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Abstract

A flexible framework for prediction of a random process with un-
known trend and correlated residuals is presented. Our approach is
motivated by a local parametric model, and we derive a locally op-
timal predictor of the process at unobserved locations. Comparisons
with local regression estimation and Kriging are made, and we show
that the proposed class of methods provides a bridge between these
two approaches. A procedure for parameter estimation and model se-
lection is suggested. The method is illustrated through a simulation
study and through an application to European sulphate data.
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1 Introduction

Data from physical and environmental processes often exhibit mixture of
low-frequency (trend) and high-frequency (residual) components. It is of-
ten difficult to justify stationarity of the underlying process or a parametric
form of the trende function. It may be equally hard to justify an uncorre-
lated residual process. The purpose of this paper is to present a method for
prediction of a process with unspecified trend function and autocorrelated
residuals. For convenience, our notation is for a process on the line, but the

framework extends easily to higher dimensions.

Consider a continuous random process y(s), where s is a location on the real

line. Let y(s) have the decomposition

y(s) = f(s) +v(s), (1)
where f(s) is the trend (or mean) function and v(s) is the residual process.

The first and second order moments of the residual process are

Efu(s)} = 0, (2)
Cov {v(s),v(s")} = o p(ls' = 5"|;a). (3)

2 is the variance and p(-;a) is a positive correlation function. We

Here, o
will refer to the parameter a as the correlation range. The correlation range
is the distance beyond which the correlation function can be neglected. In

general, 02, a and p(-; a) must be estimated from data.
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Denote the data by y = (y(s1),y(s2),--.,y(sn))’, with data locations
{51,..-,8,}. Given the data y, we consider the smoothing problem of esti-
mating f and the prediction problem of inferring y at an arbitrary location

x.

Our approach is motivated by a local, parametric approximation to the trend
function f within a window of radius h. We derive an “optimal” trend estima-
tor and predictor for this local model. The global properties will be governed
by the bandwidth h and a kernel function Kj(-). We obtain a framework in
which both polynomial regression estimation (Hastie and Loader 1993; Fan
and Gijbels 1996) and Kriging prediction (Journel and Huijbregts 1978, pp.
303-443; Ripley 1981, pp. 44-50; and Cressie 1991, pp. 105-182) can be

described as special cases.

The performance of nonparametric kernel estimators of f when the residu-
als are correlated has been studied by various authors, see for example Hart
and Wehrly (1986), Altman (1990) and Hart (1991). Some related results
for spline smoothing are given by Diggle and Hutchinson (1989). An im-
portant result of all these authors is that neglecting (positive) correlation of
the residuals may lead to grossly undersmoothed trend estimates, and they
suggest various procedures for adjusting the bandwidth. In contrast to such
approaches, our method explicitly incorporates correlation structure in the

trend estimator.



Taking the trend as a linear combination of low-order polynomials, the Krig-
ing predictor is the best linear unbiased predictor (BLUP) of the process
at an arbitrary location, in the sense that it minimizes mean squared pre-
diction error over all linear predictors (Cressie 1991 pp.172-173, Goldberger
1962). On the other hand, prior knowledge of the functional form of f is

often unavailable, and then the resulting Kriging predictor will be biased.

In contrast, our proposed predictor is specifically designed to account for an
unknown trend. The trade-off between bias and variance is determined by
a bandwidth h, and the optimal bandwidth for a data set can be selected
through cross-validation to minimize an estimate of mean squared prediction
error. We will see that Kriging is a special case of our proposed predictor,
obtained by letting h tend to infinity. Consequently, Kriging prediction will
tend to have larger bias and smaller variance than the predictor which uses

optimal bandwidth.

