonging to a web interface – this can be used to simulate what attribute certificates achieve. Each entity within Jigsaw (e.g. a web-page) can be assigned to users or groups, who are then entitled to access them. The Jigsaw web-server provides a web administrative interface to its users and groups management tool.

Jigsaw has also a facility for XML named JigXML (formerly JXML). It is normally used to store the metadata belonging to a resource, however this could also be used to allow user and group definitions to be rendered in XML and then exported.

2.1.2.2.4 Database Server

PostgreSQL is database based upon the Postgres but replaces its native query language with SQL. Attractive features are that it is open-sourced with built in JDBC drivers and capable of operation using SSL or SSH.

Postgres uses a simple "process per-user" client/server model. The components are the front-end “psql”, a terminal monitor program (usually located on the client side) the postmaster & the backend server (the Postgres process). The connection between the front-end and Postmaster can be secured using an SSL connection option. Security policies also exist that perform access control. These policies operate by prohibiting any non pre-registered usernames or IP addressed.

In the ECE environment the location of the clients will all be located in the Jigsaw Web Site. This means the use of the SSL connection option is not required.

The diagram below summarises how we view PostgreSQL to work within the ECE environment.

[image: image12.wmf]UCH

PostgreSQL

Server 1

JIGSAW

Web server

SSL

UCL

SSL

SSL

Postgres

Query Server

Postgres

Query Server

Postgres

Query Server

PostgreSQL

Server 2

Postgres

Query Server

Data

Data

IPSec Tunnel

JDBC

(DB1)

JDBC

(DB2)

IPSec Tunnel

SSL

Secure

Computing base

Servlet

Servlet

Figure 11
The main points are that:

· Each servlet has a 1 – 1 mapping to a client (not show on diagram).

· There is 1 JDBC driver instance for each UserID per Database i.e. Postgres Query Server.

· There are N databases per private network.

· There is 1 IPSec tunnel per private network.

The main site for PostgreSQL is http://postgresql.org.

2.1.2.3 Data Interchange Formats

The Jigsaw software is a standard Java application. It will be used to present web pages, interrogate an SQL database, manage the IPSec routers and carry out access control for users accessing the databases.

· The HTML generation subsystem will use the Java language's standard types for generation of HTML.

· The database enquiries will use Java Database Connectivity classes. These already provide methods to convert variables from SQL to Java.

· The IPSec router management will use SNMP agents. This will require an extra suite of Java libraries from AdventNet. http://www.adventnet.com.

These are similar to the JDBC classes in that all classes provide data conversion methods.
The access control function is the only one that will make use of datatypes that are specific to Jigsaw.

2.1.2.3.1 Certificates

In general the ECE will only require the use of standard security certificates and the most widely used Internet standard for defining digital certificates is the X.509. These will be provided by an open source Certification Authority and Root Authority.

Digital certificates are required in the ECE for authentication purposes. Mechanisms that require certificates for this purpose are the applet and servlets on behalf of the user and the Jigsaw, OpenCA, and FreeS/WAN to authenticate received SNMP agents.

Attribute certificates, as previously stated may be encapsulated into XML to be exported securely.

2.1.2.4 Communication Protocols

2.1.2.4.1 IPSec

The term VPN is not a new term; this concept has in fact been coined, re-coined and implemented using different protocols. However, past approaches have been less than desirable. Based on protocols such as PPTP & L2TP, the implementations possess inherent security weaknesses. This means the products then offered were suitable only to specific scenarios, where the foreign services and parties had to be assumed trusted. Some of the main limitations of the PPTP protocol are the support of only one tunnel, no perfect forward secrecy and no protection against playback attacks. Additionally the protocol is design to connect to single points, this limits its usage. L2TP also suffers from similar limitations however it relies on the third party solution IPSec to handle its privacy. The main advantage of an implementing VPN at the Network-layer is simplicity. Hosts behind the IPSec gateway do not need to be modified, hence the hosts do not even need to be aware of the existence of IPSec.

2.1.2.4.1.1 FreeS/WAN

The FreeS/WAN implementation of the IPSec Protocol Suite is an add-on to Linux that is open source under the GNU license. IT is also available as standard in certain Linux distributions and is used as a component in some Security products. The main scenarios FreeS/WAN supports are VPNs and Road Warriors; the project does also extend IPSec to perform “opportunistic encryption”. This is defined when by any two systems can secure communication between each other without any detailed prior arrangements. This is accomplished by publishing public key information for IPSEC on a Secure DNS.

FreeS/WAN ref www.freeswan.org

[image: image13.wmf]SSL

JIGSAW

Web Server

IPSec Tunnel

UserID:

Examiner

Valid UserID

arriving at the

Web Server will

trigger the IPSec

tunnels to

become setup

and activated.

IPSec Tunnel

Private network #1

(PostgreSQL

Server)

Private network #2

(PostgreSQL

Server)

Figure 12
· IPSec usage in ECE will be to connect the Jigsaw web server to the PostgreSQL databases, using two tunnels that both have termination at the web server. This can be reduced down to the connection of a sub-network to another sub-network, as shown above.

When the Examiner logs into the JIGSAW Web Server securely, the use of SNMP agents will setup the IPSec tunnels comprising the VPN.

2.1.2.4.2 SSL

SSL is a transaction security standard developed by Netscape Communications to enable secure commercial transactions to take place over the Internet clients to a server. SSL usage in the ECE will be to secure connections between the user web browser and the Jigsaw web server and also from a user to the Certification Authority.

2.1.2.5 Interfaces

2.1.2.5.1 Web site

The web site interface will utilize the Jigsaw interface and servlets. In more detail, the external interface to the website will be HTML3. This version is supported by Sun in Java 1.2.2. Internally the engineering will utilize the Jigsaw implementation of the servlet interface.

2.1.2.5.2 Applet

The Jigsaw system will act as a repository of applets.

2.1.2.5.3 CA

OpenCA uses CGI interfaces programmed in Perl and operates in same way other Certification Authorities that are available on the WWW. It is a standalone component.

2.1.2.6 Development Environments

The ECE demonstration components will be developed using following tools and environments.

· Java JDK 1.2. This is used for the Jigsaw web server, applets, servlets and SNMP agents.

· UML will be used for general design purposes.

· PostgreSQL, will be used for the data, the PostgreSQL clients will be JDBC drivers.

2.1.2.6.1 UCL test bed

[image: image14.wmf]Internet

LAN

FreeS/WAN

Linux

Data

PostgreSQL

Linux

IPSec

Gateway

Router

LAN

FreeS/WAN

Linux

Data

PostgreSQL

Linux

IPSec

Gateway

Router

LAN

OpenCA

Linux

OpenCA

Linux

RA

Web

server

SHTTP

CA

LAN

Web server

SHTTP

Jigsaw SHTTP

Linux

activate()

FreeS/WAN

Linux

SNMP

Agent

IPSec

Gateway

Router

Figure 13
This is a plan of the ECE, which will be used as reference in producing a test-bed within the facilities of UCL; the reason is establish a preliminary framework, on which the full ECE demonstration can be built upon.

2.1.2.7 Operation Environments

As previously stated UCL’s research network would host a demo of the ECE demonstrator. This means of course that many of the components are hosted within UCL. Once this demo is running, UCL hope to integrate with the HARP HCSP. The following is a list of components that UCL require for the demo.

· Web Server.

· Application Server. This will be hosted on the same machine as the Web Server.

· Database Server.

· Certificate Server.

SNMP Agents

A unique feature for the ECE demonstrator will be the use of SNMP agents in the operation of the IPSec tunnels. It is possible to manually setup up the required connections for a VPN, and to manually exchange secrets. However, this also can be achieved instead by using SNMP Agents to dynamically configure the VPN. This automation is attractive, as the advantages are to reduce system administration. The process is as follows.

1. Upon activation by the Web server, an agent will reconfigure its host FreeS/WAN gateway.

2. The agent will then try to establish a connection path by, attempting to reconfigure necessary equipment on the route. Hence, the agent will traverse to the local router attempt configuration.

3. The agent will then perform the necessary configuration upon the corresponding destination FreeS/WAN gateway.

4. Similarly, the related destination router will be reconfigured.

2.1.2.7.1 Windows

Microsoft Windows 2000 is a well know product, the features of interest are that it offers support for Dynamic HTML (DHTML) and Extensible Markup Language (XML), comprehensive security with its support for Internet-standard security mechanisms such as IP Security, Layer 2 Tunneling Protocol, and Virtual Private Networking.

ECE components that will run on this operating system are the:

· Web browser

· Jigsaw Web server

2.1.2.7.2 Linux

Debian GNU/Linux 2.2 with kernel versions 2.2.18 and 2.4.x.

The Linux operating system is known for its functionality and availability may be used for a broad range of purposes such as networking or software development. Being open source means its main strengths are reliability and security. Linux will run the following ECE components:

· PostgreSQL Database

· IPSec

· OpenCA Certification Authority

3 The HARP Applications

3.1 SMA Concepts

One of the HARP demonstrators concerns the support of Internet-based remote data entry, remote information check as well as the related management. Examples of applications using these services are multi-centric clinical studies, quality assurance studies or other kinds of distributed documentation.

Following, a small practical example of a clinical study dealing with diagnosis and therapy of paediatric endocrinological diseases has been developed.

Use Case Models

The specification of the HARP demonstrator has been provided using the UML methodology standardised in ISO. For developing the model diagrams, the Rational Rose™ tool kit has been deployed. (see D.3.1 and Annex 5, of this deliverable).
Rough Complete Use Case

The set of models needed has been designed as a step-by-step approach of models and their refinements. First, the rough complete use case of clinical studies in distributed environment has been developed as shown in Figure 23. The clinical study use case consists of Establishing Component, Distributing Component (including both push and pull mechanisms), Remote Data Entry, Quality Assurance, Processing Study, Using Study. Actors are the study administrator; the policy council fixing basis, rules, and framework of the study; developer; documentation instance; proof instance; and finally the user of the study’s results (the public).

The “Clinical Study” Policy Document

In preparation of the clinical study trail, a policy council of domain expert and members of an ethical commission discussed and established a policy document. This (paper) document describes the legal basis, ethical requirements, medical needs and framework, specification of institutions and patients included in the study, the study’s organisational framework including rights and duties (roles) of parties involved as well as the study procedure, the data items, the patient consent form as well as the obligation for patient’s privacy (as a common principle, but here especially in the study context).

The “Clinical Study” Actors’ Roles

As a general principle, parties involved in clinical studies must be member of the German healthcare system with its legal and ethical framework including security and privacy rights of patients or must be obliged to those principles by legally binding contracts. In the HARP demonstrator, all persons and institutions involved in the demonstrator belongs to the German healthcare system.

All actors are bound to the physician’s pledge of secrecy
 valid in health and ruled by German legislation as well as professional regulations. Furthermore, the actors have special rights and duties the clinical study context.

Policy Council (member) establishes the policy and serve as a trustworthy instance to resolve related problems. Beside the unexpected role of problem solver, the policy council has no rights and duties in performing the study, i.e., no authorisation at the database level.

Study Administrator is the responsible person for establishing and performing the clinical study. He/she has only rights for managing the clinical study, i.e., only the right for establishing and assigning the roles of parties involved. At the database level, the study administrator has only the right for authorising (granting database-related rights to the parties involved, but no rights in handling patient’s data items at all.

Documentation Instance is the only person who collects and records patient’s data items. In other terms, only the documentation instance has the right for writing patient-related information in the database. According to German legislation and regulations for health, updating of medical documents in the sense of deletion or replacement of information is not allowed. Any correction or amendment of data must be performed by adding a new record and setting an invalid flag to the former one! Therefore, the rights to be granted to the documentation Instance are create, read, and write. Because on the one hand the documentation instance is accountable only to his/her own organisation and on the other hand clinical studies have to be performed in an independent way, all rights are restricted to the own organisation’s data only!

Proof Instance (quality assurance) is responsible for checking all the study data for correctness, completeness, and plausibility. In that context, it has to have the expertise in knowledge but also the change of aggregating information and experiences of the parties involved in the study. Therefore, the proof instance has access rights to the records of all parties involved for reading and checking the data. The right to be granted to is read and mark wrong records by setting a valid flag “false” (set (write) the flag) only, even if there are obvious errors according to plausibility tests. For facilitating the documentation Instance’s work, the wrong items should be highlighted.

The Study Processor (in the real demonstrator context done by the proof instance) is authorised to export data for processing only. At the moment, this part of the study is not yet prepared in detail.

The User (the public) is authorised for having access to the published results of the study. The results don’t contain re-identifiable data.

3.1.1 Clinical studies performed in HARP

Based on the explanations above, one conclusion can easily be derived. The issue (or matter) of clinical studies is a very complex one. Anyway, performing clinical studies always means to have a clear picture about aims and goals, intentions, medical and statistical means and methods, objectives, patients and volunteers, physicians, expected results, recommendations, and criteria.

The first part of the description of clinical studies, their types, needs and requirements as well as environmental conditions clearly focused on general remarks. From now on, these statements will be explained in a more concrete manner using two examples of clinical studies performed at, or guided by, the staff of the Institute for Biometry and Medical Informatics (IBMI) at University Hospital of Magdeburg (UHM).

3.1.1.1 Quality assurance in paediatric endocrinology – HARP demonstrator

Beside the randomised clinical studies mentioned already in example #1, especially aspects of quality assurance achieve growing importance for the processes of medical treatment as well as after-care procedures. A large number of establishments participate in quality assurance issues. Specific diseases as, e.g., diabetes mellitus, metabolism-related diseases, and nephritic diseases require a long-time treatment and allow therefore longitudinal studies. So these kinds of studies are mostly performed as multi-centric and thus be considered noteworthy for remote data entry procedures. As an example, a project of paediatric endocrinology will be explained in the following.

For this project, the scientific discussion among the partners to agree upon the parameters to obtain, the mechanism for the diagnosis, and the treatment event intervals based on current medical standards took about two years before the medical-related part could start. The technical “implementation” of the agreements towards well-accepted application forms and the design of the related database required another 12 months. For the routine use of the feedback messages as well as for the quality assurance mechanism based on comparison methods, another year is expected to come. This means that this study lasts about four years from the very beginning of the idea until the final evaluation and validation of the results to meet practical challenges.

Basics of the endocrinology study: different to others, definition work already done, paper-based application forms available, long time study, no patient consent, no council for ethical aspects, no different investigation and observation methods, no randomisation.

3.1.1.1.1 User groups addressed by the SMA demonstrator

The user group involved in the HARP Clinical Studies demonstrator consists of medical experts from at the beginning 19 clinics throughout Germany. In detail, the University Clinics of the German Universities of Magdeburg, Leipzig, Heidelberg, Kiel, Berlin, Hanover, Jena, Münster, Tübingen, Colongne as well as specialised peadiatric clinics of Krefeld, Colongne, Dresden, Hildesheim, Bremen, Datteln, and Berlin is involved. The Paediatric Clinic of the Magdeburg University acts as responsible party in the trial. Head Physician Klaus Mohnicke M.D. is the HARP demonstrator’s study administrator.

3.1.1.2 Comparison of laparoscopic appendectomy versus conventional appendectomy – A Related Example

Concerning advantages, the main objective of this study is a comparison of the methods of laparoscopic appendectomy and conventional appendectomy for patients suffering from acute appendicitis. Conventional operation hereby means the traditional way of a twenty cm transection whereas laparoscopy is able to reduce the transection area to as little as a one cm hole. Both methods are well established in nowadays medical practice, and it appears that surgeons can be found with a sufficient experience in both operation methods. Generally, both references (books, journals, scientific proceedings, etc.) and UHM experience are available explaining expected risk factors. After a sufficient provision of relevant information patients can agree to participate in the study by signing their written consent document, as this allows the study supervisor to randomly allocate them to either the group of the laparoscopic operation or the conventional operation. The random allocation procedure is mainly based on a recommended block randomisation. This provides indeed rather balanced groups. The main objective of the study is an equivalent rate as far as complications are concerned. A minor (side) objective could be seen in the expectation of lower traumatisation rate of the involved texture possibly expressed by immunological parameters. So this study fulfils the following characteristics:

· A prospective and

· randomised

· cohorts study,

· laminated after IBMI mechanisms;

· A transversal study with a

· parallel design with two treatment events looking for

· equivalence concerning main objective and

· predominance concerning the minor (side) objective.

It took approximately one year to scientifically discuss the study, to design the study protocol, to calculate and afterwards plan the required size of the cohorts, and to administratively organise the performance of the study within UHM.

As a result of the planning, at least 100 patients per treatment event and operation type were required. The recruitment of the patients (noteworthy to be mentioned that only emergency patients with acute appendicitis could be asked) and the obtaining of the relevant data took another two years. For evaluation and validation purposes, another half a year is expected. So after all, it has needed 42 months to completely perform this rather typical study.

New technology trends in medical informatics, informatics, and telemedicine as, e.g., Internet, WWW-based data entry, etc. are of specific interest as soon as this type of study will be performed multi-centric including several departments, clinics, healthcare establishments, or even countries. The following example will focus on a more informatics-related approach involving physicians and patients from several hospitals and areas.

3.1.1.3 Security Policy for Clinical Studies

In this section we give a brief and informal description of the security policy that are applicable in general to clinical studies. A more formal statement can be found in Annex 1. This will be done in the general framework for dealing with security policies for telemedecine presented in the appendix.

Assumptions

The following simplifying assumptions will be made for the purposes of the demonstrator. They are discussed more fully and, in some cases, relaxed in the appendix.

Patient consent is not an issue here: participating patients are assumed to have granted consent.

We assume a (static) set of participating hospitals.

We will assume that authentication has been dealt with; all actors have a unique identity and suitable mechanisms are in place to verify the identity of the actor requesting a security relevant operation. In particular we assume that appropriate mechanisms are available to bind identities to public keys in a secure and dependable way. Thus, for example, PK certificates and a suitable infrastructure of TTP’s are available.

Each doctor is associated with exactly one hospital and a doctor’s “home” hospital can be inferred from his/her identity. A doctor sometimes takes on a Documentation Instance (DI) role, sometimes a Proof Instance (PI)role but not simultaneously. Furthermore a doctor must never act as the PI for his own records. Whilst in a DI role a doctor may also view any of his own records but no records of other doctors. Notice that there is a little tension here: in a PI role the doctor necessarily views records of other doctors. We assume that the policy allows this, even if it does feel slightly paradoxical. In fact it must if we are to avoid a contradiction.

The Study Administrator role is disjoint from all others. This results in a clean separation between object and meta-levels. We will allow overlap between the Documentation Instance (DI) and Proof Instance (PI) roles: a clinician may take on either at various times but not simultaneously. We will impose the constraint that: a clinician should never be the PI for a record he/she created (i.e. separation of duty).

We assume a static policy, established at time zero by the Study Administrator and fixed from then on. In particular the set of hospitals, clinicians. etc. are fixed as are their attributes, i.e. eligibility to take on various roles, remains fixed.

