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For a given ground cover class, there is no straight-forward way
of expressing the joint distribution of a set of correlated radar
images represented in amplitude or intensity. In this article
we propose a general transformation method that permits in-
corporation of inter-image covariance while keeping a good fit
to the marginal distributions. This meta-Gaussian approach is
studied here for Gamma marginals, and the results of tests on a
multi-temporal series of ERS-1 multi-look images are presented.

1 Introduction

With a growing number of satellite sensors, the coverage of the earth in
space, time and electromagnetic spectrum is increasing fast. This creates
a demand for image analysis methods that can handle multi-sensor, multi-
scale and multi-temporal data sets covering a certain region. We have
developed a new statistical model for classification of multi-sensor, multi-
scale and multi-temporal images [1], which is currently being validated. In
this paper we consider modeling of a time series of radar images based on a
transformation method that permits the computation of joint distributions
for a series of intensity radar images.

In multi-temporal classification, we can model temporal context both
in terms of inter-pixel class dependency (variations in the class label) and
inter-pixel feature correlation (variations in the class properties). In [2] it
was assumed that multi-temporal feature vectors were conditionally inde-
pendent and only inter-pixel class dependency was modeled. In this paper
we derive new distributions for multivariate radar images and use this model
for multi-temporal SAR images. Hence we assume that the underlying class
label image does not change in the time period, but that the class properties
change and that there may be temporal feature correlation.



More generally, let us assume that we have a set of radar images that
have been acquired over a given area, with approximately the same acqui-
sition geometry. The images will generally appear somewhat different, e.g.
because they were:

e not acquired simultaneously (multi-temporal)
e acquired by sensors with different wavelengths (multi-frequency)
e acquired with different polarization combinations (polarimetric)

For corresponding pixels belonging to a given ground cover class (e.g. a
certain kind of agricultural field or forest), there will in many cases be
inter-image correlation. In the case of multi-temporal images, this may e.g.
be related to the phenological evolution of the vegetation. Such correlation
can easily be taken into account for single-look complex (SLC) radar images,
where a multivariate complex circular Gaussian distribution is well suited.
However, for amplitude or intensity images (single- or multi-look) there is
no straight-forward way of expressing the joint distribution.

Assuming fully developed speckle [3] and ignoring spatial correlations,
the intensity I of a pixel in a multi-look radar image is Gamma distributed

fr(z; L, R) = ﬁ (%) exp(_%)xL—l O

where z > 0 is a realization of I, R = E[I] is the local radar reflectivity,
and L = R?/Var[I] is the equivalent number of independent looks (ENIL)
of the image. If the radar reflectivity of a given class has texture, it is
frequently assumed to be Gamma distributed as well, in which case the
observed intensities of the class are K distributed [4].

Some multivariate Gamma distributions are presented in [5]. However,
there are restrictions on the dependence structure that make these multi-
variate distributions unsuited for our application.

In this paper we propose to use meta-Gaussian distributions to model
dependence between detected radar images. This approach is very gen-
eral and does not imply strong restrictions on the dependence structure,
as opposed to the multivariate Gamma distributions in [5]. The meta-
Gaussian approach can be used to combine virtually any kind of marginal
distributions (e.g. Gaussian, Gamma and K distributions) into multivari-
ate distributions. It can therefore be a useful tool for joint analysis of
multi-temporal, multi-frequency and polarimetric radar data represented
in amplitude or intensity, and for combinations of radar data and optical
data.

The outline of the paper is as follows: Meta-Gaussian distributions are
presented in section 2. Sections 3 and 4 describe classification based on



meta-Gaussian distributions and estimation procedures for meta-Gaussian
distributions, respectively. In section 5 we apply the meta-Gaussian dis-
tributions for classification of a multi-temporal series of real radar images
and a simulated multivariate radar data set.

2 Meta-Gaussian distribution

The basic idea of meta-Gaussian distributions [6] is to transform the mar-
ginal values so that they become Gaussian, model the correlation on the
Gaussian scale, and invert the transformation.