Practitioners frequently apply Kriging only to data local to the prediction
location, a procedure we will refer to as neighborhood Kriging. This ad
hoc procedure will reduce the bias of the predictor, but the prediction error
estimate usually reported does not incorporate bias effects. Furthermore,
neighborhood Kriging may produce predictions that are discontinous when
the support of data in the neighborhood changes, due to the crude windowing

of the data. The present approach allows for inclusion of bias effects in the



prediction error estimate. Also, smoothness properties of the predictions can

be controlled by choosing an appropriate kernel function Kp(-).

Our article is structured as follows: In Section 2, the local polynomial trend
estimator and predictor are introduced, and some finite sample properties are
given. Section 3 contains a demonstration of the method on simulated data
and an application to European sulphate data. We give some final remarks

in Section 4.



2 Mathematical Framework

Under model (1)-(3), the data can be expressed

y = f+u, (4)
E{v} = 0, (5)
Var {v} = o*R. (6)

Here, the elements of the vectors f and v are the values of the trend f and
residual v at the data locations {s,...,s,}. Furthermore, the elements of
the n X n matrix R are the correlations between the residuals at the data
locations. We will refer to the model (1)—(3) or its finite-dimensional repre-
sentation (4)—(6) as our global model. It is our most general representation
of the problem, but it is of limited use since the trend is completely unspec-
ified. Our first goal is to estimate f at an arbitrary location z by a local

polynomial.

2.1 Local Regression Revisited

To motivate our method, we start by giving an alternative interpretation
of local regression. The usual local polynomial regression trend estimate at

location x can be written
f(z) =b'(z)(B'K;,B)"'\B'K y. (7)
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Here, b(z) is a (¢ + 1)-vector of polynomials of increasing order, b'(z) =
(1,z,...,2%), and the columns of B are these polynomials evaluated at the
data locations, (B);; = bi(s;) = sj-_l; 1=1,...,q+1; 7=1,...,n. Further-

more, K, is an n X n diagonal matrix of weights with 7’th element
(Kn)i = h™ K[(s; — ) /1],

and K(-) is a symmetric density function supported on (—1,1). The depen-
dence of K on x will be suppressed in our notation. Alternatively, we may
re-express (7) as

f(z) = ¥'(z) B,

where 8 = (B'K,B)"'B'K y.

For h — oo, we may recognize 3 as the ordinary least squares (OLS) estimate
of 3. We introduce a local polynomial model for y by asking the following
question. Under which model is B the OLS estimate of 3 for arbitrary A?

The answer is

y = B + w, (8)
E{w} = 0, (9)
Var {w} = K;I/QRK;Iﬂ. (10)

The local polynomial model (8)—(10) is not meant to give a true representa-
tion of the data y, it is merely a mathematical construction which will prove

useful in defining and motivating our method. In particular, the residual
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correlation may have different interpretations under the two models. Be-
fore giving an interpretation of (8)—(10), we propose the correponding local

polynomial model for the process y(s)

y(s) = b()B+w(s), (11)
Efw(s)} = 0, (12)

Cov {w(s),w(®)} = Ky'(s—a) Kyt —z)p(ls—1),  (13)

where s € [z — h,z + h] and Kj(s — z) = h"'K[(s — z)/h]. We may regard
K;'(s — 1) as a pseudo-variance function. In the local polynomial model,
only data within the window [z — h,z + h] are given finite pseudo-variance.
Consequently, the estimators 3 and f(a:) assign non-zero weights only to
local data. An informal interpretation is that we take the local polynomial
model as a prior model of the data, the prior model being specified by h
and K(-). Although (8)—(13) is formally defined for all data locations, the
local model will be used and interpreted only for data locations within the

window.