Delegation, duties and obligations will not be dealt with in the demonstrator but are addressed in the appendix.

Policy objectives

The primary security goal for the demonstrator appears to be one of integrity. Records can only be entered in the database by authorised actors. Prior to having the Valid Flag set to True each record must have gone through a checking process with the DI and PI both agreeing the data values. All records should be appropriately signed. Records are never deleted from the database but can have their “Valid Flags” set to False. This must with the agreement of the appropriate doctor and preceded by a request from an authorised PI and be accompanied by the addition of a corrected record with the same identifier with its Valid Flag set to True. For any record identifier there should be at most one record in the DB with its VF set to true and, where such a record exists, this should be the most recent version

Additionally we assume a confidentiality requirement: records can only be read by authorized actors: only DI’s and PI’s associated with the originating hospital for that record. Furthermore, whilst in the DI role a doctor is only allowed to view records with which he is associated. Only the latest version of any record is ever available for read access (aside perhaps for auditing purposes, but this is outside the scope of the model). In the DI role a doctor is only allowed to view records with their VF set to “unchecked”. In the DI role a doctor may only view either records with VF set to “validate” or to “True”. Records with their VF set to False must never be accessed.

3.2 The HCSP instantiation

[image: image15.emf]ECE

SMA

Service Selection

Authenticate

User HCSP

Service Usage

Figure 14: Usage of the HCSP

The use cases ‘Authenticate’ and ‘Service Selection’ are common to both applications SMA and ECE. Service Usage is application-specific and instantiated either as SMA or ECE.

3.2.1 Authentication

User and HCSP mutually authenticate each other as shown in Figure 15
[image: image16.emf]User HCSP

Authenticate

Figure 15: Use Case Authenticate
The components participating in the ‘Authenticate’ use case are presented in the following sequence diagram.

[image: image17.wmf]Browser

(Netscape)

Card Reader

Webserver

Authentication

Component

Authorisation

Manager

Session Control :

Session Management

 : User

TTP

Certificate Verifier

7: Extract User Identification Data

5: Verify Certificate

6: Send Certificate

8: Get Role List

9: List of Roles

3: Get Certificate

10: User and Session Attributes

2: https://www...

4: Use Certificate in SSL

1: Select URL

Figure 16: Authentication Sequence

The authentication sequence describes the authentication procedure for both applications – SMA and ECE.

1. Select URL: The User selects the URL of the target system (hospital, portal, ...) in the browser (Netscape Browser)

2. https://www...: The browser connects to the Web server. The Web server is configured such as to request a client certificate.
3. Get Certificate: The browser accesses the smartcard of the user to read the user identity certificate. The user browser/system has to be configured for smartcard access, i.e. PKCS#11, OCF and dll-files have to be installed as required before the system is used (dynamic installations are a future enhancement if required).

4. Use Certificate in SSL: The browser SSL component transmits the user certificate to the server within the establishment phase of an SSL connection.

5. Verify Certificate: The certificate is verified within the SSL component of the Web server. This might be a local procedure, if all relevant verification information such as the CA certificates and CRL are already available in the Web server or this might be an online verification procedure with e.g. OCSP to a TTP.

6. Send Certificate: The X.509 certificate is extracted from the SSL component and handed over to the Authentication Component.

7. Extract User Identification Data: The unique user identification information is extracted from the certificate. This depends on the authentication policy and can e.g. be the Distinguished Name (DN) of the user contained in the certificate or the sequential number of this certificate in combination with the certificate issuer information.

8. Get Role List: The possible roles of the identified user are requested from the Authorisation Manager.

9. List of Roles: The list of roles is returned to the Authentication Component.

10. User and Session Attributes: Relevant user attributes and session data has to be kept and managed by the Session Control component. Based on these attributes the list of services a user is allowed to access and use may be requested.

3.2.2 Service Selection

Based on the attributes/privileges of the user a certain set of services is available (in the HARP demonstrator the services are SMA and ECE).

[image: image18.emf]User

Service Selection

HCSP

Figure 17: Use Case Service Selection

The components participating in the Service Selection Use Case are presented in the following sequence diagram.

[image: image19.emf]Service Browser Session Control :

Session Management

Authorisation

Manager

Attribute

Certificate TTP

 : User

8: Request Attribute Certificate

9: Return Attribute Certificate

11: Evaluate AC

10: Verify AC

4: Display List of Services

5: Select Service

1: Get Service List

2: Return Service List

3: List of services to User

6: Selected Service

7: Service Access Check

12: Service Access Check Result (Y/N)

13: Notify User (if No)

14: Start Service (if Yes)

Figure 18: Service Selection Sequence

The service selection sequence describes the selection of a service (SMA or ECE for the HARP demonstrator).

1. Get Service List: The list of services accessible by the user is requested.
2. Return Service List: The list of services is returned.
3. List of Services to User: The list of services is returned to the browser (optional—due to the fact that within a dedicated trial environment only one service is available; an explicit selection by the user is not needed then).
4. Display List of Services: The browser displays the list of services (optional, see #3).
5. Select Service: The user selects a service (optional, see #3).
6. Selected Service: The service selection choice is transmitted to the Session Control component (optional, see #3).
7. Service Access Check: The access to the selected service has to be checked: “Will user U in circumstances X get access to service S1?” (optional—based on the user identity and role only services are presented to the user, that are allowed to be executed. Based on certain policies, this service usage might depend on additional attributes/circumstances such as e.g. the time of day, the terminal equipment used etc. For simplicity the HARP demonstrator does not take into account these additional attributes).
8. Request Attribute Certificate: A request for available attribute certificate(s) is sent to the Attribute Certificate TTP (optional, see #7).
9. Return Attribute Certificate: The attribute certificate(s) is returned (optional, see #7).
10. Verify AC: Possibly a verification of the attribute certificate has to be performed, if not done by the Attribute Certificate TTP already (optional, see #7).
11. Evaluate AC: The attribute certificate is evaluated by the Authorisation Manager (optional, see #7).
12. Service Access Check Result (Y/N): The result of this evaluation (Yes–access allowed or No–access not allowed) is returned to Session Control component (optional, see #7).
13. Notify User (if No): If access is not allowed, the user has to be informed (optional, see #7).
14. Start Service (if Yes): If access is allowed, the selected service is started for the user (if the optional sequences are not executed, start service is always initiated if only one service is available).

3.2.3 Clinical Study - Remote Data Entry

[image: image20.emf] : Documentation

Instance

Clinical Study

Applet

Session Control Study Control Data Subject

#123

Study

Database

1: Select Clinical Study Service

2: Initiate Clinical Study

3: Identify Data Subject

4: Find Data Subject

5: Initiate Data Subject

6: Get Data

7: Compose Data Subject (XML)

8: Send Data Subject (XML)

9: Do Input

10: Validate Input

11: Sign Data Entry

12: Finish Data Entry (XML)

13: Verify Signature

14: Validate Data Entry

15: Store Data Entry

16: Successful/not Successful

17: Status Report

 (XML

Signature)

role specific

Figure 19: Sequence Diagram of Remote Data Entry

The ‘Remote Data Entry’ sequence describes the activities of a Documentation Instance entering patient’s data and the components providing the secure transmission, processing and storage of the data.

1. Select Clinical Study Service: The Clinical Study Service is implicitly or explicitly selected.

2. Initiate Clinical Study: The Clinical Study Applet is notified of the service selection. Based on the role of the user (Documentation Instance), the initial GUI is presented.
3. Identify Data Subject: The Documentation Instance identifies the data subject to work on.

4. Find Data Subject: The identification information of the data subject is returned to the Clinical Study Servlet.
5. Initiate Data Subject: Based on the identification information the data subject is initiated, i.e. a new data subject or an existing data subject.
6. Get Data: For a new data subject the database entry has to be generated and initialised, for an existing data subject the available data is read from the database.

7. Compose Data Subject (XML): The data subject is transformed into an XML data structure.

8. Send Data Subject (XML): The data subject is transmitted to the Clinical Study Applet, which presents the study data to the Documentation Instance according to the data subject type and activity to be performed.
9. Do Input: The Documentation Instance enters the patient’s data.
10. Validate Input: The data entered is validated by the Applet.

11. Sign Data Entry: If the data entry is fulfilled, the data is signed by the Documentation Instance.

12. Finish Data Entry (XML): The signed XML data structure is transmitted to the Clinical Study Servlet.
13. Verify Signature: The signature of the Documentation Instance is verified and the integrity of the data is checked.

14. Validate Data Entry: The data entry is validated, i.e. integrity and authorisation checks are applied regarding the data as well as the identity and role of the specific Documentation Instance. This is to prevent unauthorised modifications to the patients data by malevolent users and applets.
15. Store Data Entry: The validated data is stored in the database.

16. Successful/not Successful: The session control is notified of the successful or unsuccessful completion of the clinical study activity.
17. Status Report: The user gets a confirmation or an error report for his activity.

3.2.4 Clinical Study - Quality Assurance

[image: image21.emf] : Proof Instance

Clinical Study

Applet

Session Control Study Control Data Subject

#123

Study

Database

 (XML

Signature)

3: Set Data + Query Parameter

9: Do Proof

10: Generate Proof Report

11: Sign Proof Report

1: Select Clinical Study Service

2: Initiate Clinical Study

4: Find Data Subject

17: Status Report

5: Initiate Data Subject

7: Compose Proof Data (XML)

8: Send Proof Data (XML)

12: Finish Proof Report (XML)

13: Verify Signature

14: Validate Proof Report

16: Successful/not Successful

6: Get Data

15: Store Proof Report

role specific

Figure 20: Sequence Diagram of Quality Assurance

The ‘Remote Data Entry’ sequence describes the activities of a Proof Instance proving clinical study data and the components providing the secure transmission, processing and storage of the data.

1. Select Clinical Study Service: The Clinical Study Service is implicitly or explicitly selected.
2. Initiate Clinical Study: The Clinical Study Applet is notified of the service selection. Based on the role of the user (Proof Instance), the initial GUI is presented.
3. Set Data + Query Parameter: The Proof Instance identifies the data subject (document) to prove.
4. Find Data Subject: The identification information of the data subject is returned to the Clinical Study Servlet.
5. Initiate Data Subject: Based on the identification information the data subject is initiated.
6. Get Data: The data subject is fetched from the database.

7. Compose Proof Data (XML)): The data subject is transformed into an XML data structure.
8. Send Proof Data (XML): The data subject is transmitted to the Clinical Study Applet, which presents the document to be proven to the Proof Instance.
9. Do Proof: The Proof Instance controls the data.
10. Generate Proof Report: A proof report is generated.
11. Sign Proof Report: The proof report is signed.

12. Finish Proof Report (XML): The signed XML data structure is transmitted to the Clinical Study Servlet.
13. Verify Signature: The signature of the Proof Instance is verified and the integrity of the data is checked.
14. Validate Proof Report: The data entry is validated, i.e. integrity and authorisation checks are applied regarding the data as well as the identity and role of the specific Proof Instance. This is to prevent unauthorised proof data by malevolent users and applets.
15. Store Proof Report: The validated data is stored in the database.
16. Successful/not Successful: The session control is notified of the successful or unsuccessful completion of the clinical study activity.
17. Status Report: The user gets a confirmation or an error report for his activity.
3.2.5 Collaborative Evaluation in the concept of HCSP

3.2.5.1 Educational/Medical scope

In a typical educational test environment there would be a sequence of actions between the actors. An Examiner would construct set a series of questions to test a specific area of knowledge and understanding. This test paper would subsequently be given to a group of Students at the same location and at the same time. The Students would then have a set time to construct individual answers. At the end of the test, the hard copy answers identified with each Student would be collected and subsequently marked by the Examiner and the results would be provided to the Students on an individual basis. An alternative-testing scenario in the medical sector involves real-time feedback by the students to questions from the examiner.

As this test is set in a medical context, the test paper may include high-resolution photographs, scans and data sets in addition to text.

There is often some difficulty and significant cost reproducing this multimedia material for each student at a quality level required by the subject.

As specialisation increases in the medical sector, there will be an increasing incidence of Examiners not being co-located with Students and with Students being dispersed across a number of Institutions.

A remote testing process has been assessed by UCL a few years ago. The trial was successful from the point of view of the Examiner, but it was a notable failure from the point of view of the Students. The reason for this was the Students did not trust the security and level of guarantees provided by the protocols and applications at that time. Many of the Students also believed that the applications available at that time were untrustworthy in a fixed time examination environment and were too slow.

The requirements on an HCSP concept demonstrator will require particular attention being paid to uniform and timely quality of delivery to each recipient, authentication of participants, secure and guaranteed delivery of questions to the Students and answers back to the Examiner, and results to the Students. Particular attention will need to be paid to the limits and transfer of responsibilities (responsibility interfaces) between the actors.

3.2.5.2 User groups addressed by the ECE demonstrator

Dr Russell-Wynn James M.D. G.P. is a member of the Chorley Wood Medical Practice and also a Research Fellow in Health Informatics at the University of Brunel’s department of information and computing systems. He has also ties to St Mary’s Hospital Medical School, which we hope will participate in ECE demonstrator.

Another Hospital that has expressed interest in the ECE demonstrator is University College Hospital – UCH. UCH is part of the UCL Hospitals NHS Trust, which is one of the largest trusts in England, as it consists of six hospitals, together they provide a broad range of important services that include emergency services, academic research, training in dentistry, nursing and medicine through specialist services such as neurology. Together with its notable links to the Royal Free & University College Medical School, the trust provides an important resource for the nation.

· The Middlesex Hospital
· University College Hospital
· National Hospital for Neurology & Neurosurgery
· The Eastman Dental Hospital
· Hospital for Tropical Diseases
· Elizabeth Garrett Anderson Hospital

Initial contact has been made with the Eastman Dental Hospital, which has agreed in principle, to provide digital dental X-ray images and students to undertake tests.

4 Testing and Validation Environment

4.1 SSL Validation

Within HARP, a TTCN-specified SSL test suite covering the wider scope of the SSL validation will be provided. The SSL test suite will be written in TTCN and will be executed by a Protocol Test System (PTS) against the Implementation Under Test (IUT). In the protocol conformance testing case, a Conformance Test Station (CTS) should be connected with the station where the protocol implementation is. A commercially available CTS is Solinet’s A8619 Protocol Test System (A8619 PTS), which is able to execute test cases against the IUT.

The SSL is a protocol layer providing a secure form of communication through authentication, encryption and message hashing. Before the exchange of secure messages, the SSL session should be established. This is happening by following a handshake sequence between the client and the server. This sequence may vary, depending on whether the server is configured to provide a server certificate or request a client certificate. The handshake sequence is used by the client and the server to:

· Negotiate the Cipher Suite to be used during the data transfer

· Establish and share a session key between client and server

· Optionally authenticate the server to the client

· Optionally authenticate the client to the server

PTS should execute test cases against the SSL implementation (IUT). In other words, the PTS is responsible to build the messages should be sent to the IUT and wait for the messages coming from the IUT. According to the incoming messages and the messages that the PTS is expected, test cases are characterised as Pass, Fail or Inconclusive. Figure 21 depicts the SSL handshake protocol validation scenario including the messages, which are exchanged between the PTS and the IUT.

[image: image22.wmf]SSL

IMPLEMENTATION

Certificate

ServerHello

ServerHelloDone

Finished

ChangeCipherSpec

Certificate Request

Certificate

Certificate Verify

ChangeCipherSpec

Finished

ClientHello

Solinet

PTS

 IUT

Figure 21: SSL validation

Furthermore, PTS includes an advanced and flexible environment addressing all aspects of test suite development. It includes a graphical test suite viewer, editor and syntax analyser, compiler and documentation editor and it is ideal for writing, modifying or viewing TTCN scenarios. Additionally, the PTS will manage the SSL test cases that will be implemented and will execute them against the IUT.

4.2 X.509 Certificates Monitoring

Usually TTPs (secure web servers), have the ability to log information, such as the IP address of the client requesting a certificate. The availability of more information regarding either requests or connections will be useful for the TTPs in order to extract useful conclusions about the other party of the connection.

Within HARP, a new TTP service is proposed, which will be very useful for the TTP servers especially in hospitals. Regarding this service, a TTP will be able to capture, store and decode certificates’ negotiation between this TTP server and a client. A possible decoding of the certificates, which are exchanged in an SSL negotiation in combination with the decoding of the TCP/IP stack, is giving to the TTP the ability to associate a client, who made the request with a specific IP address. In case that this service is applied at a hospital’s TTP server the following information could be obtained:

· The identity of the doctor, who has connected with the TTP server according to the decoded certificate.

· The location of the PC from where the doctor made the request according to the IP address.

· The time that a doctor made a request according to the time stamping.

This information will enable the TTPs to maintain accurate tracking of certificates’ negotiation thus providing of detection of potential security hazards. For example, negotiation of the same certificate from multiple Internet sites (different IP addresses) probably indicates potential publication of the specific doctor’s privileges.

Monitoring a connection between two hosts gives the ability to extract very useful information regarding the status of the connection, the data are exchanged between two nodes and other information relevant to protocol constraints. A commercially available monitoring unit is Solinet PTS, a protocol test system with advanced functionality.
Solinet PTS captures, stores, decodes and displays on-line signalling events and messages, which are exchanged in several connections in a network. Solinet PTS is connected between to hosts, which communicate via the SSL protocol. Solinet PTS has the ability to monitor and log every message that is exchanged between the two hosts. This process is depicted in the following figure.

[image: image23.wmf]Packet

Monitoring

Solinet

PTS

SSL Negotiation

Exchange of Certificates

Web

Server

Web

Browser

Figure 22 Secure Transmission Monitoring
Before an SSL connection is established and secure messages are exchanged, the SSL handshake protocol takes place. By the time the handshake sequence begins, the first messages between the client and the server are exchanged. During the handshaking the server sends its certificate and if the client is requesting a server resource that requires client authentication, requests the client’s certificate. Then the client is sending its certificate and other data to the server. The monitoring unit (Solinet PTS) has already monitored and stored the negotiation between the client and the server in a log file. Solinet PTS has the ability to decode the captured messages till the level of the TCP protocol. The certificates, which were exchanged during the handshake protocol and captured by the PTS could be found in the message contents of a TCP segment in a non-readable form. This is happening because the certificates are encoded according to the Abstract Syntax Notation One (ASN.1) encoding rules especially the Basic Encoding Rule (BER) and Distinguish Encoding Rule (DER). Specifically, for the description of the syntax of these certificates the X.509 standard is used.

The certificate holds information such as the user’s public key material, the time that the certificate is valid, information about the issuer. By the time the certificate is issued by a Certification Authority (CA), it is signed by this CA with CA’s signature to ensure certificate’s validation to its users. When the certificates’ extensions are applied, provide the ability for the certificate to be managed within the scope of its specified used and by the CA, and to identify the relationships between the CA who issued this certificate and other CAs. Most of these fields in the certificate could be decoded but there are some fields, which are very difficult to be decoded especially the issuer’s digital signature.