Let X = (X4, ..., Xn) be a stochastic vector with marginal density g, for
the jth component X; of X. (In our setting X is the value of a given pixel
in image number j out of NV overlapping images.) Let furthermore G; be
the cumulative distribution function corresponding to g; and ® the cumu-
lative distribution function for the standard normal distribution. General
probability theory then says that

Y; = 371(G;(X;)) (2)

is a standard normally distributed variable. The meta-Gaussian approach
is to model the dependence between the different components of X through
the dependence between the components of Y = (Y7, ..., Yy ). In particular,
it is assumed that Y is a multivariate Gaussian distributed vector with
expectation vector 0 and covariance matrix ¥. In order to keep each Yj
standard normal, we require the diagonal elements of 3 to be equal to 1.
Inverting (2), we obtain

Xj =Gl (2(y;)). 3)

Further, by using standard results from probability theory on transforma-
tions, the multivariate density of X is

f(x) =37 exp{—%Y(X)T(E_1 —Dy(x)} x H gi(z;) (4

where y(x) = (y1(21), ... ,yn(en))” and y;(z;) = G7 ' (2(;)).

It should be noted that for 3 = I, the distribution reduces to a prod-
uct of independent marginals, making the interpretation of X similar to
the correlation matrix for multivariate Gaussian distributions. No assump-
tions are here made about g;, except that the inverse of the cumulative
distribution G; must exist.

In practice, g; will usually be chosen from a parametric family of dis-
tributions. If all g; are Gaussian, the density (4) reduces to a multivariate



Gaussian distribution. If all g; are lognormal, we obtain the ordinary mul-
tivariate lognormal distribution. For g; being Gamma distributions, we ob-
tain a multivariate Gamma distribution. If some g; are Gaussian and some
are Gamma, a multivariate distribution combining Gaussian marginals with
Gamma marginals is obtained. Such combinations permit joint analysis of
optical and radar images.

In this paper we concentrate on Gamma marginals and multivariate
Gamma distributions obtained through the meta-Gaussian approach.

3 Classification

Using the framework introduced in the previous section, we may for each
class k € {1,..., K} define a multivariate density fx(x) describing the dis-
tribution of a vector of observations x from class k. Define z; to be the class
of pixel ¢ and x; to be the observed values in pixel ;. Neglecting contextual
dependence, the Bayes classification rule is

3= arg}cnax {mefre(x)}. (5)

Contextual classification methods can also be applied in the ordinary way,
using e.g. Potts model

p(Z) x eEi Qz; +B Ei,\,j I(Zi:zj)

where I(-) is the indicator function and i ~ j means that 7 and j are neigh-
bors in a graph. Making the usual assumption of conditional independence
of observations given classes, the posterior distribution for z is given by

p(z|x) < p(2) H fei (i) (6)

Maximum a posteriori (MAP) estimates of z can be obtained by global
maximization of (6). Such a maximization is recognized as a difficult
problem and therefore approximative algorithms such as the iterative con-
ditional modes (ICM) [7] are usually applied. An efficient algorithm for
obtaining global maxima has been presented in [8]. Alternative posterior
estimates, including uncertainty measures, can be obtained by employing
Markov chain Monte Carlo (MCMC) techniques [9)].

4 Estimation

The multivariate density (4) involves parameters which needs to be spec-
ified. In addition to the covariance matrix X, each marginal density g;
contain additional parameters ;. For marginal Gamma densities, v; =
(Lj, Rj), see (1).



Based on a training set with known classes, maximum likelihood (ML)
estimation can in principle be performed. Such estimates are, however,
computationally costly to obtain, mainly because of the constraints on the
covariance matrix ¥ (all diagonal elements needs to be equal to one, and
in addition, the matrix needs to be positive definite). We have therefore
also considered a simpler approach, where 7v;, j =1,... , N, first are esti-
mated marginally based on data from the corresponding component only.
Estimates of ¥ are then obtained by maximizing the likelihood with the
estimated v;, j =1,... ,N.

Based on theory on estimation functions [10], it can be shown that the
estimates obtained are asymptotically consistent and normally distributed.
The asymptotic variances for estimation function (EF) estimates will differ
from the ML estimates, but in our experience the efficiency loss is small.

5 Results

The pixelwise Bayes classification rule (5) has been used to examine whether
the use of meta-Gaussian distributions improves the classification accuracy
compared to marginal Gamma distributions that are assumed to be inde-
pendent. It should be stressed that the focus is not on achieving the highest
possible classification accuracy, but on revealing differences between the two
approaches.