Later use of the term local in this paper will always refer to the local poly-
nomial model (8)—(10) or (11)—(13). For example, we call the estimate 3 the
local ordinary least squares (LOLS) estimate, since it is the OLS estimate
under the local model (8)—(10). Similarly, B is the local best linear unbiased

estimate (LBLUE) of 3 and f(z) is the local best linear unbiased predictor

(LBLUP) of y(x) when the residuals are uncorrelated (R = I).
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2.2 Accounting for Correlated Residuals

An extension of local polynomial regression in the present situation is to
derive the LBLUE and LBLUP for correlated residuals. We may apply stan-
dard theory of multivariate regression (for example Mardia, Kent and Bibby
1979, pp. 171-173), to the local model (8)-(10) on [z — h,z + h]. Then the
LBLUE may be expressed

B = (B'C,B)"'B'Cy. (14)

Here, C}, is a matrix of weights defined as follows. First, denote by Ry, the
local correlation matrix, i.e. the matrix where the elements are correlations
between the residuals at the data locations within [z — h,z + h]. Also,
denote by R;' the inverse of Ry. Each element of R; ' corresponds to a
pair of data locations (z;, z;) within the window [z — h, z + h]. Now, transfer
the elements of R; ' to the n x n matrix {R; '}, according to the ordering
of the data vector y, and set all other elements of {R; '}y equal to zero.
Then the matrix {R},'}o is just the inverse local correlation matrix, ordered
in correspondence to the data vector y. Finally, C}, is defined by kernel-
smoothing of {R; '}y, C) = K}L/Q{R,jl}oK,ll/Q. The dependence of C}, on

location z will be suppressed in our notation.

The estimate 3 given in (14) could alternatively be called the local general-



ized least squares estimate of 3. The corresponding trend estimate is

flz) = ¥(2)B
= ¥ (2)(B'CyB)"'B'Chy. (15)

This estimate is not LBLUP for y(x) when the residuals are correlated. Fol-
lowing Goldberger (1962), and using the local model (8)—(10), the LBLUP
is

~

i(z) = f(z) + r},Cu(y — BB), (16)

with r, = Kh_l/Q(O){K,:l/Z}O r. Here, r is an n-vector with its i’th element
p(|s;i — z|; a). Furthermore, {K;l/z}o is the diagonal n x n matrix with ¢’th

element

({K,jl/Z}o)i - W2 K=12((s; — x)/h] if 5; € (x — h,x + h),

0 otherwise.

The predictor (16) is the “universal Kriging” predictor (Cressie 1991, pp.
151-157) of y under the local model (11)-(13). Thus, we propose to use f

for smoothing and ¥ for prediction of the process at arbitrary locations.

Some properties and special cases are discussed in the following remarks:

1. When predicting at locations further than a from the data locations,

r will be close to zero and the predictor will be close to f(z). On the

other hand, assume we want to predict the process at a data location
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s;. Denote by 7% the i’th row of {Ry}o and by %) the j'th column of

{R;'}y. Since R, R;,' = I, we have

1 ifi=j,

0 otherwise.

Therefore, ,C, = K, /*(0) v, {R;'}o K}/* = (0,...,0,1,0,...,0),
i.e. a vector where the only non-zero element is a 1 at the 7’th position.
It follows from (16) that §(s;) = y(s;), implying that the curve g(z) will
pass through the data values at the data locations. Thus, § combines
the “exact” interpolation property of Kriging with a local regression

type of trend estimate.

. Suppose the residuals are uncorrelated, and x is not a data location.

Then 7, = 0 and, by comparing with (7) and (15), we see that

~ ~

y(z) = f(z) = f(x).

This is the traditional local polynomial regression trend estimator

(Hastie and Loader 1993).

. Let the bandwidth A be much greater than the study interval, h > 1.

Then Taylor expansion gives
Kn(s —z) = h'K(0) + O(h™?).
To leading order in h~!, we get the generalized least squares estimate
B~ (BR'B)"'B'R'y. (17)

11



Furthermore, we get 7, C), ~ 7' R™*, and the predictor reduces to
§(2) ~ b(2)B+r'R"\(y — BP). (18)

If we use the approximation (17) for B we may recognize the right
hand side of (18) as the universal Kriging predictor (see Cressie 1991,
pp. 151-157).