The capturing and decoding of the certificates is leading to useful conclusions about an SSL negotiation, such as the identity of a client, which is connected to the specific server. Storing this information, Solinet PTS is able to know when (time stamping) a client was connected to the specific server, the location (IP address) of the client and who had requested for a connection with the specific server taking into account the decoded certificate.

5 Conclusions

Previous HARP work has performed analysis of available standards, protocols, and products for secure Web-based applications, having in mind a trustworthy environment especially for healthcare application but also for applications in other business domains. The relevant technologies have been chosen and combined in coherent solution under the client, server and network centric approach in Deliverable 3.1. Now in Deliverable 4.0, under specific requirements in health applications, a harmonised platform has been specified; this is the HARP Cross Security platform (HCSP), which comprises components, protocols, interchange formats, access to enhanced TTP services, development and execution environment. HCSP is viewed as a generic and harmonised approach, so that specific applications can be easily implemented and endowed with the desired security features. Particular emphasis has been placed on the GUI in close association to the interactions with the medical database. The whole environment is wholly web-based and fully compatible with HARP's goals. It is also forward looking and future proof, because it is based on modularity, established smartcard environment, security services under imminent provision by major players in the field and robust and simple from the users point of view. Two demonstrators provide prototype solutions for proof of concept. The instantiation procedure is described in detail and the use of real medical data is assured. Finally there many possibilities for further expansion and incorporation of further useful features; the latter are only briefly mentioned in this deliverable, which is intended as a guide to the implementation currently under progress.

6 References

[1] Declarations of Helsinki 1964 and Tokyo 1975: Guidelines for medical doctors on the ethical aspects of clinical research; World Medical Journal 22 (1975), 87-80, and 25 (1978), 58-59.

[2] Lothar Sachs: Applied Statistics - A Handbook of Techniques; Springer Series in Statistics; Springer-Verlag New York, Berlin, Heidelberg, Tokyo; 1984.

[3] www.sse.ie, White Paper on the TopSec Authorizer.

[4] www.baltimore.com Learning Center and Press Release.

[5] Stephen Farrel, “TLS Extensions for AttibuteCertificate Based Authorization”, February 1998, IETF draft.

[6] Stephen Farrel, “An Internet Attribute Certificate Profile for Authorization”, IETF Internet draft, August 20th, 1998.

[7] Farrell, S. and Housley, R., “An Internet Attribute Certificate Profile for Authorization”, IETF draft.

[8] Housley, R., Ford, W., Polk, T, & Solo, D., "Internet Public Key Infrastructure - X.509 Certificate and CRL Profile", draft-ietf-pkix-new-part1-03.txt, work-in-progress.

[9] An Internet Attribute Certificate Profile for Authorization <draft-ietf-pkix-ac509prof-06.txt>

[10] Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure Certificate and CRL Profile <draft-ietf-pkix-ipki-pkalgs-02.txt>

[11] OSS Nokalva Company, ASN.1, available at http://www.oss.com/asn1/

[12] Pleasant reading: X.509 Style Guide, Peter Gutmann, May 1998, available at http://www.cs.auckland.ac.nz/~pgut001/pubs/x509guide.txt

[13] B.Blobel, P.Pharow, K.Engel, V.Spiegel, R.Krohn: Communication Security in Open Health Care Networks. In: P.Kokol, B.Zupan, J.Stare, M.Premik, R.Engelbrecht (edrs.): Medical Informatics Europe ’99, pp 291-296. Series in Health Technology and Informatics Vol. 68. IOS Press, Amsterdam 1999;

[14] B.Blobel, V.Spiegel, R.Krohn, P.Pharow, K.Engel: Standard Guide for EDI (HL7) Communication Security. ISIS MEDSEC Project, Deliverable 30, August 1998; B.Blobel, V.Spiegel, R.Krohn, P.Pharow, K.Engel: Standard Guide for Implementing EDI (HL7) Communication Security. ISIS MEDSEC Project, Deliverable 31, August 1998.

[15] ITU-T X.290 (04/95) Data Networks and Open System Communications, Open System Interconnections-Conformance Testing

[16] OSI Conformance Testing Methodology and Framework for Protocol Recommendations for ITU-T Applications-General Concepts

[17] Conformance Testing http://www.leeds.ac.uk/civil/research/cae/cis/part7/p7.htm

[18] Analyzing the Analyzer: The Essential Features for Protocol Analysis http://www.wwg.com

[19] ITU-T Recommendation X.509

[20] What is a Protocol Analyzer? http://www.wwg.com

[21] SSL v3 Specifications http://home.netscape.com/eng/ssl3/
[22] RFC 2246: The TLS protocol Version 1.0

Annex 1: Remarks on Security policies

In this Annex we present a framework in which security policies for HARP can be formulated. This will take the form of a quasi-formal language which, on the one hand will be reasonably user-friendly, whilst on the other sufficiently precise to be mapped systematically to the security mechanisms and architecture for HARP. It should also be amenable to analysis and animation to assist with validation.

We start with an informal description of the kinds of requirements we expect to see in telemedecine applications in the context of the HARP project. So far we have not been able to locate any precise, authoritative and complete statement of what a health-care policy should look like. The nearest we have found is Anderson’s 9 principles of data security, [1], and we will use this as our starting point. It may turn out not to be entirely suitable for HARP in which case we will need to adjust things in the light of feedback from the domain experts. We hope however that it will be close enough and representative enough to provide a proof of concept.

To simplify things, at least to start with, it will be helpful to keep the two kinds of scenario, health-care and clinical trial, separate. These may ultimately need to be implemented on the same infrastructure and we probably need a policy framework sufficiently rich and flexible to encompass both. However the information security issues seem to be sufficiently different to warrant separate discussion. Ultimately one may also want to consider issues raised by the role of insurance, billing etc, but we will not address these issues at this stage.

It would seem desirable to enshrine a principle of patient ownership of records pertaining to them: that dissemination of any details of a patient’s medical records should be strictly with the knowledge and informed consent of the patient. Where such dissemination is for statistical purposes within clinical trials etc suitable procedures to render records anonymous should be followed (there may be certain aggregation problems here but they are probably second order effects).

The flip side of this principle is that the patient should be guaranteed access to his own records. In particular the integrity and persistence of these records should be assured.

The above may run counter to the rules in some countries. Indeed it seems that in the UK at present a patient doesn’t have an automatic right to see his own medical records. The approach does however seem to be in the spirit of emerging EU policy.

We have identified four aspects to a security policy for health-care applications:

· Confidentiality

· Integrity

· Availability

· Accountability

An interesting question is: to what extent can health-care security policies be factored into separate concerns? If a clean separation of concerns is possible, both at the conceptual and implementation levels, this would greatly simplify matters. It may be however that these are intertwined and so such a separation may not prove useful.

On the Nature of Security Policies

We need to establish what kind of concepts and properties need to be expressed in a security policy, particularly for health-care applications. Ideally we would like our policies to be simple both to understand and to implement (and verify) enforcement mechanisms. However, as remarked earlier, there may be aspects of security and privacy policy that are difficult or inappropriate to enforce within the system. Examples might include responsibility, deterring abuse of privilege and so on. The question arises at to whether we attempt to cover these aspects in our policy.

We will take the approach that our policies should be expressible in terms of decisions depending purely on the current (security) state of the system. By “security state” we mean the simplest abstraction of the full system’s state that is rich enough to carry all security relevant information. In particular it will contain:

· The identifiers of all registered principles along with associated attributes.

· Active sessions along with associated roles.

· The access control matrix.

· Relevant historical information, for example details of past accesses by principles in the case of Chinese walls style policy.

A key element of the security state is the ACM. This will take the form of roles vs objects with entries drawn from a list of access modes. Objects will be resources, particularly components of the data.

It should depend only on decisions based on the security state. Of course “current security state” is a rather flexible notion but it would be nice, in particular to keep it bounded.

Should be expressible in Dijkstra’s Guarded Command Language and related formalisms, for example, Abrial’s Abstract Machine Notation.

In particular we will assume that our security properties can be expressed as safety properties, i.e. that can be expressed as predicates on traces (sequences of security relevant events). Such a property corresponds to a set of traces that are deemed acceptable. Safety properties are significantly easier to reason about than liveness, fairness or indeed non-interference properties. Most security properties can be coded in this manner but we have to be a little careful regarding confidentiality and availability.

Strictly speaking confidentiality should be coded as a non-interference property which is not a safety property. It can be coded in terms of sets of sets, see for example [9]. However for most practical purposes an alternative, safety property, encoding is possible: we introduce modelling events representing an actors acquisition of sensitive data items. We then stipulate certain of these events, corresponding to illegal access, cannot occur. Details can be found in [2]. Availablity can be formulated as the system’s readiness to perform certain events within a certain timespan.

A further advantage of safety style properties is that they are easy to compose: logical conjunction of the properties corresponds to set intersection of the trace sets.

Could be based on other information, for example, based on extrapolation to future reachable states from the current state. This would require some kind of inference capability. Such a situation might arise quite naturally in survivability: in which we seek to anticipate an emerging attack or failure scenario and nip them in the bud.

Use of monitor concept.

Monitor to issue warning when breach imminent: overrides.

Non-enforceable policies: use deterrence. Use anomaly detection techniques?

Scope and Assumptions
In this section we spell out the scope of NR contributions and what we will assume as given. Some of the latter are well understood problems and not unique to HARP so it seems inappropriate to tackle them within HARP. Some will be tackled by other partners in HARP. It is however important that these assumptions are made explicit and recognised.

PKI

We will assume that a suitable infrastructure of TTPs is available to provide Public Keys for remote domains and hence to validate certificates in a reliable and secure way.

We will further assume that the problems of establishing trust in remote domains, for example in their competence and honesty in signing attribute certificates, have been solved.

Authentication

We will also assume that suitable mechanisms to authenticate users to the system are available. In particular we will assume that each clinician will have a unique identifier on the system and that, at any given time, a unique (?) public key is bound to this identity via PK certificates.

Care will also be needed to provide authentication of the system to the users.

Key management

We will further assume that the problems of key management, i.e. the generation, storage, distribution etc of keys, has been solved. These are highly non-trivial issues and many otherwise secure systems fall apart because of deficiencies in these areas. They are however well understood and various products and standards exist to address them.

Crypto Algorithms

We will also assume that sufficiently strong crypto algorithms, symmetric and asymmetric, are available.

Crypto Protocols

This might actually be an aspect that we might want to look at more carefully, especially if bespoke protocols are required. Techniques like those presented in [2] might be useful here. Where standard protocols like SSL etc are used we can presumably assume that they are secure. But even here care has to be taken to avoid unfortunate interactions between protocols.

Prevention versus deterrence
There are two distinct ways to enforce policy:

· Prevention

· Deterrence

Of course they may be used in combination. A key question is what balance or mix of these is appropriate in a health-care context. The answer will vary with the different aspects of the policy: some rules we may want to enforce by prevention mechanisms, some we may feel are better enforced by deterrence. The decision may depend on implementation issues: sometimes it may simply not be feasible to provide high assurance prevention mechanisms. Sometimes it might not make sense to use prevention.

In some cases it is possible for a principle to commit a misdemeanour whilst staying within his permissions, for example by knowingly and deliberately entering false information in a record. It is hard to see how we can even characterise such misdemeanours let alone control them in an automated way. It seems unlikely that prevention mechanisms can be used here and we are forced to fall back on accountability to deter abuse.

In any case it seems likely that we will want accountability as a last line of defence whilst also using prevention mechanisms for certain parts of the policy.

Duties and obligations

Having the system stop an actor from doing something he isn't supposed to do is easy (modulo certain subtleties discussed elsewhere). More precisely, denying him permissions he isn't entitled to do is easy, assuming that deciding what he is entitled to is easy. However, the system can’t force an actor to do something he's supposed to do.

To be meaningful we think that a duty has to be time limited: he/she should do something within N time units etc. Just saying he should do something sometime is not going to be decidable in finite time.

Given this assumption, it is easy to detect when an actor has failed to do something he should have done in time. Indeed we could even have the system issue warning prompts etc.

The model will need a notion of (global) time. Of course ensuring a reliable, accurate global time, synchronised clocks etc, is not easy in practice but this is more of an implementation issue.

Of course we have to be sure that the system will not prevent him doing his duty, but this should be codeable as a conventional liveness property: that the system is prepared to participate in certain events under certain conditions.
Models and Policies
There has been much debate in the security community as to what exactly is a security model or a security policy and what, if anything, is the distinction. This is not the place to enter such discussions. For the purposes of this document we will take a model to be a mathematical framework in which a security policy can be precisely stated and analysed.

Ideally the model should allow us to express the policy in a way that it is easy to understand and validate. It should be flexible and extensible. It should also lend itself to a natural and verifiable mapping down to a target implementation or architecture. This may not be easy; security is notoriously difficult to refine. There are obvious tensions between these requirements that are likely to force compromises.

A question that may arise is whether we need history-based rules: i.e. where access decisions depend on the sequence of actions performed by an actor rather just on current state (of course the notion of state is rather flexible). Examples include Chinese walls, in which previous accesses may affect future accesses, or aggregation controls, designed to prevent someone accessing too much information.

Enforcable policies in the sense of F Schneider?
Policies and meta-policies

It will be helpful to separate things out into a hierarchy of models. At the lowest level we have the basic policy rules for access, permissions etc. At the next level we consider issues such as delegation in which actors can pass on permissions to other actors who should not usually be allowed such privileges. Finally we consider the “meta” level in which we consider the mechanisms and rules governing the process of establishing and changing the base rules. Of course we could potentially consider a tower of such meta-levels but this will probably (hopefully) prove unnecessary.

Objectives

It would seem useful to set the high level objectives of the policy before embarking on the minutiae. In the context of health-care there appear to be four main objectives:

· Patient privacy

· Integrity of medical records

· Availability of medical records

· Accountability

The primary purpose of patient records is to assist with the health care of the patient. In the first instance release of such records should only be permitted to the extent that it assists with the care of the patient. We probably also want to enforce the principle of least privilege: that any principle is only granted those privileges and permissions as are required to fulfil his role.

A secondary purpose is to assist with the progress of medical science. The secondary purpose has to be subservient to the primary purpose.

Other purposes, but of lesser importance, are for insurance, billing etc.

Components of a Policy

In this section we describe the various components that constitute a health-care security policy.

Entities

Firstly we should identify a set of entities that will populate our universe of discourse, our dramatis personae as it were. What exactly these will be will vary according to the application but the kind of things that we have in mind will be:

· patients

· doctors

· consultants

· nurses

· pharmacists

· administrators

· files

· databases

· resources (computer files, programs, applications, communications systems...)

Actors
The set of entities will be partitioned into “actors” thought of as the active entities (people, programs…) and “objects”, thought of as the passive elements (files, data…).

We may also need to distinguish what we might call intentional actors: presumably human beings who can initiate actions (issue orders) as opposed to programs that can perform actions but only do so on the request of other actors (obey orders). Ultimately responsibility for a given action will need to be traced back to the intentional actor (or maybe actors if an n-person rule was involved) who initiated the action.
Roles

There seem to be a number of interpretations of the notion of a role in the literature. In one view they can be thought of as collections of actors. This notion would appear to be similar the notion of groups. In another interpretation they are thought of more as collections of permissions. Hybrid interpretations also seem possible. Typically they correspond to functions in the corporate structure. The only real difference between roles and groups is that the user typically has some discretion as to which role or roles from those available to him to adopt during a session. Groups are presumable typically assigned to the user and are thus fairly static and outside his discretion. We could perhaps think of the set of groups of which an actor is a member as the set of roles that he is allowed to adopt (though there may be constraints preventing him from adopting them all simultaneously or in a single session). For the purposes of this document we will just speak of roles.

It may not be obvious what, for a given organisation, is a sensible choice of roles. The purpose of roles is simply to provide a convenient abstraction to make the formulating, understanding, management and analysis of a security policy easier. Thus we should think of the roles as a derived constructs that emerge from an attempt to optimise a certain properties of the policy. The roles of the security policy will typically reflect those of the organisational structure. They do not add any expressive power to the policy language, only convenience.

It may make sense to define a hierarchy of roles or structure the set of roles in various ways. We could imagine for example roles naturally forming a lattice or Cartesian product.

Again these will vary from application to application but for concreteness let’s consider:

· Doctor,

· Consultant,

· Senior consultant

· Nurse,

· Patient,

· Administrator,

· Clerk,

· Security Officer,

Each actor at any given time will have a set of roles legally available to him. This typically be dependent on, amongst other things, the attributes assigned to the actor. For certain classes of policy this it may be that for any given actor this set is essentially static: assigned at time zero, possibly changing occasionally as the actors attributes change (promotion, new qualifications etc). For more elaborate policies we might imagine the set of legal roles also being dependent on factors like time, location, roles already adopted in simultaneous or even previous sessions and so on.

Actors will adopt one or more roles from the set of roles when they start a session. For simplicity let’s assume that this set of role stays constant during the session. We probably want to allow a given actor to participate in a number of sessions simultaneously. We may later want to allow an actor to change role during a session. This is probably straightforward to model.

The point of a role is that it has associated with it a number of permissions. Roles are thus a sort of intermediate concept between actors and permissions. Conceptually we could presumably dispense with the notion but and formulate are policy purely in terms of what permissions are available to what kinds of actors under what circumstances. Roles do seem to be a convenient abstraction in that they seem to be less ephemeral within an enterprise than individuals so simplifying security management. It may also be convenient to have groups of roles. For example we might bunch doctor, consultant and senior consultant together into a clinician role. This might make the expression certain rules more compact where the same rules apply to all members of the group.

Permissions/Actions
Again, the set of permissions will vary with the application and could be quite a long, elaborate list depending on the functionality provided and granularity of access modes etc.

· Read

· Write

· Execute

This last could include various manipulations of data: append, modify, summarise, extract statistical information, move and so on.

Attributes
It seems to be common practice to associate attributes with actors. The idea seems to be to base decisions as to what roles the actor is eligible to adopt on what attributes he holds. Attributes are thus a further level of indirection, in addition to roles, between actors and permissions.

A responsible authority, like a hospital or medical council, will allocate attributes to actors. Attributes will reflect qualifications and capabilities. We assume that the meaning of such attributes is uniform across the various HARP domains, or at least, that suitable translations can be performed between domains where terminology differs. We will also assume that the problem of identifying responsible authorities, i.e. authorities that can be trusted to be honest and competent in their allocation of attributes, has been solved.

Proof that a certain actor has been allocated certain attributes will take the form of Attribute Certificates. These are digitally signed documents binding the actor’s unique identifier with the appropriate set of attributes. Whether separate certificates need to be issued for each attribute or several attributes in a single certificate is an implementation decision. Mechanisms need to be in place to verify such certificates. We will assume that a suitable TTP infrastructure is in place to obtain the Public Keys of AC issuing authorities in a reliable and secure manner.

Once the attributes of an actor have been verified, they can be used in deciding what roles he is eligible to adopt. Potentially each domain have its own policy establishing a mapping from the power set of attributes to the power set of roles (i.e. a mapping that given a set of attributes returns the set of permitted roles). Actually the situation may be more complicated: there may be constraints and mutual exclusions between roles and so the mapping might have to return a set of sets. A further complication is that an actor may have several sessions running simultaneously and there may be exclusions between roles in different sessions. Past sessions may also be relevant as with Chinese walls style policies in which having adopted a certain role debars you from other roles in the future to avoid conflicts of interest.

Security Requirements
We give informal statements of some of the properties that appear to be relevant for health-care. More formal definitions, given in terms of CSP, of many of these terms can be found in [2].
Confidentiality

This concerns who can access what information under what circumstances. Rules will typically be stated in terms of roles and other constraints. For example:

“A consultant can read X fields of a patient’s records locally during working hours and only if he is on the ACL for that patients records.”

Information flow

We will also need information flow style rules similar to those found in military style policies that constrain information flow between objects. Information should not, ordinarily, be allowed to flow from a highly sensitive file to one of lesser sensitivity. Exceptions will be allowed in special circumstances, akin to the “downgrades” of the military style policies. This suggests that there might be a useful role for MLS style policy within the model for HARP. We will see an example of this later when we discuss the Anderson principles.

Strictly speaking one probably wants a non-interference style formulation to characterise the absence of unwanted information flows, see [3]. In practise this is probably unnecessary for HARP and a Bell-LaPadula style formulation should suffice. This however is not a trace property and hence not “enforceable” in the sense of Schneider.

Aggregation/inference issues
When dealing with confidentiality in the context of a data-base we quickly hit against aggregation and inference style problems: pieces of information are separately regarded as unclassified but together allow some classified information to be inferred. A well-known example is that of a personnel data-base with a field assigning employee names to pay codes and another assigning codes to salaries. Taken separately these are innocent enough but together they allow the salary of each employee to be deduced, which presumably is regarded as sensitive.

These kinds of concern are more prevalent in the context of clinical trails than in health care. For the moment we just note them.

Privacy

It is not really clear if this is distinct from confidentiality. Anderson, [1], suggests that the terms secrecy or confidentiality refer to the sensitivity of information from the point of view of an organisation, whilst privacy is from the point of view of an individual. Often the terms are used interchangeably. We are regarding policy as driven be the requirements of patient privacy and so will use the terms interchangeably.
Integrity

Integrity concerns establishment and preservation of the correctness of data. Typically this will be formulated in terms of who (which roles) are allowed to write data under what circumstances. We might then have rules like:

Anyone dominating a senior nurse can append information to X fields of a patient record (if they are assigned to that patient?).

Someone dominating a doctor can make corrections.

Often n-person rules will apply here: appending details can only be done by a consultant with the approval of an administrator or clerk. Even more stringent rules may be needed to control alteration to data.

What precisely is meant by “correctness” of data is rather tricky and takes us into semantic as opposed to purely syntactic considerations. The HARP trails talk of “proof protocols” that perform some elementary semantic checks but this will not eliminate incorrect data. The problem is related to the issue raised earlier: an actor can commit a misdemeanour whilst remaining strictly within his permissions.

Authentication

Authentication of course underlies all security policies. We will assume that sufficiently strong authentication mechanisms exist in order to ensure that all actions performed in the system can be correctly attributed to the person who initiated them. This will mean in general that it must be possible to trace the causal chain of actions back through intermediate nodes and processes to the original requestor(s).

Note that it is often also necessary to authenticate the servers and services to the users.

Authorisation

Authorisation mechanisms are intended to ensure that actors can only perform that they are allowed by the policy to perform. Authorisation clearly depends on correct authentication.

The security policy will state what actors can perform what actions under what circumstances. The authentication and authorisation mechanisms should enforce the policy.

Presumably the security policy itself will be established and maintained by an appropriate role, e.g. security officer. No other role should be allowed to change the policy but presuambly we may be prepared to allow other roles to read (parts of) the policy.

Accountability

For every action there should be someone held accountable or responsible and this person should be the person who initiated or caused the action. Where n-person rules apply there may be more than one person accountable. Thus accountability also relies on strong authentication mechanisms. It also depends on effective audit mechanisms.

Accountability requires that individual names be tracked through the system, role identities will not be enough even though they may suffice for AC decisions.

One purpose of accountability acts as a back up to authorisation: i.e. as a second line of defence if authorisation mechanisms fail or indeed if policy has been incorrectly formulated. Another is to support deterrence in situations in which authorisations mechanisms are not employed.

Non-repudiation

By “non-repudiation” we mean that it should be impossible for someone to subsequently deny having initiated an action. In other words an action should only ever be authorised if the requestor has been authenticated and furthermore inviolate evidence should be created binding the requestor to the action. It would seem that, in the context of HARP at any rate, this requirement is subsumed in accountability and audit.

Delegation/referral/proxying

Delegation is a rather slippery concept and the term can mean many different things. There are two forms of delegation of relevance to HARP:

· In which an actor delegates a right (permission?) to a process or chain of processes to enable them to perform an action on his behalf. This is perhaps more properly referred to as proxying.
· In which an actor delegates a right/permission to another actor, perhaps for a limited time.

Conceptually and perhaps in terms of mechanisms these may not really be distinct if we lump together people and processes and implement authorisation in terms of certificates. There do appear to be distinctions from the point of view of responsibility however. An intermediate process that is merely carrying out instruction would not be deemed responsible for resulting actions.

Proxying, in the sense above is probably more of an implementation detail and not really relevant at the policy level. It suffices that such mechanisms exist to enable allowed requests to be performed whilst maintaining accountability.

Some forms of delegation may be automatic and enshrined in the policy. For example it may be the case that the permissions of a consultant pass automatically to a designated deputy in the event of the consultant being unavailable.

Other forms of delegation may involve a degree of discretion, within constraints stipulated by the policy, on the part of actors. Thus a doctor might choose to delegate certain permissions, say to view a patients file, to another doctor in order to obtain a second opinion. But this might require patient consent.

Questions of responsibility can become more delicate for such forms of delegation. If A delegates a permission to B and an action that B performs using this permission goes wrong, which of A or B are to be held responsible? Such rather legalistic issues we will leave to one side. As long as the principle of a accountability is maintained then presumably such issues can be resolved either at the policy establishment stage or maybe after the event in the cases where policy does not resolve the question. Thus from the technical point of view it is enough to ensure for example the non-repudiation and unforgeability of delegation.

Separation of duties

Sometimes we will want to stipulate that, in addition to other constraints, certain actions can only be performed with the agreement actors from each of two (disjoint) roles. We might require that to alter a patient’s record needs the approval of both a consultant and an administrator. The assignment of actors to roles should ensure that such roles are disjoint to avoid Nick Leeson type problems.

Some policies will require patient consent for certain actions.

N-person rules

It is not clear that there is any distinction between this and the previous item.

Anonymity

Anonymity will occasionally be called for: that a patient name cannot be associated with a certain record under certain circumstances (particularly in the context of clinical trials presumably).

We may also want to provide patients with the possibility of obtaining advice and treatment anonymously.

In principle we could contemplate anonymity for clinicians but it seems hard to imagine circumstances in which this would be appropriate given that it would run counter to requirements of accountability.

Anonymity might encounter problems with aggregation and inference.

Is anonymity “enforceable?
Availability

All the above concern preventing (or deterring) actions barred by the security policy. We also want to ensure the availability of allowed actions. That is, if an action is allowed by the policy then the system implementation should ensure that it can be carried out in a timely and dependable fashion. Defining “timely” will presumably need the introduction of some notion of time

Overrides

Inevitably there will be operational circumstances in which it is necessary to perform an action not ordinarily allowed by the policy. An example might be a situation in which the consultant treating a patient is unavailable but urgent treatment is required. We are straying into meta-policy areas here but the implementation should allow a class of emergency overrides. On the other hand the policy should state clearly what authorising actions need to be performed in such cases. Strict auditing procedures will be required for such circumstances to deter abuse. Policy may call for warning messages when overrides are invoked, e.g.:

“Warning, this action falls outside the standard policy and can only be authorised in an emergency situation. You will be held accountable and may be required subsequently to prove that an appropriate emergency situation justified this breach of policy.”

A classic example would be an action normally requiring patient consent but at a time when the patient is unconscious. Another example might be treatment usually only permitted to a doctor assigned to the patient but in which that doctor is unavailable.

More generally we could envisage formulating a set of envelopes of behaviours. An “inner” envelope of behaviours that sets out the usual, allowed actions and then various “exceptional” envelopes along with associated authorising override actions and events that encode the circumstances justifying the override. This is reminiscent of the process algebraic encoding of fault tolerance: various acceptable degraded functionalities are specified along with the corresponding fault scenarios. We may be able to adapt these techniques to HARP.

We note that the notion of overrides here seems similar to the notion of downgrades in the traditional security policies. Downgrades and the associated notion of “trusted subjects” have always been a rather awkward and controversial.
Audit
All accesses, even ones that do not alter records, need to be strictly audited. Audit trails should be secured and accessible only by appropriate roles: audit officers, possibly security managers. Indeed audit trails themselves must be subject to strict policies. Strong mechanisms should be provided to ensure their integrity.

We need to decide exactly what information needs to be laid down in the audit trail. For example do we include details of any data manipulation.

Policy Language

We have given an informal outline of the kinds or requirements we expect to appear in a security policy for telemedecine. Now we need to formulate a precise language in which such policies can be stated in a precise, unambiguous way. Furthermore the language must have a sound semantics to allow us to analyse it, deduce consequences and of course verify an implementation against it. We may also want to go on to establish meta-results like soundness and completeness.

As far as possible we will try to use an existing and hopefully tried and tested framework, but it is not clear that an entirely suitable framework currently exists.

As a first step we need to establish what factors go into access control decisions. Let’s start with the health-care scenario. We need to establish what factors govern whether a given individual is allowed to a certain access to a certain component of a patient record:

Arguments in the access control decisions:

· Patient identity (assuming that the request just concerns data relating to a single patient)

· Patient category (e.g. no consent, partial consent, full consent, etc)

· Component of record (allergies, immunisation, psychiatric, genetic, family medical history, etc)

· Access mode (read, append, alter, disseminate…)

· Identity of the individual requesting access (may be subsumed into role and attributes?)

· Role of requestor in current session.

· Existence of mutually exclusive session involving the requestor (simultaneous or maybe past session if history based policy, e.g. Chinese Walls style)

· Whether the requestor is assigned to or referred to the care of the patient (may be regarded as an attribute of requestor?)

· Has the patient provided appropriate consent?

· Location of requestor (The path along which the request has passed may also have to be taken into account, for example if intermediate nodes are suitably trusted. Ideally the implementation should allow us to make such decisions independent of such paths but this may be tricky).

· Time of request.

· History of previous, related actions by the requestor.

· Where separation of duty applies have other authorising actors provided appropriate proof of approval of the request?

· Is some form of delegation required? If so is the delegation allowed by the policy and have the relevant proofs of delegation been provided?

· Have override procedures been invoked?

· Proof instances (not quite sure I understand how these work but they may be relevant, maybe more for clinical studies).

We are assuming that each actor in the HARP system is registered with a domain (Q: exactly one domain?). This domain will be responsible for maintaining a unique (across the HARP system) identifier for this actor and for allocating attributes and issuing attribute certificates that bind the identifier to the set of attributes. (actually this raises another question: can the authorities that allocate identities and attributes be distinct from the domains that maintain services and enforce access control policy?)

When an actor, A say, requests services or information from a domain, D say, other than his home domain, D must establish and verify the set of attributes associated with A. At the policy level we will not concern ourselves with the implementation details of exactly how the verification is achieved. Having established A’s attributes D can decide what roles he can be assigned according to D’s local security policy. A will be notified of this set of roles (or perhaps set of sets) and can then make a selection. Once A has made a selection of roles D’s Access Decision Function engine can decide on the basis of A’s role(s) and other factors whether the request should be accepted.

The policy language has to be rich enough to encompass all of these (or at least those that we decide are relevant). A key question is whether a mainstream formal method like CSP, B, Z, Action Systems is rich enough to capture the relevant aspects. We will proceed with this as a working hypothesis that we will test by working through some example policies.

There are a lot of proposals in the literature, many of which have merit, but none seem entirely satisfactory. Many of the proposals have languages that seem more machine-friendly than human-friendly. It would be nice to come up with a sufficiently human friendly presentation which could then be mapped fairly readily into one of the existing languages. If we can come up with a sufficiently clear and expressive graphical presentation that would be appealing.

Formalisms for healthcare policy

We have conducted a survey of existing frameworks for expressing and managing security policy. None seem entirely suitable for HARP. We propose therefore to use the formal notation AMN (Abstract Machine Notation) of the B-method, due to Abrial [4], to formulate the policy rules. This language appears to be sufficiently rich to express all the properties of interest whilst sufficiently clear to be accessible to designers and to managers. It also benefits from excellent tool support: l’Atelier B. Tools are also available to translate AMN into CSP, [5], and to UML, [6]. Both B and CSP are supported by excellent tools and methods that will assist in designing and verifying the mapping of policy into the target mechanisms and architecture of HARP.

The B-method

The B-method is one of the more mature and powerful, formal development methods around. It is the brain-child of J-R Abrial, [4]. It thus has a similar pedigree to the Z notation but avoids the Baroque complexity that rendered Z virtually useless as a development method. It comprises a notation, the Abstract Machine Notation (AMN) described in more detail in the next section and a rigorous development method allowing stepwise refinement towards implementation. Code generators are also available as are proof assistants to help discharge proof obligations resulting from refinement steps.

Based on Dijkstra’s guarded commands language.

CSP

The process algebra CSP (Communicating Sequential Processes) has been used highly effectively in the design an analysis of distributed systems. In particular it has been used to good effect in information security applications: the analysis of security protocols and the formulation of models security policies.

In contrast to the AMN which is state based, CSP is an event based formalism. However, a precise, semantic preserving mapping has been established between them and indeed a tool has been developed that implements this mapping, see below.

CSP is of course well suited to describing distributed, concurrent systems and so particularly relevant to HARP:

The FDR model-checker

CSP is equipped with a model-checker, FDR, that allows one to check whether or not one CSP specification is a refinement of another. One can thus produce a high level CSP specification of the requirements and a lower level design and check the latter against the former. This can be continued recursively towards an actual implementation. It should be noted however that security is not necessarily preserved by conventional refinement. If the check fails a (minimal) counter-example is returned which renders the tool highly effective at debugging designs, see [2]. FDR is available from Formal Systems Europe, http://www.formal.demon.co.uk/.

The CSP Animator: Probe

CSP is also supported by an animator called probe, also available from Formal Systems. This could be used to help validate policies.

The mapping between B and CSP

In his D.Phil. thesis Michael Butler established a correspondence between CSP and AMN. This is of particular interest as it served to establish a bridge between state-based and event-based formalisms. A tool, csp2B [5] is available that implements the mapping between CSP and B.

The mapping between B and UML

A prototype tool is also available that implements a (partial) translation between B and UML, [6]. This could prove highly useful in HARP, allowing us to move from UML description to more formal B descriptions that can then be analysed, animated and developed.

Security policies for Health-care

To make the above more concrete let us illustrate by taking an actual policy. It has proved difficult to obtain an authoritative statement of health-care policy and in any case such things vary from country to country and even within countries. The policy presented by Anderson in [1] seems a good example to work with. We will begin by paraphrasing the 9 principles he sets out and then cast them in a formal framework.

The overarching principle behind the 9 given below it that of patient consent: that the patient is the owner of records concerning his medical history. He should have access to these records and control over who is responsible for them and has access to them. This is perhaps not universally accepted but does seem to be the spirit of European level legislation. Things are somewhat complicated in situations in which records refer to more than one patient but we will elide such complications for the moment at least.

Anderson suggests that records be marked with their respective Access Control Lists (ACLs). For HARP purposes we might not attach the ACL to records but instead have the ACL information held in an Access Control Server or similar. This is really an implementation detail and conceptually this changes nothing. Indeed, we can imagine that we might want ACL attached to records as well as stored in an ACS by way of backup. Indeed for the purposes of the HARP demo the Anderson approach might be a good solution. More generally however it seems less flexible, i.e. no so easy to support richer styles of policy with say time and location constraints, n-person rules etc.

1st Principle: Access Control List
Each identifiable record should be marked with its ACL. See comments above.

2nd Principle: Opening records
A clinician can open a record with her and the patient’s names in the ACL. If the patient is subsequently referred to another clinician the new clinician’s name is added to the ACL. (Presumably the original clinician’s name is not deleted?)

3rd principle: Responsibility
Exactly one clinician on the ACL must be designated as responsible for that record. Only the clinician designated as responsible is allowed to alter the ACL. Presumably the clinician who originally opened the record is the responsible individual for that record initially.

4th Principle: Informed consent
The responsible clinician must inform the patient of all names on the ACL and any change in responsibility for the record. Furthermore the patient consent is required for any such changes (except in certain override circumstances).

5th Principle: Persistence
All records have a life-span (presumably dictated by policy and depending on their nature). No record should be deleted before the its life-span has expired. [Do we need to specify who can delete once the life-span has expired?]

6th Principle: Audit
All accesses must be audited. The identity of the record and the clinician, the nature, time and date of the access must all be included in the audit information. (Presumably for HARP we may require more, for example all information that was pertinent to the AC decision: location, accompanying authorisations etc. Might need to include actual data)

7th Principle: Information Flow
Data from record A may be appended to record B iff ACL(B) (ACL(A). (Presumably records A and B should refer to the same patient).

8th Principle: Aggregation Control
Patients must be notified if anyone requesting access to their records has already had access to records of a large number of other patients. (We assume that “large” here would be defined in a policy. We further assume that the patient can refuse consent)

And ninthly!

9th Principle: Effectiveness
Principles 1 through 8 must be enforced “effectively”. The mechanisms enforcing them should be subject to independent audit.

Remarks
7 is interesting as it resembles the * property of the Bell-LaPadula model and suggests that there may be some merit in having an MLS style component to the policy. Set inclusion induces a lattice structure analogous to that of an MLS policy, though it probably isn’t as useful here to introduce an explicit (labelled) lattice in this context.

9 is really a sort of meta-principle and will be dealt with under verification of the security mechanisms rather than embodied in policy. Similar comments hold for principle 6.

8 would be rather problematic in the context of clinical trails. Maybe could be moderated if accesses are anonymised.

Anderson’s principles seem to break into two groups: firstly rules about who can perform what actions and secondly properties that the systems should maintain. The former can be coded as constraints on allowed transitions the latter are more like invariants that must be maintained by the system.

We need to figure out what are identifiable records in the context of HARP (trials).

Referral and transfer of responsibility seem to be, albeit rather simple, examples of delegation. We may want to introduce some rather richer forms.