4. An advantage of the proposed local method as compared to global
methods is that the inversion of the correlation matrix R is replaced
by a sequence of inversions of smaller local correlation matrices Ry.
This may be a computational advantage for large data sets and may

be done by parallel processing.

2.3 Finite Sample Properties

We showed in Section 2.2 that our proposed estimator and predictor are op-
timal under the local model (8)—(10). However, the main interest is in the
performance of these methods under the global model (1)—(3). In this section,
we state some finite sample properties of f(z) and §(z). Some asymptotics
are given in Hgst (1996). Using in-fill asymptotics (Cressie (1991), p.100),

the trend estimator is related to the Nadaraya-Watson estimator and the

traditional local linear estimator. It is argued that accounting for correlated
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residuals gives smaller bias and larger variance asymptotically. However, ex-
cept for boundary effects the differences found in Hgst (1996) are minor. The
reason is that the configuration of data locations is not important asymptot-

ically.

2.3.1 Bias for Finite Samples

For s € [z —h,z+ h], suppose f can be expanded in a Taylor series f, around
x:

f(s) = fols) + Qgra-

Here, 0,41 is the remainder and f,(s) is the polynomial

f6) = @)+ RO o+ G CTTO@) ()
- b0+h(%)b1+... +hq(s;x)4bq.

Denote by BGLS the generalized least squares (GLS) estimate of the series

coefficients of f,. Then we have
Bors = (B R'B)'B'R™'y.

According to basic results in multivariate analysis (see for example Mardia,
Kent and Bibby 1979, p. 184), any linear unbiased estimate of 3 is of the

form ,B = ,BGLS + Ay, with AB = 0. The proposed estimator corresponds
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to choosing
A= (B'C,B)"'B'C,- (BR'B)"'B'R™".

It is easily verified that AB = 0, therefore ,@ is a linear unbiased estimate
of 3. This shows that f(z) = b'(2)@ is a linear unbiased estimate of f,(z),
i.e. of any polynomial of order < ¢. Our particular choice of the matrix
A corresponds to a local Taylor expansion, and ensures that the remainder
Qq41 is of order O(h?t!). Whereas both f(z) and fars(z) = b'(2)BqLs are
linear unbiased estimates of a ¢’th order polynomial, the bias in estimating
an unknown smooth function will be of order O(1) for fgrs(z) and of order

O(h9t1) for the proposed estimator.

~

The true bias of f(x) is

~

Bias{f()} = E{f(z) - f(2)}
= b(z)(B'C,B)'B'C,f — f(x).

This may be approximated using the Taylor expansion (19). We get

- 1
Bias{f(z)} = rE 1)'b’(x)(B’ChB)‘lB'Chsq“ £ () + O(hF?). (20)
Here, we have introduced the notation s? = ((s; — z)%,..., (s, —)?)". Thus,

the bias may be estimated by plugging in an estimate of the (¢+1)’th deriva-
tive f(+Y(z). We estimate f(*1)(z) by fitting a local polynomial trend of

order > g+ 1 to the process and taking the (¢ + 1)’th derivative of this local
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polynomial (see Hastie and Loader 1993, p. 125). Typically, a larger A would
be used in estimating £+ (z) than in estimating f(x), because estimates of
higher order derivatives tend to have large variance. A detailed study of the

properties of the bias estimate (20) is beyond the scope of the present work.

The predictor can be written

~

i(z) = f(z) + ThChly — ),

where }‘ = BB is the vector of trend estimates at the data locations. Taking

the expectation, we get

E{3@)} = B {f@)}+rCilf—E {F})
— E {f(2)} - r}Cy Bias {F}.

This last expression can be used to calculate the prediction bias of 7(z):

Bias {y(z)} = E {7(z) —y(z)}

= Bias {f(z)} — r,C, Bias {f}. (21)

By following the argument given at the end of Section 2.2 we can verify that
the prediction bias is zero at the data locations. Far away from the data
locations the prediction bias will be close to the bias of the trend estimate.
The trend estimate inherent in Kriging is fGLS. Therefore, the Kriging pre-
dictor will have greater bias than the proposed predictor in sparsely sampled

regions when the trend is different from a ¢’th order polynomial.
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2.3.2 Variance for Finite Samples

Using the notation of Section 2.3.1, the variance of ,B is

Var {B} = Var {Bgs + Ay}
= Var {Bgps} +2 Cov {Bgps, Ay} + AVar {y}A’
= Var {Bgs} +20%(B'R'B)"'B'A' + 0>ARA'
= Var {Bgrs} + 0" ARA’,

~

where the last equality follows from AB = 0. Now, the variance of f(z) is

~

Var {f(z)} = ¥'(z)Var {B}b(x)

= Var {fors(z)} + 0% (zx) ARA'b(z) > Var {fors(z)},

because ARA’ is positive definite. Thus, by localizing the trend estimate,

the bias is decreased and the variance is increased.

The prediction variance is
Var {g(z) — y(z)} = 0*(1 — 2a'r + &' Ra), (22)
where

o =C,B(B'C,B) 'b(z) + [I - C,B(B'C,B) 'B'| Cri.  (23)

At the data locations the prediction variance is zero, because the predictor

reproduces the observations. At distances greater than a from the data
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locations, the prediction variance will tend to Var {f(z)}. In comparison,
the Kriging prediction variance will tend to Var{fc.s(z)}. Therefore, the
proposed predictor will have greater prediction variance than Kriging when

predicting at distant locations.

We have seen that the proposed predictor has smaller prediction bias and
greater prediction variance than the Kriging predictor. In practical situa-
tions, we would usually be more interested in the mean squared error of

prediction:

MSEP {(z)} = E {[i(z) — y(z)]*}

= Var {j(e) ~ y(@)} + Bies* {§(2)}.  (24)

Here, the variance term is given by (22)—(23) and the bias term is given by
(21). The proposed predictor may have smaller or greater MSEP than Krig-
ing, but in Kriging the prediction variance is used as an estimate of MSEP.
Such an estimate neglects a bias term which is O(1) when the trend is not
a ¢’th order polynomial. This is improved upon in the neighborhood Krig-
ing approach. Using only data within a radius A, the bias of neighborhood
Kriging is O(h%*!), but this bias is neglected in the MSEP estimate. The
prediction error estimate we propose will therefore be more realistic than the

prediction error estimate usually reported in Kriging procedures.
In practical applications the true model is unknown. Then the above con-
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2 a and h must be estimated

siderations may not apply, because p(-;-), o
from data. On the other hand, a comparison of prediction methods on real
data may be assessed through cross-validation. This will be pursued in Sec-

tion 3.2.2.
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3 Examples

In this section, we illustrate the aspects of our method through a con-
structed example and an application to a data set with observations in a
two-dimensional domain. The purpose is to check the performance of our

method in some practical situations.

3.1 Prediction of Simulated Data

The purpose of this section is to present a procedure for estimation of co-
variance parameters and bandwidth from simulated data. We also make a
comparison with Kriging. We use the trend function f(s) = 10s®—15s*+6s°,
which mimics the typical behavior of growth curves, see Hart & Wehrly
(1986). Furthermore, we take 02 = 0.1? and use an exponential correlation
function p(A;a) = exp(—3A/a) with a = 0.054. One realisation of this pro-
cess is simulated at 80 locations drawn from a uniform density on (0,1). The

simulated data and the underlying trend is shown in Figure 1.