Protocols will be needed to ensure patient consent is obtained for all accesses. Might be sensible initially to assume that patient is permanently on-line, i.e. a CSP like synchronisation abstraction. Does the patient consent need to be sought for each access, i.e. is it one off, or could consent persist, at least for some access modes? Presumably we could have a consent flag against some access modes signifying the patient has granted long-term consent (maybe with a time limit). If the flag is set then patient consent need not be sought, if not consent must be sought each time. Policy could dictate what type of record and access type could admit such long-term consent. Clearly the patient would need to be made aware of the distinction between one-off and long-term consent and which he’s being asked for, i.e. informed consent again. Extra rules and protocols would be required for setting such flags.

Anderson does not say anything about availability. The obvious thing to do is to stipulate that for any valid request, i.e. one for which the guard evaluates to True, the action should be completed within a given time. The time limit could be stipulated by policy and could vary according to the type of the requested action and maybe also according to urgency markings (requiring perhaps another field in the request) and perhaps also according to system load etc. A time parameter can be included in the formalism quite straightforwardly. We might want to use a continuous form of time a la Timed CSP, [7] or a discrete form using something like the “tock dialect” of CSP, [8]. The latter involves a global “tock” event against which all processes can synchronise.

Formalisation of Anderson’s principles.

We now cast a security policy derived from the Anderson principles into a formal notation. The exercise should be regarded as a proof of concept and indicative of what can be encoded in such a formalism rather than as definitive. It is likely that real policies will differ greatly from what we propose here. The important thing is to show that a rich policy embracing many of the features we expect to see in a health care policy can be captured.

We now try to cast these rules into a quasi-formal notation. This can readily be translated into say B, CSP or Action Systems depending which style of tool support we want. Indeed translations between these formalisms are well understood and, at least partially, automated, [5].

[note: we need to capture the process of opening a session, selecting roles etc]

Entities:

· Records

· ACL’s

· +Roles

Roles:

· Clinician

· Patient

· Responsible clinician

Operations:

· Create record

· Edit ACL

· Alter RespId

· Read record

· Append to record

· Delete record

Additional operations (?)

· Read anonymised record (?)

· Set consent flag

· Add patient

· Remove patient

· Add clinician

· Remove clinician

Factors in AC decision:

· RequestorId

· PatientId

· RecordType

· AccessType

· PatientOK

· AccessNumber

Types and functions

· Patients

· Clinicians

· ACL: (Clinicians

· Record Types

· Records: a record is a tuple made up of:

· (Record Id, Patient Id, Responsible Clinician, ACL, Record Type, Data, expiry date)

subject to the constraint that Patient Id and Responsible Clinician (ACL.

· Access Modes

Functions:
· Get_ACL: R_Id (ACL

Given a record id returns the ACL.

· RecType(R_Id) : Records(Type

Given a record Id returns the type of the record.

Cinfo: Clinician ((Records (This could be thought of as an appropriate projection of the trace of C, thought of as a process)

This takes a clinician name and returns the set of records he has obtained.

The audit trail is presumably a projection of the global trace.

Global Rules
All actions should be audited, even rejected requests.

A clinician may only access (read or append) a record if he is named in the ACL for that record.

Security relevant operations

All of these will be accompanied with an append to the audit trail. Rejected requests will also be audited. We start with a quasi-formal statement which should serve to communicate the ideas to the domain experts etc. We will then give a more formal expression in Abstract Machine Notation (AMN). The general form of the actions will be:

· Request

· Guards

· State transition if accepted: before state and after state (all other state assumed unchanged)

· Invariants

Followed by an English description.

If the request is rejected then the only state change should be to the audit trail.

There would seem to be a number of formalisms that could handle this fairly effortlessly: CSP, B, Z.

Open record

Request:

ReqOpen(C_Id, P_id, R_id, T, data)

Guard:

Consent_Open(P_Id, C_Id, T) & GetRec(R_id) = {}

Transition:

Records(= Records (Record((R_Id, P_Id, C_Id, , {P_Id, C_Id},T, data, Time+ Persistence(T))

If the patient P_Id gives consent to clinician C_Id to open record of type T then C_Id can open a record, with identifier R_Id say, such that RecType(R_Id) = T with the ACL set initially comprising the identities of the patient and the clinician. The expiry date should be set according to the policy for that record type.

Referral (append to ACL)

Request:

ReqReferral(C_Id, P_id, R_id, C_Id()

Guard:

Consent_Referral(C_Id, P_id, R_id, C_Id() & C_Id (ACL(R_Id)

Transition:

Record((R_Id, P_Id, C_Id, , ACL(,T, data, ExpDate) = Record(R_Id, P_Id, C_Id, , ACL ({C_Id(},T, data, Expdate))

If the patient consents the responsible clinician may add the name of another clinician to the ACL.

Change responsibility

Request:

ReqChangeResp(C_Id, P_id, R_id, C_Id()

Guard:

Consent_ChangeResp(C_Id, P_id, R_id, C_Id() & RespClin(Rid) = C_Id

Transition:

Record((R_Id, P_Id, C_Id, , ACL, T, data, ExpDate) = Record(R_Id, P_Id, C_Id(, , ACL, T, data, ExpDate))

If the patient consents the responsible clinician may pass responsibility for a record to another clinician.

Read record

Request:

ReqRead(C_Id, P_id, R_id)

Guard:

(C_Id (ACL(R_Id) & #Cinfo(C_Id) (N)

(
(C_Id (ACL(R_Id) (#Cinfo(C_Id) (N (SpecialConsent(P_Id, C_Id. R_Id))

Transition:

ClinRec((C_Id) = ClinRec(C_Id) (GetRec(R_Id)

If a clinician is named in the ACL for a record and the number of records that he has already accessed is less than some limit N set by policy then he may read that record. The set of records he has accessed is augmented accordingly. If the number of records clinician C_Id has already accessed is greater than N patient consent must be sought before this access can be granted.

Append to record

Request:

ReqAppend(C_Id, P_id, R_id, Data()

Guard:

C_Id (ACL(R_Id) (which presumably implies that record with R_Id exists)

Transition:

Record((R_id) = Record(R_Id, P_Id, C_Id, , ACL,T, Data ^ Data(, ExpDate)

If a clinician is named in the ACL for a record he may append data to that record.

Transfer data between records

Request:

ReqTransfer(C_Id, P_id, R_id, R(_Id, Data)

Guard:

C_Id (ACL(R_Id1) & C_Id (ACL(R_Id2) (which presumably implies that record with R_Id1 and R_Id2 exist)

Transition:

Record((R_id1) = Record(R_Id1, P_Id, C_Id1, , ACL1,T1, Data1, ExpDate1),

Record((R_id2) = Record(R_Id2, P_Id, C_Id2, , ACL2,T2, Data2 ^ Data1, ExpDate2)

If a clinician is named in the ACL’s of two records A and B and furthermore ACL(B) (ACL(A) then he may transfer data from A to B. Presumably the records should refer to the same patient (and be of the same type?)? Presumably the original record should be unchanged.

Delete record

Request:

ReqDelete(C_Id, P_id, R_id)

Guard:

Time (ExpDate(P_Id, R_Id) (C_Id (ACL(P_Id, R_Id)

Transition:

Record((P_Id, R_Id) = {}

Once the life-time of the record has been reached the responsible clinician may delete the record. No record may be deleted before the expiry date has been reached.

Request patient consent?

If we include long-term consents in the model we need operations to obtain the appropriate patient consent and set the appropriate flags.

System Security State

In this section we describe the full, security relevant state of a health-care system.

Global Invariants

In this section we describe the security invariants that we expect the system to maintain.

Security policies for clinical trials

The security issues raised by clinical trails are rather different to those that occur for health-care applications.

Worked example, based on the use cases?

References

[1] Anderson R J, “Security in Clinical Information Systems”. Web page?

[2]
Ryan P Y A, Schneider S A et al, “Modelling and Analysis of Security Protocols”, Pearson Scientific 2001.

[3]
Ryan P Y A, Schneider S A, “Process Algebra and Non-interference”, Proceedings of the Computer Security Foundations Workshop 1999, IEEE Press. Extended version to appear in a special edition of the Journal of Computer Security.

[4]
J-R Abrial, “The B-Book, Assigning Programmes to Meanings”, Cambridge University Press, 1996.

[5]
M J Butler, “csp2B: A Practical Approach to Combining CSP and B”, http://www.ecs.soton.ac.uk/~mjb/csp2B/.

[6]
M J Butler, “Verifying Dynamic Properties of UML Models by Translation to the B Language and Toolkit”, http://www.dsse.ecs.soton.ac.uk/techreports/2000-12.html

[7]
S A Schneider, “Concurrent and Real-time Systems, the CSP Approach”, Wiley 2000.

[8]
A W Roscoe, “The Theory and Practice of Concurrency”, Prentice-Hall, 1997.

[9] P Y A Ryan, “Mathematical Models of Computer Security”, in Proceedings of the 2000 FOSAD Summer School, ed R Gorrieri, LNCS, Springer to appear.

Annex 2: HPC specification PK certificate ASN.1 structure

DS-certificate coding (Example)

The certificate coding as a sequence of ASN.1-DER data object is given below (the coding shall give an impression of the byte sequence and may contain coding errors due to non-automatic generation):

30 82 xx xx
-- SIGNED SEQUENCE (Certificate)

 30 82 xx xx
-- SEQUENCE (ToBeSigned)

 A0 03
-- Version:
 02 01
-- INTEGER

 02
-- 2 (X.509v3)

-- CertificateSerialNumber:
 02 08
-- INTEGER

 19 98 10 00 xx xx xx
-- 19 98 10 00 xx xx xx (year certtype seq.no.)

-- AlgorithmIdentifier:
 30 xx
-- SEQUENCE

 06 xx
-- OBJECT IDENTIFIER

 xx xx xx xx xx xx xx
-- Algorithm, e.g. RSASignatureWithSHA1 and

 padding ...

 05 00
-- Parameters NULL

-- Issuer Name:
 30 1D
-- SEQUENCE OF (RelDistName)

 31 0B
-- SET OF (AttValueAssertion)

 30 09
-- SEQUENCE

 06 03
-- OBJECT IDENTIFIER

 55 04 06
-- OID CountryName

 13 02
-- PRINTABLE STRING

 44 45
-- ”DE”

 31 0E
-- SET OF (AttValueAssertion)

 30 0C
-- SEQUENCE

 06 03
-- OBJECT IDENTIFIER

 55 04 03
-- OID commonName

 13 03
-- PRINTABLE STRING

 47 4D 44
-- “GMD” (= DE Zs GesundheitsWesen)

-- Validity:

 30 23
-- SEQUENCE

 18 0F
-- GeneralizedTime (notBefore)

 31 39 39 38 30 38 30 31 30 30 30 30 30 30 5A

-- 19980801000000Z (YYYYMMDDHHMMSS,

 Z=GMT)

 18 0F
-- GeneralizedTime (notAfter)

 32 30 30 30 31 32 33 31 32 33 35 39 35 39 5A --

-- 20001231235959Z

-- Subject Name:

 30 xx
-- SEQUENCE OF (RelDistName)

 31 0B
-- SET OF (AttValueAssertion)

 30 09
-- SEQUENCE

 06 03
-- OBJECT IDENTIFIER

 55 04 06
-- OID CountryName

 13 02
-- PRINTABLE STRING

 44 45

-- ”DE”

31 0B
-- SET OF (AttValueAssertion)

 30 09
-- SEQUENCE

 06 03
-- OBJECT IDENTIFIER

 55 04 06
-- OID CommonName

 13 xx
-- PRINTABLE STRING

 ..
-- ”..”

 31 1B
-- SET OF (AttValueAssertion)

 30 19
-- SEQUENCE

 06 03
-- OBJECT IDENTIFIER

 55 04 05
-- SerialNumber

 13 01
-- PRINTABLE STRING

 33
-- ”3”

-- SubjectPublicKeyInfo:
 30 81 9F
-- SEQUENCE

 30 0D
-- SEQUENCE (AlgorithmIdentifier)

 06 09
-- OBJECT IDENTIFIER: rsaEncryption

 2A 86 48 86 F7 0D 01 01 01 --

 05 00
-- NULL (Parameter)

 03 81 8D
-- BIT STRING (SubjectPublicKey)

 00 30 81 89
--

 02 81 81 00
-- modulus

 02 03 01 00 01
-- public exponent 65537

 A3 81 79
-- Extensions:
 30 81 79
-- SEQUENCE OF (Extensions)

 30 13
-- SEQUENCE

 06 03
-- OBJECT IDENTIFIER

 55 1D 23
-- Authority Key Id

 04 0C
-- OCTECT STRING

 30 0A
-- sequence

 80 08
-- keyIdentifier

 xx ... xx
--

 30 0E
-- SEQUENCE

 06 03
-- OBJECT IDENTIFIER

 55 1D 0F
-- Key Usage

 01 01 FF
-- BOOLEAN: Critical = TRUE

 04 04
-- OCTET STRING

 03 02
-- bit string

 03 40
-- b1 := TRUE, only nonRepudiation

 30 12
-- SEQUENCE

 06 03
-- OBJECT IDENTIFIER

 55 1D 20
-- Cert.Policy

 04 0B
-- OCTET STRING

 30 09
-- sequence

 30 07
-- sequence (policyId)

 06 05
-- object identifier

 2A 85 70 27 01 –

 30 15
-- SEQUENCE

 06 03
-- OBJECT IDENTIFIER

 55 1D 11
-- Subj.Alt.Name

 04 0E
-- OCTET STRING

 30 0C
-- sequence of generalName

 81 0A
-- rfc822name: IMPLICIT IA5STRING

 ...
-- bernd.blobel@mrz.uni-magdeburg.de

 30 09
-- SEQUENCE

 06 03
-- OBJECT IDENTIFIER

 55 1D 13
-- Basic constraints

 04 02
-- OCTET STRING

 30 00
-- sequence (Null)

-- AlgorithmIdentifier:

 30 0D
-- SEQUENCE

-- Algorithm

 06 0x
-- OBJECT IDENTIFIER

 xx .. xx
-- ...

 05 00
-- NULL (Parameters)

-- Signature:
 03 81 81
-- BIT STRING

Annex 3: Installation Notes

To aid with the installation of the various software components, this chapter gives a few notes to accompany the documentation that comes with the software itself.

The base system used is Debian GNU/Linux 2.2r2, with a Linux Kernel 2.2.18.

OpenSSL, Apache, PostgreSQL were not installed using the Debian package management system (which installs precompiled binaries), but were compiled from the original source code tarballs.

Java 1.3

This is trivial, simply unpack (as root) IBMJava2-SDK-13.tgz to /usr/local which creates an IBMJava2-13 subdirectory.
PostgreSQL 7.0.3

Follow the normal instructions first to install the database software.

The JDBC driver is not part of the normal installation. For this part:

· set your PATH to include /usr/local/IBMJava2-13/bin
· cd to postgresql-7.0.3/src/interfaces/jdbc

· make jdbc2

· (as root) cp -pi /home/rj/work/postgresql-7.0.3/src/interfaces/jdbc/postgresql.jar /usr/local/IBMJava2-13/jre/lib/ext/

Ant 1.2

BEWARE: the jakarta-ant-src.tar.gz file is broken as it does not expand its contents into a subdirectory. So make sure to create a jakarta-ant directory, to cd into it and to unpack ../jakarta-ant-src.tar.gz.

As directed in the README file, follow the instructions in docs/index.html for building and installing ant.
For that one needs a JAXP compliant XML parser. You can get one by downloading jaxp-1_1.zip and unpacking it in /usr/local/java/. Contrary to ant's documentation—it might be relating to an older JAXP version—one needs different .jar files in one's CLASSPATH, namely the crimson.jar and xalan.jar files instead of the (non-existent) parser.jar file.

One ends up with the following settings for the ant compilation:

JAVA_HOME set to /usr/local/IBMJava2-13, $JAVA_HOME/bin put into one's PATH and CLASSPATH set to /usr/local/java/jaxp-1.1/jaxp.jar:/usr/local/java/jaxp-1.1/crimson.jar:/usr/local/java/jaxp-1.1/xalan.jar.
Execute ./bootstrap.sh followed by
./build.sh -Dant.dist.dir=/usr/local/ant dist

Since ant doesn't seem to distinguish between building and installing, you have to make sure that /usr/local/ant is createable or writeable by the user building ant.
OpenSSL 0.9.6

Unpack openssl-0.9.6.tar.gz and cd to the directory. Execute:

./config --openssldir=/usr/local/openssl-0.9.6

make

make test

make install

Apache 1.3.17 With mod_ssl 2.8.0

Unpack mod_ssl-2.8.0-1.3.17.tar.gz and apache_1.3.17.tar.gz

Follow the directions in mod_ssl's INSTALL file, i.e.:
cd mod_ssl-2.8.0-1.3.17

./configure --with-apache=../apache_1.3.17

cd ../apache_1.3.17

env SSL_BASE=/usr/local/openssl-0.9.6 ./configure --enable-module=ssl --prefix=/usr/local/apache-1.3.17 --enable-shared=ssl --disable-rule=SSL_COMPAT --enable-rule=SSL_SDBM

(root)# make install

(root)# cd /usr/local/apache-1.3.17/conf

(root)# vi httpd.conf

Change to ports 80 and 443, respectively.

Change User and Group to www-data.
Adjust the ServerAdmin and ServerName.
Create and install CA and server keys, CSRs and certificates:

(root)# openssl genrsa -out ssl.key/server.key -rand /dev/urandom 1024

(root)# openssl req -new -key ssl.key/server.key -out ssl.csr/server.csr

(root)# cp -pi ssl.csr/server.csr ~ca

(CA)> openssl ca -config testca.conf -name serverCA -in server.csr -out server-cert.pem -days 365

(root)# cp -p ~ca/server-cert.pem ssl.crt/server.crt

(root)# cp -p ~ca/userCA/cacert.pem ssl.crt/userca.crt

(root)# cp -p ~ca/rootCA/cacert.pem ssl.crt/rootca.crt

(root)# cd ssl.crt; make

In the httpd.conf, enable SSLCACertificatePath, SSLCARevocationPath, SSLVerifyClient

and SSLVerifyDepth.
(root)# apachectl startssl

Install a startup script, e.g. /etc/init.d/apache.local (the file name is chosen so that it doesn't collide with a distribution's /etc/init.d/apache file), an example can be found in /etc/init.d/apache.local in Annex 4.

Tomcat 3.2.1

Unpack jsse-1_0_2-gl.zip in /usr/local/java.
(Sym)link the .jar files to JDK 1.3:
cd /usr/local/IBMJava2-13/jre/lib/ext

ln -s ../../../../java/jsse1.0.2/lib/*.jar .

In your work directory, unpack jakarta-tomcat-3.2.1-src.tar.gz and jakarta-servletapi-3.2-src.tar.gz.

Symlink jakarta-servletapi-3.2-src to jakarta-servletapi.
Set JAVA_HOME to /usr/local/IBMJava2-13, include $JAVA_HOME/bin in your PATH and set the CLASSPATH to /usr/local/java/jaxp-1.1/jaxp.jar:/usr/local/java/jaxp-1.1/crimson.jar.
Cd into the servletapi directory.

chmod +x build.sh

./build.sh dist

Cd into the sibling tomcat directory.

./build.sh

Startup tomcat once to let it create the conf/mod_jk.conf-auto file, shutdown tomcat:

Include /usr/local/IBMJava2-13/bin in your path.
set CLASSPATH to /usr/local/java/jaxp-1.1/jaxp.jar:/usr/local/java/jaxp-1.1/crimson.jar.
Cd to ../build/tomcat.
Execute bin/startup.sh.
Execute bin/shutdown.sh.
Copy the conf/mod_jk.conf-auto file to conf/mod_jk.conf-custom and adjust it:

cd conf

cp -pi mod_jk.conf-auto mod_jk.conf-custom

vi !$

Change ajp12 to ajp13

:e server.xml

Set noCookies to true

Duplicate the apj12 section, change 12 to 13 and 8007 to 8009.

Copy the whole installation to its target location:
(root)# cp -r ../build/tomcat /usr/local/tomcat-3.2.1

In the copied version, adjust the paths in conf/mod_jk.conf-custom; in conf/server.xml, add path="logs/tomcat.log" to the tc_log Logger; comment out the example and admin contexts.
(root)# chown -R www-data logs work

(root)# chown www-data conf/tomcat-apache.conf conf/*-auto

Create a /etc/init.d/tomcat.local file. (The file name is chosen so that it doesn't collide with a distribution's /etc/init.d/tomcat file.) See /etc/init.d/tomcat.local in Annex 4for an example. Symlink it to the appropriate runlevel directories.
Create /etc/logrotate.d/tomcat.local (see /etc/logrotate.d/tomcat.local in Annex 4) and /etc/logrotate.d/mod_jk.local (see /etc/logrotate.d/mod_jk.local in Annex 4) files.

Compile and install the mod_jk module:
cd src/native/apache1.3

/usr/local/apache-1.3.17/bin/apxs -o mod_jk.so -I../jk -I/usr/local/IBMJava2-13/include -c *.c ../jk/*.c

cp mod_jk.so /usr/local/apache-1.3.17/libexec

Block access to this host’s ports except for ports 443 (HTTPS) and perhaps 22 (ssh).

Configure the Apache Web server daemon:

Include the mod_jk.conf-custom at the end of /usr/local/apache-1.3.17/conf/httpd.conf

Inside the HTTPS virtual host section, insert a

<Location /harp/servlet/>

 SSLOptions +ExportCertData

</Location>

section.

stop and startssl the apache with its apachectl command.
Navigate to https://localhost/examples/servlet/SnoopServlet.
To compile a servlet, you need to set your CLASSPATH to /usr/local/tomcat-3.2.1/lib/servlet.jar:
Annex 4: Utility Scripts

These are utility scripts for system housekeeping. Most of them come from Debian GNU/Linux packages.

/etc/init.d/apache.local

#!/bin/sh

dir=/usr/local/apache-1.3.17

NAME=apache.local

PATH=/bin:/usr/bin:/sbin:/usr/sbin

DAEMON=$dir/bin/httpd

PIDFILE=$dir/logs/httpd.pid

CONF=$dir/conf/httpd.conf

APACHECTL=$dir/bin/apachectl

test -f $DAEMON || exit 0

test -f $APACHECTL || exit 0

if egrep -q -i "^[[:space:]]*ServerType[[:space:]]+inet" $CONF; then

 exit 0

fi

case "$1" in

 start)

 #echo -ne "Starting web server: $NAME.\n"

 #$APACHECTL start

 echo -ne "Starting web server (with SSL): $NAME.\n"

 $APACHECTL startssl

 ;;

 stop)

 echo -ne "Stopping web server: $NAME.\n"

 $APACHECTL stop

 ;;

 reload)

 echo -ne "Reloading $NAME configuration.\n"

 $APACHECTL graceful

 ;;

 reload-modules)

 echo -ne "Reloading $NAME modules.\n"

 if [-f $PIDFILE]; then

 $APACHECTL stop

 sleep 4

 fi

 #$APACHECTL start

 $APACHECTL startssl

 ;;

 restart)

 $0 reload-modules

 ;;

 force-reload)

 $0 reload-modules

 ;;

 *)

 echo "Usage: $0 {start|stop|reload|reload-modules|force-reload|restart}"

 exit 1

 ;;

esac

exit 0

/etc/init.d/tomcat.local

#!/bin/sh

NAME=tomcat.local

DESC="Tomcat servlet engine"

PIDFILE="/var/run/$NAME.pid"

CLASS=org.apache.tomcat.startup.Tomcat

TOMCAT_HOME=/usr/local/tomcat-3.2.1

TOMCAT_USER=www-data

JAVA_HOME=/usr/local/IBMJava2-13

DAEMON="$JAVA_HOME/bin/java"

LOGFILE=$TOMCAT_HOME/logs/stdout.log

test -f $DAEMON || exit 0

jdk="$JAVA_HOME/jre/lib/rt.jar:$JAVA_HOME/lib/tools.jar"

jaxp="/usr/local/java/jaxp-1.1/jaxp.jar:/usr/local/java/jaxp-1.1/crimson.jar"

CLASSPATH="${jaxp}:${jdk}"

for jar in "$TOMCAT_HOME"/lib/*.jar; do

 CLASSPATH="${CLASSPATH}:${jar}"

done

export CLASSPATH

case "$1" in

start)

 echo -n "Starting $DESC: "

 touch $PIDFILE

 chown $TOMCAT_USER $PIDFILE

 chmod u+rw $PIDFILE

 if /sbin/start-stop-daemon --test --start --pidfile $PIDFILE \

--user $TOMCAT_USER --startas $DAEMON > /dev/null; then

/sbin/start-stop-daemon --start --quiet --pidfile $PIDFILE \

--make-pidfile --chuid $TOMCAT_USER --exec $DAEMON -- \

$CLASS -home $TOMCAT_HOME >>$LOGFILE 2>&1 &

 echo "tomcat."

 else

 echo "(already running)."

 fi

 ;;

stop)

 echo -n "Stopping $DESC: "

 start-stop-daemon --stop --oknodo --quiet --pidfile $PIDFILE \

 --user $TOMCAT_USER

 rm -f $PIDFILE

 echo "$NAME."

 ;;

restart|force-reload)

 $0 stop

 sleep 1

 $0 start

 ;;

*)

 echo "Usage: $0 {start|stop|restart|force-reload}" >&2

 exit 1

 ;;

esac

exit 0

/etc/logrotate.d/tomcat.local

Logrotate file for Jakarta Tomcat

/usr/local/tomcat-3.2.1/logs/jasper.log {

 compress

 daily

 rotate 7

 notifempty

 missingok

}

/usr/local/tomcat-3.2.1/logs/servlet.log {

 compress

 daily

 rotate 7

 notifempty

 missingok

}

/usr/local/tomcat-3.2.1/logs/stdout.log {

 compress

 daily

 rotate 7

 notifempty

 missingok

}

/usr/local/tomcat-3.2.1/logs/tomcat.log {

 compress

 daily

 rotate 7

 notifempty

 missingok

}

/etc/logrotate.d/mod_jk.local

Logrotate file for mod_jk Apache module

/usr/local/tomcat-3.2.1/logs/mod_jk.log {

 compress

 daily

 rotate 7

 notifempty

 missingok

}
Annex 5: UML Diagrams for SMA

[image: image24.emf]Processing Study

TTP

User

Policy Council Developer

Using Study

Establishing Component

Documentation

Assistant

Distributing Component

Proof Instance

Study

Administrator

Remote Data Entry

Quality Assurance

Figure 23: Rough Use Case Clinical Studies

The next step deals with the refinement of the use cases mentioned in Figure 23 such as Establishing Component, Remote Data Entry, and Quality Assurance. The use cases Processing Study and Using Study (results) by public are out of scope at the moment. They should be developed later on.

Refinement: Establishing Components

For Establishing Component, the study objectives and criteria must be defined specifying the study’s character. The policy council is setting up the policy for performing the study. Because of the two-step of specification and implementation of an application, the specialisation of the Developer class into Specificator and Implementor has been introduced.

[image: image25.emf]TTP

Component Certification

Implementor

Roles & Rules Implementation

Data & Functions Implementation

Specificator

Study

Administrator

Criteria Definition

Data & Functions Specification

Roles & Rules Specification

Policy Council

Figure 24: Use Case “Establishing Component”

Refinement: Remote Data Entry

[image: image26.emf]Demographics Entry

Data Subject Identification

Medical Data Entry

Internal Data Check

Data Entry Accomplishment

Documentation

Assistant

Figure 25: Use Case “Remote Data Entry”

Refinement: Quality Assurance

The “Quality Assurance” use case describes the proof procedure of checking the data and writing a proof protocol. In the HARP demonstrator, this procedure will be done electronically by setting the valid flag “false” and highlighting the erroneous items.

[image: image27.emf]Protocol

Check Data

Proof Instance

Figure 26: Use Case “Quality Assurance”

Sequence Diagram

Establishing Components

[image: image28.emf]Study

Administrator

Policy Council Component Specificator Implementor TTP

Goal def. & study proposal

Criteria def.

Policy def.

Data & function description

Data & function specification

Role & rule description

Role & rule specification

Specification approval

Specification adoption

Data & function implementation

Role & rule implementation

Test

Componet Presentation

Component approval

[if expectations are met]

Signing component

Certifying component

Component rejection

Repeat procedure

[if expectation are not met]

Figure 27: Sequence Diagram “Establishing Component”

Activity Diagrams

The activity diagrams specify the detailed procedure of remote data entry and quality assurance. The diagrams reflect the component structure of the HARP demonstrator application. Therefore, activity diagrams for remote data entry have been specialised for demographics entry and medical data entry.

Demographics Entry

[image: image29.emf]Set

Organisation ID

Documentation Assistant:: Demographics Entry

[Subject found]

[Subject not found]

Enter Patient

ID

Combine IDs

Find subject

Check Demographics

Error Protocol

Enter Patient

Data

Enter Parent

Data

Display Data

Correct Data

[No error protocol]

[Error protocol]

Check Data

Sign Data

Entry

[Data not correct]

[Data correct]

Set DocType

DType= D

Set Valid Flag

VF=false

Set Date

Set Valid Flag

VF=true

Finish Demographics

Entry

Figure 28: Activity Diagram “Demographics Entry”

Medical Data Entry

[image: image30.emf]Set Date

Set

Organisation ID

Enter Patient

ID

Combine IDs

Find Subject

Default ID

Entry

Enter Universal

Patient ID

Display

Demographics

Enter Medical

History

[Subject not found]

[Subject found]

Set DocType

DType::=M

Set Valid Flag

VF=false

Set DocNo

DocNo=n+1

Enter Clinical

Results

Gender

Enter Female-specific

Clinical Observations

Enter Male-specific

Clinical Observations

[Female] [Male]

Therapy

Treatment

Control

Check Medical Data

Error Protocol

[No Error Protocol]

[Error Protocol]

Display Data

Correct Data

Check Data

Set Valid Flag

VF=true

Sign Data

Entry

Finish Medical

Data Entry

[Yes] [No]

Documentation Assistant:: Entry Medical Data

Figure 29: Activity Diagram “Medical Data Entry”

Quality Assurance

[image: image31.emf]Set Data

Enter Query

Parameter

Proof Instance:: Data Control

Check Data

Item

Highlight Data

Item

Go To Next

Data Item

[Data must be corrected]

[Data correct]

[No Data]

Sign Data

Control

Find

Document

Display Data

[Data available]

Finish Data

Control

Set Valid Flag

VF=false

Figure 30: Activity Diagram “Quality Assurance”

Class Diagrams

The class diagrams given follow the paper forms for data recording.

Demographics

[image: image32.emf]Patient Identification

Patient ID : ID

Universal Patient ID : ID

Patient Date of Birth : Date

Patient Sex : CD

Multituplets : CD (Table 001)

Patient Basis Information

Karyotyping Provision : CD (Table 002)

Karyotyping : CD (Table 003)

Genetic Deficiency Detection : CD (Table 002)

21-OH-Defect : CD (Table 004)

Molecular Findings Explanation : String

Further Diagnostic Confidence of Genetic Deficiency : CD (Table 002)

Further Diagnostic Confidence Comment : String

Genital Type According to Prader : CD (Table 005)

Prenatal Diagnosis Provision : CD (Table 002)

CAH Newborn Screening : CD (Table 002)

CAH in Family/Relationship : CD (Table 002)

Explanation of Family/Relationship Relation : String

Start of Therapy : Date

Further Clinically Relevant Diseases : CD (Table 002)

Clinically Relevant Diseases Comment : String

Organisation Identification

Organisation ID : ID

Organisation Name : String

Additional Patient Information

Mother's Day of Birth : Date

Mother's Height : Num (cm)

Father's Height : Num (cm)

Control Information

Document Type : CD (Table 013)

Document Number : Num

Document Valid Flag : Boolean (true/false)

Figure 31: Class Diagram “Demographics”

Medical Data 1

[image: image33.emf]Medical History since Last Examination

Compliance : CD (Table 006)

Menarche : CD (Table 002)

Date of Menarche (optional) : Date

Genital Operation : CD (Table 007)

Operation Date : Date

Specialty of Surgeon : String

Comment to Further Operations (optional) : String

Standard Instrumental Bougery of Vaginal Entry : CD (Table 002)

Diseases During Treatment : CD (Table 002)

Anaesthesia/ Operations (except. genitals) : CD (Table 002)

Other Special Exercises : CD (Table 002)

Temporary Supplementary Dosis of Corticoids : CD (Table 002)

Comments to the Treatments Mentioned : String

Clinical Results

Patient's Height : Num (xxx.x cm)

Patient's Weight : Num (xxx.x kg)

Ascertainment of Bone Age : CD (Table 002)

Bone Age (required if ascertainment = Y): Num (xx.x years)

Bone Age Defined by (required if ascertainment = Y): CD (Table 008)

Bone Age Ascertainment Method : CD (Table 009)

Systolic Blood Pressure : Num (xxx mmHg)

Diastolic Blodd Pressure : Num (xxx mmHg)

Patient's Height > 45.0 cm()

Patient's Weight > 1.0 kg()

Systolic Blood Pressure > Diastolic Blood Pressure()

Female-specific Clinical Results

Pubes Coverting of Hair (according to Tanner) : CD (Table 010)

Breasts Development (according to Tanner) : CD (Table 011)

Last Period : CD (Table 012)

Comments to Last Period : String

Anticonceptiva : CD (Table 002)

Signs of Androgyny : CD (Table 002)

Male-specific Clinical Results

Pubes Coverting of Hair (according to Tanner) : CD (Table 010)

Ascertainment of Orchitis Volume (using Orchiometer) : CD (Table 002)

Left Orchitis Volume (required if ascertainment = Y): Num (xx ml)

Right Orchitis Volume (required if ascertainment = Y): Num (xx ml)

Sonographic Investigation of Orchitis : CD (Table 002)

Orchitis Nodes (required if investigation = Y): CD (Table 002)

Figure 32: Class Diagram “Medical Data1”

Medical Data 2

[image: image34.emf]Therapy

Hydrocortisone at Morning (single dose) : Num (xx.x mg)

Hydrocortisone at Noon (single dose) : Num (xx.x mg)

Hydrocortisone at Evening (single dose) : Num (xx.x mg)

Prednisolone at Morning (single dose) : Num (x.xx mg)

Prednisolone at Noon (single dose) : Num (x.xx mg)

Prednisolone at Evening (single dose) : Num (x.xx mg)

Dexamethason at Morning (single dose) : Num (x.xx mg)

Dexamethason at Noon (single dose) : Num (x.xx mg)

Dexamethason at Evening (single dose) : Num (x.xx mg)

Fludrocortisone at Morning (single dose) : Num (xxx microg)

Fludrocortisone at Noon (single dose) : Num (xxx microg)

Fludrocortisone at Evening (single dose) : Num (xxx microg)

Saline : Num (xx g/day)

Cyproteronacetate at Morning (single dose) : Num (xx.x mg)

Cyproteronacetate at Noon (single dose) : Num (xx.x mg)

Cyproteronacetate at Evening (single dose) : Num (xx.x mg)

GnRH Agonist : CD (Table 002)

Other Permanent Medication : String

Treatment Control

17-OHP in Saliva : CD (Table 002)

17-OHP in Serum/Plasma : CD (Table 002)

17-OHP Profile only in the Morning : CD (Table 002)

17-OHP Daily Profile : CD (Table 002)

Pregnantriol in Urine : CD (Table 002)

Testosteron in Serum/Plasma : CD (Table 002)

Androstendion in Serum/Plasma : CD (Table 002)

Electrolytes in Serum/Plasma : CD (Table 002)

Renin Activity in Plasma : CD (Table 002)

Renin Concentration in Plasma : CD (Table 002)

Other Control Measures : CD (Table 002)

Comments (required if control measures = Y): String

Figure 33: Class Diagram “Medical Data2”

Package Diagram

The package diagram given recommends the component structure of the HARP demonstrator application. Arrows represent interrelations between components. Procedures (programs) have to be established. Because there is no interrelation between the medical components at the application level, no arrows occur.

[image: image35.emf]Component

Generation

Component

Distribution

Component

Certification

Study Performance

TTP Services

Key-related

Certificates

Attribute

Certificates

Component

Certificates

Data Entry

Quality

Assurance

Study

Processing

Study

Management

Authorisation

Observation

Identification

Medical History Clinical Results

Therapy

Treatment

Control

Patient Basis Data

Identification

Patient Data Parent Data

Identification

Patient ID Organisation ID

Control

Information

Annex 6: Other ASN.1 Types

GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName

 GeneralName ::= CHOICE {

 otherName [0] OtherName,

 rfc822Name [1] IA5String,

 dNSName [2] IA5String,

 x400Address [3] ORAddress,

 directoryName [4] Name,

 ediPartyName [5] EDIPartyName,

 uniformResourceIdentifier [6] IA5String,

 iPAddress [7] OCTET STRING,

 registeredID [8] OBJECT IDENTIFIER}

 OtherName ::= SEQUENCE {

 type-id OBJECT IDENTIFIER,

 value [0] EXPLICIT ANY DEFINED BY type-id }

 EDIPartyName ::= SEQUENCE {

 nameAssigner [0] DirectoryString OPTIONAL,

 partyName [1] DirectoryString }

AlgorithmIdentifier ::= SEQUENCE {

 algorithm OBJECT IDENTIFIER,

 parameters ANY DEFINED BY algorithm OPTIONAL }

CertificateSerialNumber ::= INTEGER

Extensions ::= SEQUENCE SIZE (1..MAX) OF Extension

 Extension ::= SEQUENCE {

 extnID OBJECT IDENTIFIER,

 critical BOOLEAN DEFAULT FALSE,

 extnValue OCTET STRING }

Annex 7: Authorisation Manager

Structure of the Model

We describe the security model for the clinical-trials demo, firstly in a quasi-formal fashion using a B-like, guarded command style and then formally using the process algebra CSP. This will be done in the framework described in the appendix.