Most methods for estimating spatial covariance parameters assume the trend
is known, while in our case the unknown trend will have to be estimated us-
ing the (unknown) correlation range a. For given h, we suggest the following

procedure for parameter estimation. First, subtract a trend estimate as-
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suming zero correlation from the data. Then estimate o2 and a from the
fitted residuals and re-estimate the trend f using the current estimate of a.
This procedure is iterated. For estimating covariance parameters from fitted
residuals, we used the weighted least squares method of Cressie (1991), pp.
95-97, applied to lags less than h. An alternative method is demonstrated
in Section 3.2. An iterative procedure similar to the procedure used here
was originally suggested by Cochrane and Orcutt (1949) in the context of
linear regression with autocorrelated errors. Although relevant, a detailed
evaluation of alternative methods for parameter and bandwidth estimation

is beyond the scope of the present work.

We fit a local linear model to the simulated data using the Epanechnikov
kernel K (t) = 0.75(1—¢*) I|_; ;j and compare with the linear trend (universal)
Kriging predictor. For the local model, covariance parameters were estimated
for a range of plausible bandwidths and the mean integrated squared error of
prediction (MISEP) was obtained by integrating (24) over the study interval.
MISEP was estimated numerically for each bandwidth by cross-validation,
using the proposed predictor as given by (16) with ¢ = 1. The resulting
MISEP is shown in Figure 2, and we see that there is a minimum at Ay = 0.17.
This is in close agreement with the optimal bandwidth of 0.218, which is
obtained for given 02 and a. The corresponding parameter estimates were

5% = 0.0792? and a = 0.0348.
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The bias and variance of the trend estimator forms the basis for the predic-
tion error estimates. The variance of the trend estimator was estimated by
plugging in the estimated covariance parameters and the bias was estimated
by formula (20). This requires estimation of the second derivative of the
trend, and involves again the choice of a bandwidth h;. For any fixed band-
width, we would expect estimates of higher order derivatives of a function
to have larger variance than estimates of a function value. Therefore, the
optimal bandwidth for estimating f”(z) is likely to be larger than the opti-
mal bandwidth for estimating f(x). We used h; = 2hy = 0.34, which gave a
reasonably smooth estimate. Procedures for objective selection of bandwidth
for derivative estimation should be investigated in the future. Figure 3 shows
the estimated and true bias. We see that the bias estimate captures some
of the true structure, with the largest disagreement towards the ends of the
estimation interval. Figure 4 shows the estimated and true MSE of the trend
estimator. Both estimated and true MSE are smallest in the interior of the
study interval, and largest near the ends. The estimated MSE is smaller than

2

the true MSE at all locations, mainly because o* is underestimated in this

example.

Parameters in the linear trend kriging model was estimated by setting h =
oo in the proposed model. We obtained 6% = 0.225? and dx = 0.868.
The estimated parameter values are larger in this case, because parts of the

trend function is now interpreted as residual fluctuations. Predicted values

21



for Kriging and the local method is shown in Figure 5. We see that the
Kriging predictor is nearly interpolating the data linearly, while the proposed

predictor is pulled towards the local trend estimate.

A better way of comparing the two predictors is by cross-validation. Our
cross-validation exercise omits one data location at a time, and predicts that
location using data from all other locations. The procedure is repeated for
each data location, resulting in 80 cross-validated data values. The absolute
difference between the cross-validated data value and the observed data value
at the same location is denoted the true prediction error. The true prediction
errors for Kriging and local polynomial Kriging is shown in Figure 6. We
see that local polynomial Kriging generally has smaller true prediction errors
than Kriging. Indeed, the RMS prediction error for local polynomial Kriging
is 0.0526 and for Kriging 0.0578. A feature of the Kriging framework is
the ability to provide a prediction error estimate. The estimated Kriging
RMS prediction error is 0.0326, while the estimated local polynomial Kriging
estimate is 0.0491. Hence, the local polynomial method gives somewhat
better predictions and much more realistic prediction error estimates than

Kriging in this example.
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3.2 Prediction of European Sulphate Data

We apply the method to prediction of sulphate concentrations from Eu-
rope for January, 1989, and compare with ordinary Kriging through cross-
validation. = The proposed framework is easily extended to this two-
dimensional example with the following modifications. The kernel function
is replaced by a product of one kernel function for each spatial dimension.
Furthermore, the length of the b(x)-vector and the number of rows in the
B-matrix will now be 1/2(¢ 4+ 1)(g + 2). Finally, the calculation of the bias

term will involve estimation of all partial derivatives of f(x) of order g + 1.