The aim is to set up a formal model of the system along with formal statements of the security requirements. The model can then be verified against the requirements using, for example, the model-checking tool FDR. The model and requirements can also be validated with the assistance of the CSP animator Probe. The machine-readable version of the CSP model suitable for FDR or Probe will be supplied separately. All of these are fully described in the appendix.

Once the model has been validated and verified in this way it will be possible to verify, possibly informally but ideally formally, an implementation against this model.

Note that we use the term “clinician” here in a generic fashion to refer to anyone who could potentially take on either the Data Instance of Proof Instance roles.

Data types

The data types used in the model are as follows:

Patients = {1,..,P}

Hospitals = {1,…,N}

Clinicians = {1,…,M}

Records

Record_Ids = Patients

Valid_Flag = {False, Fresh, Pending, True}

[Record Types = {Private, Public}. Not currently used but might be needed in later versions]

Functions

The following functions are useful:

Hospital : Patients (Clinicians (Hospitals

Given a patient or clinician ID this returns the ID of the hospital with which they are associated. Since we are assuming that each patient and clinician is associated with exactly one hospital this will be a well-defined function.

Viewed_Records: Clinicians ((Records

Given a clinician ID this function returns the set of records that he/she has viewed.

Structure of records

A record is a tuple with the form:

Record = SignDI_ID (Record_Id, Doc_ID, Data, Type, Time, Valid_Flag).

The whole record will be signed by the Data Assistant (identified in the second field of the record). The first field gives the record identifier, the second the identity of the clinician responsible for the record. The third field carries the data, the forth the type of the record, the fifth the time of creation, and the sixth and final field contains the Valid Flag. In what follows we will elide the signature and simply assume that any record added to the DB is appropriately signed by the principal performing the operation.

We introduce projection operators that, given such a record, return the value in appropriate field, thus:

(ID (Record) = Record_ID

(DI (Record) = Doc_ID

(Data (Record) = Data

(Type (Record) = Type

(Time (Record) = Time

(VF (Record) = VF

Security Properties

The system must satisfy the following properties, many of which can be formulated as invariants on the security state. We state them informally for the moment:

· Database should be “monotonically” increasing: once a record has been signed and added to the database it is never deleted (But its VF may get set to False, see below).

· All records should be signed by an appropriate actor. (Where “appropriate” will be precisely specified by the policy).

· Any addition to the database must have been preceded by a corresponding request from an authorised clinician acting in the appropriate role. Any correction to a record must be signed by an authorised DI and have been preceded by a PI raising a challenge to that record. These can all be formalised as a Schneider authentication properties, see below and appendix.

· For any given record identifier there can be at most one record with the Valid Flag set to True in the database. Furthermore, if for a given record ID, there is a record with VF=T there must not also be a record with VF=Fresh or Pending.

· For a given record ID if there is a record with VF=T this must be the last record with this ID in the database. That is, there should not be another record with this ID for which the creation time later that that of the record with VF=True.

· For any given clinician there should be no record in their set of Viewed_Records to which they do not have legal access.

We will need to show that all operations that affect the security state maintain these invariants. We will also need to validate these requirements, i.e. argue that they are correct and complete.

Not all requirements are conveniently captured as invariants, at least not without expanding the security state. For example, to encode confidentiality we probably need to include in the state the records accessed by each actor. The invariant is then that no records should be in this set for which the actor was not entitled to access. This could lead to a security state of unbounded size. Even then, encoding the requirement that only most recent version is available, is not obvious. Such properties are more readily encoded directly in the event based, CSP approach presented later.

Architecture

For the purposes of the model we assume a very simple architecture. In the model we assume that all interactions go via the MONITOR process. In the actual system of course some interactions are via the servlet for example. However, if the system is to maintain a generic security policy then we should still be able to demonstrate that it is equivalent to one in which all interactions are mediated and controlled by the Monitor.

[image: image36.wmf]DB

store

req

_

record

retrieve

open

correct

da

_

respond

req

_

view

view

validate

dv

_

respond

Monitor

DI*

PI*

Figure 34
The channels shown are assumed secure: i.e. authentication, confidentiality and integrity is assured. Of course, what we mean by these terms here has to be precisely stated, so that these properties can be separately verified using, for example, the techniques of reference [2] of the appendix.

Security relevant operations

Here we present the security relevant operations.

Note that throughout we assume a global time and assume that the value of current time is inserted in records. We are further assuming that the integrity of these timestamps is guaranteed.

Records will be identified by the ID of the patient to which they refer. Hence the set of potential record IDs will equal the set of Patient IDs.

Start Session

We model the action of starting a session, in particular the choice of roles. We have introduced role parameters in the operations and events to reflect this. For the demo there do not seem to be any particular constraints on the adoption of a role aside from the constraint that any clinician should not be in two roles simultaneously. The models can be readily enriched to take account of the process of choosing a role and any associated constraints, see appendix. Given that the operations are currently modelled as atomic and instantaneous the notion of persistence of a role is not really relevant, and hence the need to have operations to choose a role seems unnecessarily. The role is implicit in the operation.

In the CSP model below we do introduce the choice of role in order to be able to represent the requirement that a clinician is only able to view to a record whilst in the Document Instance role. A clinician is able to access records in the PI role too but this seems to be thought of as a different kind of access to a different set of records. The model makes a formal distinction though it is not clear that there is really any semantic distinction. One could, however, imagine that the accesses are to different fields of the record for example. Even then, given that a clinician can switch freely between roles it is not clear that there is any real security significance.

Open Record

From the point of view of the security model it seems enough to assume that creating, signing and adding a record to the database form one, atomic action. The VF of a newly created record is set to “Fresh”.

Request:

ReqOpen(Doc_Id, role, P_id, Data)

Guard:

Hospital(C_Id) = Hospital(P_Id)

& P_ID (Patients - Record_Ids

& role = DI

Transition:

Records’ = Records ({ Record_Id, Doc_ID, Data, Type, Time, Fresh}

With Record_Ids’ = Record_Ids ({R_Id}

Check Record

Again it seems enough to assume that the PI’s accessing, checking and returning a record with corrections forms an atomic action. If he finds no problem with the data values, he sets the VF to True, signs the corrected record and returns it to the Data-base via the Monitor. If he is unhappy with the values he highlights values them and returns this to the DB with the VF set to “pending”. A new record corresponding to this is created in the DB and a prompt is sent to the responsible DI to check the suspect values.

Request:

CheckRecord(Doc_ID, role, R_ID)

Guard:

Hospital(PI_Id) = Hospital(R_Id) & R_ID (Record_Ids

& role = PI

& VF = Fresh

& PI_Id ((DI (Record)

Transition:

If Filter1(Data) = False

Records’ = Records ({ R_Id, Doc_ID, Data, Type, Time, Pending}

else

Records’ = Records ({ R_Id, Doc_ID, Data, Type, Time, True}

Filter1 simply represents whatever function or decision process the PI goes through. At this level of abstraction we are not really concerned about the details and indeed in the CSP model below this will be represented by an internal non-deterministic choice.

Accept Record

If the VF of a record that has been examined by the PI has been set to “pending” then a prompt is sent to the DI who originally created the record. On receiving the prompt the DI should retrieve the pending version and examine the highlighted values. For this operation to be enabled it must be the case that:

· The DI’s identity is the same as the identity of the DI who created the requested record, i.e. as recorded in the record itself (ultimately it would be necessary to verify the integrity of this value).

· The DB must contain a record with this record ID with its VF set to “pending”.

· The version of with VF= pending for this record ID should be unique and the most recent (This should be provable as a system invariant so should always be true and so shouldn’t really need to be checked at run time).

We assume that the accessing, checking, either okaying or rejecting the corrections (setting the VF to True or to “Fresh”), signing the corrected record, returning it to the database and setting the valid flag of the old version to False all form one, atomic action.

Request:

AcceptRecord(Doc_ID, role, R_ID)

Guard:

(X: Records ((VF (X) = Pending

& (DI (Record) = Doc_ID

& role = DI

Transition:

If Filter2((VF (Record(R_ID))) = T

then

Records’ = Records ({ R_Id, Doc_ID, Data*, Type, Time, True}

else

Records’ = Records ({ R_Id, Doc_ID, Data*, Type, Time, Fresh}

Filter2 should be interpreted in a similar way to Filter1.

Note that in this final branch the VF is set to back Fresh. This allows another validate cycle to start and so we can iterate until both DI and PI have agreed the data values. This gives rise to the possibility of unbounded runs but we could of course introduce a bound on the number of iterations for any given record ID.

There might be merit in introducing a distinct flag for such states to distinguish them from states in which the records has been freshly created but for this model it seems unnecessary.

View Record

A record with VF=True can be viewed in the DI role by the clinician associated with that record. Only the most recent versions are made available (other than for audit purposes?). Records marked invalid (VF=False) are never made available. A system invariant should be that for any given record ID the version with VF=T, if it exists, should be the most recent (highest version number for example). Once a record is marked as True no further changes can be made. More precisely, no further records with that identifier can be added to the DB.

We are assuming that a clinician in the PI role should not be able to “view” a record although he is of course able to access a record for validation purposes. This seems a bit odd and it is not clear that there is any real distinction between simply viewing and record and accessing it for validation. The difficulty is that we have two conflicting requirements: that a clinician never view records of another clinician and that a clinician never be allowed to validate their own records. One way to resolve this is to draw this distinction as is done here. Another might be to partition the set of clinicians into ones allowed to take on the DI, and only the DI role, and those allowed to take on only the PI role. This seems rather unsatisfactory though of course the partition need not be done at the outset, it could form later if we required clinicians to commit to a particular role in a Chinese Walls or dynamical separation of duty fashion.

Request:

ViewRecord(Doc_ID, role, X)

Guard:

X (Record_IDs

& (VF (X) = True

& not (Y: Records such that (Time(Y) > (Time(X)

& Doc_Id = (DI (Record(X))

& role = DI

Transition:

Viewed_Records’(C_ID) = Viewed_Records’(C_ID) (Record(R_ID)

Create Public Record

[The details of the next two operations are not yet available]

When a new record is created it is assigned type Private and should only be viewed by clinicians and Data Assistants. We now introduce an operation that turns a private record into one of type Public: a “sanitised” version of the record is created that has any sensitive information, in particular information that could relate the data to a particular patient, removed.

View Public Record

If the type of a record is Public then it can be viewed by anyone (but not changed presumably).

The CSP Model

Here we give the model quasi-formally described above a formal presentation in the process algebra CSP (Communicating Sequential Processes). The Study Administrator is not included in the model but is thought of as the “deus ex machina” that sets the parameters of the model at time zero.

Machine-readable code to allow animation (and hence assist validation) using Probe and verification using the model-checker FDR will be provided separately.

The clinicians, Monitor and Data-base are be represented in the model as CSP processes. As clinicians are allowed to take on DI and PI roles, both of these roles will be coded in the CLINICIAN processes.

Channels

The CSP model uses the following channels. For each we give the sort of the channel: the data-type from which the values in the fields are drawn and the link, i.e. which processes the channel links.

Open

Sort = Hospital | Clinicians | Role | Hospital | Patients | Data

Link = Clinician (Monitor

This channel is used by the clinicians to communicate to the Monitor requests the to open a new record. The first two fields serve to identify the clinician making the request, the third gives his/her role at the time, the next two fields identify the patient to who the record corresponds (and hence the record ID). The final field carried the data values.

Validate

Sort = Hospital | Patients | Data

Link = Clinician (Monitor

When the Monitor accepts a request to create a new record it:

· Sends a copy to the Data-Base over the store channel with VF set to “Fresh” (see below).

· Offers a copy over the validate channel for a PI to receive (by synchronising on the event on the validate channel)

PI_Respond

Sort = Hospital | Patients | {Accept, Object} | Data

Link = Clinician (Monitor

The PI uses this channel to communicate its evaluation, either Accept or Object, of a record along with any highlighted values back to the Monitor.

Correct

Sort = Hospital | Clinicians | Role | Hospital | Patients | Data

Link = Clinician (Monitor

If the PI’s response is “accept” then the Monitor will simply send a copy of this record with VF set to “True” to the DB. If the PI’s response was “object” then the copy of the record with highlighted values is communicated back to the originating clinician over the correct channel. At the same time an updated version is deposited in the DB.

DI_response

Sort = Hospital | Clinicians | Role | Hospital | Patients | {Accept, Reject}

Link = Clinician (Monitor

If a clinician has had a record sent back to him with highlighted values he may respond by accepting or rejecting the suggested corrections.

Store

Sort = Hospital | Clinicians | Hospital | Patients | Data | Value-Flag

Link = DB (Monitor

The Monitor uses the “store” channel to send records to the data-base. The values passed over this channel give the clinician ID, the patient (= record) ID, the data and the setting of the Value_Flag.

Req_view

Sort = Hospital | Clinicians | Role | Hospital | Patients

Link = Clinician (Monitor

A clinician may request to view a particular record. The channel sort gives the requesting clinician’s ID, his/her active role and the record ID.

Req_record

Sort = Hospital | Patients

Link = BD (Monitor

If the Monitor approves a view request it sends message to the BD to retrieve the relevant record.

Retrieve

Sort = Hospital | Clinicians | Hospital | Patients | Data | Value-Flag

Link = DB (Monitor

The Monitor uses this channel to retrieve records to the data-base. It has the some sorting as the store channel.

View

Sort open = Hospital | Clinicians | Role | Hospital | Patients | Data

Link open = Clinician (Monitor

If the Monitor authorises a clinician’s request to view a particular record, the record is retrieved from the BD and the clinician is sent a copy of the record over the view channel.

Processes

Here we describe the various (CSP) processes that comprise the model. For presentational clarity we include the data fields. The model is actually data independent as currently formulated so these values do not affect the behavior of the processes. In the FDR/Probe models we will elide the data terms completely.

Clinicians

We assume that we have N hospitals and for modelling convenience we will assume that each hospital has M clinicians assigned to it. This is easily generalised but for illustration purposes and for convenience of coding in the tools it works fine. A clinician is indexed by a hospital number from {1,…,N} and a clinician number from {1,….,M}. CLINICIAN processes are thus indexed:

CLINICIAN.h.d

Clinicians can choose either a DI or PI role. Thus the basic CLINICIAN process is written as a non-deterministic choice of the DI and PI processes:

CLINICIAN.h.d = role_di.h.d (DI.h.d [] role_pi.h.d (PI.h.d

Thus a clinician may non-deterministically choose between a role_di or a role_pi event and subsequently behave in the appropriate role. Technically the role events aren’t really necessary and could be internal (events and indeed this is done in the FDR and Probe models. It is convenient to keep them visible here for explicitness. After behaving like a DI or PI process for a while, a “close” event occurs and he reverts to the CLINICIAN process, in which he can make a fresh choice.

It might be that we want to impose a dynamic separation of duty policy: initially a clinician may choose either a DI or PI role, but having chosen one role he must stick with it. This is actually quite trivial to specify in CSP:

CLINICIAN.h.d = DI.h.d [] PI.h.d

Where the DI and PI processes are as defined below but with the possibility of branching back to the CLINICIAN process removed, thus removing the possibility of making any further roles choice after the initial choice.

We further assume that each hospital has P patients assigned to it. Thus patients are indexed by h.p where h indicates the hospital and p the patient number in the hospital.

Data Instance

We will build up the CSP description of the Data Instance (DI) process by stages to make things clearer.

At any stage a clinician in the DI role may attempt to open a record for any patient h´.p:

DI.h.d = ((h’, p (open.h.d.di.h´.p.d.Data ((DI.h.d [] CLINICIAN.h.d)

In fact the policy will require that the clinician can only open records for patients from his hospital, but this constraint will be enforced by the MONITOR process.

A clinician in the DI role should also always be ready to accept a request from a PI, via the Monitor, to check suggested corrections to a record he created. We represent this possibility by an external choice (under the control of the environment). He might accept the correction or reject it. As we have no idea on what basis the clinician will make this choice we simply represent it by a non-deterministic choice (even if we did know what method he/she uses we would probably want to make this abstraction anyway):

DI.h.d = ((h’, p open.h.d.di.h´.p.d.Data ((DI.h.d [] CLINICIAN.h.d)

[]

([]h’, p correct.h.d.h’.p ((ok.h.d.di.h’.p ((object.h.d.di.h’.p) ((DI.h.d [] CLINICIAN.h.d)

He might also, at any stage, decide that he wants to view a record. This introduces another non-deterministic branch. After he makes a view request the Monitor might approve it and offer the view event or refuse it, offering the “refuse” event. The DI must be prepared to accept either of these possibilities so we have the external choice between these events.

DI.h.d = ((h’, p open.h.d.di.h´.p.d.Data ((DI.h.d [] CLINICIAN.h.d)

[]

([]h’, p correct.h.d.h’.p ((accept.h.d.di.h’.p ((reject.h.d.di.h’.p) ((DI.h.d [] CLINICIAN.h.d)

[]

((h’, p req_view.h.d.di.h´.p) ((view.h.d.di.h’.p [] refuse.h.d) ((DI.h.d [] CLINICIAN.h.d)

A final branch we should include is thepossibility that a clinician in the DI role might try to validate a record offered by the Monitor. This is not of course part of the DI role, it should only be done by a clinician whilst in the PI role. However we should include the possibility in the model so that, if the Monitor fails to enforce the policy correctly, we can detect this violation.

So finally, gathering all the branches together we get:

DI.h.d = ((h’, p open.h.d.di.h´.p.d.Data ((DI.h.d [] CLINICIAN.h.d)

[]

([]h’, p correct.h.d.h’.p ((accept.h.d.di.h’.p ((reject.h.d.di.h’.p) ((DI.h.d [] CLINICIAN.h.d)

[]

((h’, p req_view.h.d.di.h´.p) ((view.h.d.di.h’.p [] refuse.h.d) ((DI.h.d [] CLINICIAN.h.d)

[]

[] h’,p validate.h.d.di.h’.p ((ok.h.d.di.h’.p ((obrrect.h.d.di.h’.p)) ((PI.h.d [] CLINICIAN.h.d)

Notice that at the end of each branch we allow the possibility of the clinician continuing in the DI role or reverting to behaving as a CLINICIAN process (from which he can select either the DI or PI roles). Note also that we have allowed the possibility that he might accept or reject the record for any patient, even one from another hospital. Thus the model of the DI role allows possible violations of the policy. A correctly implemented Monitor should prevent this but it is important to retain the possibility in the model. Similarly we are allowing a clinician to try to view arbitrary patient records.

Proof Instance

When the MONITOR process accepts a request for the creation of a new record it issues a “validate” request. A clinician will then take on the PI role and may then non-deterministically choose either to accept the record as is or to propose corrections. We will also allow the possibility of a clinician in this role to request to view a record. Of course such a request should be rejected by the Monitor if it behaves correctly but in order to test the Monitor we have to model the possibility of a request. In fact, rather curiously, we should model the PI role in a way that is semantically identical to the DI role and just distinguish them syntactically by suitably labelling events. We thus include, for example, the possibility that in the PI role the clinician might request to view a record, even though he’s not supposed to. This seems a little odd at first but reflects the fact that we need to model the clinicians capabilities and not assume that they will obey the roles. We should rely on the mechanisms to enforce the rules not the moral rectitude of the characters in our little drama.

The model of PI role is thus obtained from the model of the DI role by simple renaming of the process and event names. Thus:

PI.h.d = ((h’, p open.h.d.pi.h´.p.d.Data ((PI.h.d [] CLINICIAN.h.d)

[]

([]h’, p correct.pi.h’.p ((accept.h.d.pi.h’.p ((reject.h.d.pi.h’.p) ((PI.h.d [] CLINICIAN.h.d)

[]

[] h’,p validate.h.d.pi.h’.p ((ok.h.d.pi.h’.p ((object..h.d.pi.h’.p)) ((PI.h.d [] CLINICIAN.h.d)

[]

((h’, p req_view.h.d.pi.h´.p) ((view.h.d.pi.h’.p [] refuse.h.d.pi.h’.p) ((PI.h.d [] CLINICIAN.h.d)

Notice that it is possible in this description for a clinician to try to accept or reject one of his own records. This is not be allowed by the policy and the Monitor should prevent it. Actually, in the model as currently constructed it should be prevented if the Monitor behaves as specified: the Monitor should only offer correct events with the role set to di. Thus a clinician in the PI role, as we have specified it, should not be able to synchronise on such an event as the role fields do not match. Of course if we wanted to model the possibility of a clinician in the PI role trying to masquerade as being in the DI role we could, for example, simply omit the role field from the correct events. As long as we keep the role fields in the accept and reject events then verification against the policy requirements will detect this. Of course if the role fields in these events can be faked then we are into another ball-park, but for the moment this possibility is excluded by our modelling assumptions.

Discussion

Note that as the model is currently constructed the DI and PI roles are semantically equivalent and isomorphic up to a simple re-naming. This reflects the fact that in the policy interpretation we have used for the demo any clinician can freely adopt either of the DI or PI roles at any time. As a result the roles really only have syntactic significance.

More generally of course we would expect there to be constraints (based presumably on attributes) on which principals can adopt which roles and under what circumstances, as discussed fully in the appendix. Even then it may be that the models of the different roles may be similar, reflecting the capabilities of the principals including cheating. In other words, for the purposes of verification, the role models (sorry) should reflect the capabilities of the agents rather than the legal behaviours associated with the roles. The policy constraints should be encoded purely in the Monitor or analogues.

Some constraints have been (implicitly) encoded in the model of the roles, in particular that masquerade is not possible, or conversely that authentication is assured. More precisely we assume that clinician cannot fake the identities and role identifiers that appear in their request messages. This is a perfectly reasonable modelling assumption but would have to be separately verified. Notice that we have to be very precise about what we mean by authentication here in order to ensure that the model assumptions exactly matches the property that is established of the authentication protocols and mechanisms.

It may be that an implementation may impose certain constraints on the principals acting in roles.

Authorisation Monitor

The MONITOR is the most complex of the processes and the policy is encoded in it. The MONITOR process will always be prepared to receive a request to open a record. If no record already exists for this patient and the clinician making the request is suitably authorised (in the case of the clinical trials policy the clinician’s hospital is the same as the patient’s), the request will be accepted and a validate event will then be offered by the Monitor. It should also be ready to receive responses from clinicians and update the Data-Base or retrieve data accordingly. Finally it should also be ready to receive a view request. If the clinician is in the DI role and is the clinician associated with this record then it allows a view action to occur.

We assume that the Monitor is parametrised by a set of record identities that corresponds to records that have been created. This might be implemented by a Monitor that actually stored such data internally or by retrieving such information from the data-base as required.

Monitor(Recs) :=

[] h, d, role, h’,p open.h.d.role.h’.p (

if h’.p (((Hospitals (Patients) - Recs) (h = h’ (role = di

then store.fresh.h.d.h’.p (validate.h’.p.pi (Monitor((Recs ({h’,p, fresh}))

else (Monitor(Recs)

[]

[]h.d, role, h’.j ok.h.d.role.h’.p (

if h.d ((Doc_ID (Record(h’.p)) (role = pi

then store.h’.p.true (Monitor(Recs({h’,p, true})

else (Monitor(Recs)

[]

[]h.d, role, h’.j (object.h.d.role.h’.p (

if h.d ((Doc_ID (Record(h’.p)) (role= pi

then store.h’.p.pend (correct.h’.p.di (Monitor(Recs ({h’,p, pend})

else (Monitor(Recs)

[]

[]h.d, role, h’.j (accept.h.d.role.h’.p (

if h.d = (Doc_ID (Record(h’.p)) (role= di

then store.h’.p.pend (correct.h’.p.di (Monitor(Recs ({h’,p, pend})

else (Monitor(Recs)

[]

[]h.d, role, h’.j (reject.h.d.role.h’.p (

if h.d = (Doc_ID (Record(h’.p)) (role= pi

then store.h’.p.pend (validate.h’.p.di (Monitor(Recs ({h’,p, pend})

else (Monitor(Recs)

[]

[]h.d, h’.j req_view.h.d.role.h’.p (

if role = di (h.d = (Doc_ID (Record(h’.p))

then req_record.h’.p (retrieve.h’.p (view.h.d.di.h’.p (Monitor(Recs)

else (deny.h.d.pi.h’.p (Monitor(Recs)

Note: Could make the Monitor stateless and have more interaction with the data-base. Alternatively it should be enough for the AM to be able to make AC decisions to store the identities of all existing records along with their VF status, in which case no communication on-line with the DB is needed for the AC decisions.

Presumably if a record has to be sent for revalidation, in the case that the DI does not accept the proposed changes, then one assumes that it should go back to the same PI. This has not been coded into the above but can easily be done but would require an extra field in the records to store the PI identity. As currently coded, any further validation requests can be picked up by any PI.

Database

The data-base is a particularly simple process to model: it simply accepts store actions from the Monitor and adds the corresponding record to the set of stored records. When is receives a req_view action it returns the record to the Monitor (which in turn forwards it to the requesting principal). We will assume that all requests that the DB receive are valid, i.e. that the Monitor functions correctly and no requests are issued to non-existent records for example. We do not include checks on the DB actions therefore, though in principle we could easily do this and indeed might want to in more sophisticated models, or at least, to allow exception behaviours. In effect we are assuming that the Monitor’s record of existing records is correct and consistent with the records stored in the DB. In practice the Monitor’s design may be flawed or the communications mechanisms between the Monitor and DB might be flaky etc. Thus we might want to introduce protocols to ensure consistency etc. This is straightforward, using the CSP framework for example, and verification of the protocols could be performed, but is outside the scope of this deliverable.

The Data-Base is parametrised by a set of records:

DB(DBrecs) = [] h, i, h’, j, flag store.h.i.h’.j.flag.Data (BD(DBrecs ({Record(h, i, h’, j, Data)})

[]

[] h,p req_record.h.p (retrieve.h.p.Data (BD(DBrecs)

In fact, if we think of the channels linking the Monitor and DB processes as internal, trusted channels then we can abstract these details away and just regard the Monitor and DB as forming a single composite process. This is in fact what we do in the FDR model to keep down the state space size.

The System

The full system is now put together as a composition of the components using the appropriate CSP composition operators. We will do this incrementally to make the process clearer. Firstly we compose the clinician processes using the interleave operator. The clinician processes do not communicate amongst themselves, only via the Monitor, so interleaving (in which no synchronisation on events is required) is appropriate:

CLINICIANS = |||h.d CLINICIAN.h.d

Next we compose this using the alphabetised parallel operator over the set of channels on which the clinicians and the Monitor must synchronise:

SYSTEM1 = CLINICIANS || ext MONITOR

Where ext = {open, validate, ok, reject, accept, correct, req_view, view}

Finally we compose this with the Data-base process over the set of channels for communication between the Monitor and DB processes:

SYSTEM = SYSTEM1 || int DB

With int = {store, req_view, retrieve}

Security Properties

Here we give CSP formulations of the principal security properties.

Confidentiality

Clinicians should only be able to view their own records, they should be in the DI role and the Valid_Flag of the record should be set to True. This can be encoded as follows:

First we introduce a set of “breach” events whose occurrence would represent a violation of this requirement:

breach = {view.h.d.di.h’.p | h.d ((DI (Record(h’,p))} ({view.h.d.pi.h’.p}

This corresponds to events in which, in the DI role, he gets to view a record for which his ID does not match the Doc_ID of the record or he gets to view anything in the PI role.

The property is now easily encoded by requiring that the system should never allow the occurrence of an event from breach. We can capture this as a refinement check (for FDR) as:

SYSTEM Refinestraces SYSTEM ||breach STOP

An alternative coding is:

(SYSTEM)\ ((-breach) Refinestraces STOP

The LHS is the System with all events (() hidden except the breach events. As long as no breach events occur this process will be externally indistinguishable from STOP, the process that does nothing.

Thus, as is explained in the appendix, the system refines a version of the system with all events from breach blocked.

Separation of duty

A clinician should never act as the PI for his own record or be able to accept or reject a record whilst in the DI role.

Let “cheat” represent the set of events in which a clinician violates the policy:

cheat = {accept.h.d.di.h’.p} ({reject.h.d.di.h’.p} ({accept.h.d.pi.h’.p| h.d=(DI(Record(h’,p)} ({reject.h.d.pi.h’.p| h.d = (DI (Record(h’,p)}

Thus, the set cheat represents any accept or reject action performed in the DI role or any action performed in the PI role for which the clinicians identity matches the Doc_ID of the record.

Then the property encoded as:

SYSTEM Refinestraces SYSTEM ||cheat STOP

Or again:

(SYSTEM)\ ((-cheat) Refinestraces STOP

Integrity

A record should only be added to the data-base if preceded by the appropriate action by a clinician. More precisely:

Adding a record with its VF set to “fresh” should be preceded by the appropriate open action.

We encode these as Schneider style authentication properties:

SYSTEM ||open STOP Refinestraces SYSTEM ||open, store.fresh STOP

Similarly for a record with VF set to “pending” it should be preceded by a validate action:

SYSTEM ||validate STOP Refinestraces SYSTEM ||validate, store.pending STOP

For a record with VF set to True it should be preceded by an appropriate check action:

SYSTEM ||check STOP Refinestraces SYSTEM ||check, store.true STOP

Strictly speaking we should also have constraints on the changing of flags to the False setting but we have not yet included this operation in the model. Indeed the model as currently constructed only deals with the latest version of records.

Non-bypassability

The Monitor should be non-bypassable. In our model we have shown al interaction with the DB as being mediated by the Monitor. In the implementation these operations are performed by the Servlet, but the Servlet should not perform any operations not authorised by the Monitor. The Monitor should therefore not be by-passable in this sense. Conceptually then the actually system architecture should be equivalent to that of the model but of course this needs to be demonstrated. This can be specified as a (conditional) non-interference property: no information flows should be possible unless accompanied by appropriate Monitor events. This style of property can be found in [??] and, formulated in terms of determinism, in [RosGold].

Persistence

We need to show that once a record’s VF is set to True no further operations on the record are possible. This is straightforward in an event-based approach:

SYSTEM refines traces SYSTEM || store.h.p.flag store.h.p.True (STOP

Consider the RHS of this refinement: when a store.h.p.True event occurs

SYSTEM || store.h.p.flag store.h.p.True (STOP will transition to SYSTEM || store.h.p.flag STOP

in which no further store events (regardless of VF setting) are possible. If the SYSTEM can perform store events after store.h.p.True it will violate the refinement. Corollaries of this are that, for any given record Id:

· There can be at most one record with VF=True

· The record with VF=True will be the latest to have been created.

Strictly speaking what is shown here is that no further updates of this record are possible with the store action. This does not, of itself, eliminate the possibility that the data-base might be corrupted by other mechanisms and channels. It is thus necessary to show in some way that all the channels of the system have been faithfully reflected in the model. To do this with full rigor calls for some kind of non-interference or covert channel analysis, which is outside the scope of the current deliverable.

More generally, if we want to specify that after any event in the set A not event from the set B should be possible, we can write:

SYSTEM refines traces SYSTEM || A(B [] a:A (STOPB

Anonymity

This is not relevant to the current model but will become relevant when the study processing stages are introduced. Anonymity can be elegantly stated in CSP, see for example reference [2] of annex 3. The essence of the idea is to stipulate that an appropriate view of the system is left unchanged by arbitrary shuffling of the patient identifiers. The appropriate view here would presumably be that obtained from abstracting all channels except those for public access. The current model would have to be extended to include these and the operation on them.

Deadlock and livelock freedom

We presumably would like the model to be free of deadlocks. This is easily and automatically checked by FDR, it has a button to check for deadlocks.

Verification

Verification of the model against the security properties will be performed using the FDR model-checker.

Validation

Validation of the model and security properties will be performed with the aid of the CSP animator Probe.

Audit

From the CSP standpoint, the laying down of an audit trail is particular simple to model: it corresponds to a suitable projection of the global trace. Thus we might project all request and response actions. As auditing is not part of the clinical trials demo we will not pursue this further but merely note it for possible future use.

� Int.	Internal circulation within project (and Commission Project Officer if requested)

 Rest.	Restricted circulation: Consortium and Commission PO only

 IST	Circulation within IST Programme participants

 FP5	Circulation within Framework Programme participants

 Pub.	Public document

� � HYPERLINK "http://www.postgresql.org/" ��http://www.postgresql.org/�

� �HYPERLINK "http://www.cvshome.org/"��http://www.cvshome.org/�

� � HYPERLINK "http://www.postgresql.org/" ��http://www.postgresql.org/�

� � HYPERLINK "http://jdbc.postgresql.org/" ��http://jdbc.postgresql.org/�

� Synonymous with Attribute Authority

� Used for standardised message transfer between GP offices in Germany.

� The physician’s pledge of secrecy has been extended to persons of any profession within the German health system who deal with patient information.

 Page 2/6

_1046517631.doc

rsaEncryption

CN=Hiddo Hut, O=KPN, C=NL

September 12, 2000 - December 20, 2001

CN=Certificate Authority, O=KPN, C=NL

md5WithRSAEncryption

123456789

v3

version

…

serialNumber

SubjectPublicKeyInfo

validityPeriod

subject

signature

…

AAF1 DE54 CA12 34A7 3EDO EC42 …

issuer

Value

Field

_1047379737.ppt

User Site

Policy Server

(including ADF)

Attribute Certificate Server

HTTPS

Secure

Connection

User

Authentication

Point

Role/Privileges based authorisation

Certificate +Policy

Roles / Privileges

Authentication via Web Browser and Smartcard

Web + Application Server

 (including servlets)

1

2

Applet (plug-in) Download, authentication and framework instantiation

DB

Database Server

SQL over

a Secure

Connection

3

4

Secure Connection

SSL/TLS

Authorisation

Point

5

Archive Server

_1047467716.vsd
IPSec Tunnel�

JDBC
(DB1)�

JDBC
(DB2)�

PostgreSQL
Server 2�

Postgres
Query Server�

Postgres
Query Server�

Postgres
Query Server�

Postgres
Query Server�

�

IPSec Tunnel�

�

JIGSAW
Web server�

Data�

Data�

�

�

PostgreSQL
Server 1�

UCH�

UCL�

SSL�

SSL�

SSL�

SSL�

�

�

Secure
Computing base�

Servlet�

Servlet�

_1047885859.doc

Web Server

Servlet

Engine

Database

Web Browser

ADO

_1047387266.unknown

_1047205485.doc

DB

store

req

_record

retrieve

open

correct

da

_respond

req

_view

view

validate

dv

_respond

Monitor

DI*

PI*

_1047301230.vsd
SSL�

JIGSAW
Web Server�

IPSec Tunnel�

UserID:
Examiner�

Valid UserID arriving at the Web Server will trigger the IPSec tunnels to become setup and activated.�

IPSec Tunnel�

Private network #1
(PostgreSQL
Server)�

Private network #2
(PostgreSQL
Server)�

_1046606311.doc

DE54 023A 4933 FFF7 3EDO ED23 …

doctor

2.5.4.72 (role) {id-at-role}

December 10, 2000 - December 10, 2001

6394243734

sha1WithRSAEncryption

CN=Attribute Authority, O=KPN, C=NL

123456789

CN=Certificate Authority, O=KPN, C=NL

v1

Value

Field

signatureValue

version

value

type

holder

attributes

validityPeriod

serialNumber

signature

serialNumber

issuer

issuer

_1045997300.doc

Communication Component

Java SSL Extension

XML Processing Component

XML Signing Component

GUI

Interface Controller

Data Processing and Activity Controller

Applet

Smart Card Controller

_1046110161.vsd
Web server
SHTTP�

Jigsaw SHTTP
Linux�

SNMP�Agent�

FreeS/WAN
Linux�

FreeS/WAN
Linux�

IPSec�Gateway�

Internet�

PostgreSQL
Linux�

LAN�

LAN�

activate()�

IPSec�Gateway�

LAN�

Web server
SHTTP�

OpenCA
Linux�

LAN�

OpenCA
Linux�

CA�

RA�

FreeS/WAN
Linux�

PostgreSQL
Linux�

IPSec�Gateway�

_1041323196.doc
[image: image1.wmf]SSL

IMPLEMENTATION

Certificate

ServerHello

ServerHelloDone

Finished

ChangeCipherSpec

Certificate Request

Certificate

Certificate Verify

ChangeCipherSpec

Finished

ClientHello

Solinet

PTS

 IUT

� EMBED Word.Picture.8 ���

[image: image2.wmf]SSL

IMPLEMENTATION

Certificate

ServerHello

ServerHelloDone

Finished

ChangeCipherSpec

Certificate Request

Certificate

Certificate Verify

ChangeCipherSpec

Finished

ClientHello

Solinet

PTS

 IUT

_1041166481.doc

[image: image1.bmp]

ETTP

Solinet

PTS

ClientHello

Finished

ChangeCipherSpec

Certificate Verify

Certificate

Certificate Request

ChangeCipherSpec

Finished

ServerHelloDone

ServerHello

Certificate

Server Supports

SSL

_1041323202.doc

[image: image1.bmp]

 IUT

Solinet

PTS

ClientHello

Finished

ChangeCipherSpec

Certificate Verify

Certificate

Certificate Request

ChangeCipherSpec

Finished

ServerHelloDone

ServerHello

Certificate

SSL

IMPLEMENTATION

_1041934131.doc
[image: image1.bmp]

Packet

Monitoring

Solinet

PTS

SSL Negotiation

Exchange of Certificates

Web Server

Web

Browser

_1041165956.doc

[image: image1.bmp]

Web Browser

ETTP

SSL Negotiation

Exchange of certificates

Solinet

PTS

Monitoring

Packet