The sulphate data were collected daily through the “Co-operative Program
for Monitoring and Evaluation of the Long Range Transmission of Air Pol-
lutants in Europe”. The data set was provided by the Norwegian Institute
for Air Research (NILU) and a description is given in Schaug, Pedersen,
Skjelmoen and Kvalvagnes (1993). For January 1989, we used 64 averaged
values of sulphate concentrations, measured in units of milligrams of sulfur
per liter [g(S)/l]. The study area is showed in Figure 7. As concentration
data are always positive, it is convenient to operate on a logarithmic scale.

In particular, the concentrations referred to in this article will be in units of

log [g(S)/1].
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3.2.1 Parameter Estimation

As trend model in this example we use a local constant. The procedure for
parameter estimation used in this two-dimensional example deviates slightly
from the description given in the previous sections. As kernel function, we

use the product of two biweight kernels,

2

15
K(t,t:) = |71 =)A= &)| Tran(t) (),

The bandwidth and spatial covariance parameters for the local constant
model are estimated by the procedure described in Section 3.1, with the
exception that maximum likelihood is used for estimation of covariance pa-
rameters, as suggested by Mardia and Marshall (1984). Some limitations are

discussed in Warnes and Ripley (1897) and in Mardia and Watkins (1989).

In our present cross-validation estimate of MISEP, data locations in sparsely
sampled regions are given larger weights than data locations in densely
sampled regions. Again, we used the exponential correlation function,
and after 4 iterations the parameter estimates stabilized at @ = 867 km,
o? = 0.73 {log [ug(S)/1]}? and h = 3000 km. Figure 8 shows the fitted var-
iogram function v(7) = o?[1 — p(7)] for the proposed model. Also shown in
this figure are squared differences of residuals between station pairs and the
number of station pairs within each lag-average. The squared differences are

averaged over 150 km lags. For the purpose of this example, the variogram
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function seems to give a reasonable fit to the empirical lag-averages when the

separating distance is less than the selected bandwidth of A = 3000 km.

For the Kriging model (assuming a constant trend) the maximum likeli-
hood estimates of the covariance parameters were ax = 1780 km and
o?x = 1.28 {log [ug(S)/l]}2. The estimated variance and range parame-
ters are larger in this case, because low-frequency fluctuations in the data
are incorporated in the residual variability. The fitted parametric variogram
functions and lag-averaged squared differences between station pairs for the

constant trend model are shown in Figure 9.

3.2.2 Cross-validation

Comparisons between the proposed method and Kriging are made by analysis
of cross-validation estimates for predicted values and prediction errors. The
true prediction errors for the proposed method and the Kriging approach are
shown in Figure 10. We see that the two methods both have small errors for
locations in the central part of the domain, which is the most densely sampled
region. An exception is site 3, where both methods give poor predictions.
Near the boundary of the study area, the proposed method seems to have
the smallest prediction errors (sites 21, 23, 29, 34, 39, 46). The RMS true

prediction errors for the proposed method was 0.747 and for Kriging 0.793.
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The RMS estimated prediction errors were 0.653 for the proposed method
and 0.692 for Kriging.

We see the difference between the two methods is not large for this exam-
ple when averaging over all data. However, there are indications that the
proposed method gives better predictions in sparsely sampled regions. An
important feature of the proposed predictor as compared to Kriging is the
improved ability to translate information from densely sampled regions to
sparsely sampled regions. This is because the predictor incorporates a more
detailed trend structure than Kriging. In applied problems, inference for

sparsely sampled regions may be quite important.
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4 Conclusions

An advantage of the proposed framework is that it can account for both
correlation structure and a general trend function. Our framework also in-
cludes some familiar methods of smoothing and prediction as special cases.
In particular, if the residuals are uncorrelated we get usual local polynomial

regression, and when the smoothing parameter A is infinite we get Kriging.

Nonparametric regression estimation is a tool for estimating the conditional
expectation of a process given the data. This is also the purpose of Krig-
ing prediction, but under different model assumptions. While Kriging can
be regarded as a high-pass filter designed to utilize structure in the residu-
als, nonparametric regression estimation may be viewed as a low-pass filter,
intended to reveal trend structure. In keeping with this terminology, the
predictor we propose combines a low-pass filter and a high-pass filter to take
advantage of both high-frequency and low-frequency structure. However, for
the model to be identifiable for a given set of data, the process should have
distinct high-frequency and low-frequency structure, and sufficiently large
sample size for separating these scales. This potential problem may be of lit-
tle concern if the purpose of the analysis is prediction rather than inference

of model parameters.

The expense of using the proposed framework for prediction purposes is

27



having to choose the smoothing parameter h. However, practitioners will
frequently apply the Kriging predictor only to some neighborhood of the
prediction location. Therefore, one will need some smoothing parameter (for
example radius of the neighborhood) also in this case. The proposed frame-
work can be regarded as a theoretical basis for neighborhood Kriging, and

we propose a coherent prediction error estimate for this situation.

A strength of the proposed trend estimator is that it explicitly accounts for
boundary effects and unevenly spaced data locations through incorporation of
residual correlation structure. It is also consistent with the parametric trend
estimator when the residuals are correlated, because it is optimal (in the best
linear unbiased sense) as the bandwidth tends to infinity. Furthermore, our
unified framework for smoothing and prediction allows for cross-validation
for bandwidth selection. This is more problematic in direct application of a
conventional nonparametric smoother, because smoothing and prediction is

not, equivalent when the errors are correlated.

When the bandwidth A is fixed, the problems of estimating covariance param-
eters within the proposed framework are similar to the problems encountered
in Kriging. Various procedures for parameter estimation of spatial processes
are suggested in the literature (Ripley 1981; Cressie 1991; Mardia and Mar-
shall 1984; Zimmerman 1989; Hjort and Omre 1994). In some situations,

there is a natural choice of h to use with one of these parameter estimation
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procedures. In other problems, our current recommendation is to combine a
reasonable procedure with some cross-validation criterion to assess the band-
width. As a final diagnostic check, we recommend an assessment of individual
cross-validated prediction errors. Particular attention should be given to data
locations in sparsely sampled regions, since this is where prediction methods
are likely to differ the most. These points are illustrated in the sulphate data
example of Section 3.2.2, but see Hgst, Omre and Switzer (1995) for a related

application.

The literature of local polynomial regression is abundant in extensions and
modifications to the “basic” local polynomial regression approach, many of
which may apply to the present situation. Some authors advocate fixing
the number of local observations used in the estimation, giving a variable
bandwidth (Cleveland 1979; Miiller and Stadtmiiller 1987; Fan and Gijbels
1992; Fan and Gijbels 1996). The properties of such variable bandwidth
predictors deserve further investigations. A further extension would be to
allow for the covariance of the process to vary with location. This would give
prediction error estimates that are location-specific, not only dependent on
sampling geometry. Hopefully, progress along these lines can be reported in

the future.
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Figure 1: Simulated data (dots) and underlying trend function (broken line)
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Figure 2: Mean Integrated Squared Error of Prediction (MISEP) as estimated
by cross-validation of simulated data. Proposed method (full line) and Kriging
(broken line)
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Figure 3: True bias of trend estimator (full line) and estimated bias (broken

line)
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Figure 4: True mean squared error (MSE) of trend estimator (full line) and

estimated MSE (broken line)
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Figure 5: Proposed predictor (full line) and Kriging predictor (broken line)
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Figure 9: Fitted variogram and lag-averaged squared differences for Kriging
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