The data set considered here consists of a multi-temporal series of 6
ERS-1 images of Bourges, France. The images were acquired with monthly
intervals during the summer season 1993, and 4-look amplitude images were
generated from the original SLC images [11]. The training set consists of
vectors of amplitude observations from 21 523 pixels where the ground truth
(class label) is known. The test data set contains 63457 pixels. Table 1
contains the name, label value and number of pixels in training set and test
set of each of the 15 classes.

The training set is used to estimate the parameters of the models and to
construct the classification rule. The test set is used to find the probability
of correct classification (PCC) on the basis of the classification rule.

We compare several approaches. One assumes that all components are
independent with Gamma marginals, and ML is used to estimate the pa-
rameters involved. We denote this method by independent maximum like-
lihood (IML). The second approach is the meta-Gaussian with Gamma
marginals. For this model, both ML estimation and a simpler approach
based on estimation functions are considered. These methods are denoted
by MGML and MGEF, respectively. For both Gamma models, the marginal
distributions (1) of a class are described by the parameters v; = (L;, R;),
j=1,...,N. For the meta-Gaussian approach, the inter-image dependen-
cies are described by the covariance matrix 3 on the Gaussian scale.



Table 1: Result of classification of multi-temporal series of ERS-1 images
into 15 classes with the IML, MGML and MGEF methods.

Class Size Size IML MGML MGEF
training test | PCC Sens. | PCC Sens. | PCC Sens.
forest 2559 11985 | 0.472 0.579 | 0.481 0.576 | 0.462 0.594
orchard 48 66 | 0.394 0.005 | 0.424 0.005 | 0.424 0.006
hard wheat 2985 8195 | 0.431 0.619 | 0.462 0.602 | 0.453 0.616
soft wheat* 2264 5782 | 0.384 0.427 | 0.352 0.422 | 0.337 0.426
maize* 2876 10598 | 0.184 0.661 | 0.228 0.700 | 0.253 0.709
sunflower 2384 5479 | 0.334 0.457 | 0.346 0.480 | 0.351 0.473
barley* 141 161 | 0.447 0.023 | 0.422 0.026 | 0.460 0.025
oilseed rape 2749 7012 | 0.428 0.514 | 0.451 0.517 | 0.441 0.522
peas 623 1573 | 0.528 0.239 | 0.521 0.239 | 0.531 0.237
clover 488 793 | 0.295 0.052 | 0.314 0.057 | 0.319 0.055
prairie 722 1899 | 0.351 0.170 | 0.354 0.174 | 0.336 0.170
bare soil 1162 2993 | 0.241 0.218 | 0.282 0.238 | 0.276 0.240
road* 404 923 | 0.556 0.259 | 0.484 0.283 | 0.603 0.263
water 537 1990 | 0.828 0.883 | 0.837 0.857 | 0.853 0.856
urban area* 1581 4008 | 0.415 0.562 | 0.358 0.683 | 0.452 0.736

The overall portion of correctly classified pixels in the test set for the
three methods were 0.387 (IML), 0.398 (MGML) and 0.404 (MGEF). In
Table 1, the probability of correct classification (PCC) for each class is
given together with a sensitivity measure (Sens.). This sensitivity measure
is defined as the number of correctly classified pixels divided by the total
number of pixels classified to that class. The sensitivity measure is in-
cluded because only considering probability rates inside a class do not fully
describe the properties of that class. A large PCC can be combined with a
large number of pixels from other classes being classified to this class. The
sensitivity measure quantifies this latter aspect and should be close to one.
We would expect that strong correlations within a class would give less con-
fusion with other classes when taking the covariances into account (MGML
and MGEF) than when assuming independence (IML). This is mostly the
case (classes with strong correlations are marked with an asterisk in Ta-
ble 1), but there are exceptions. The modest improvements obtained with
the meta-Gaussian approach are probably due to the relatively weak inter-
image correlations in this data set. The maximum correlations range from
0.2 to 0.75 for the different classes.

To further investigate the impact of the magnitude of the inter-image
correlation, we performed classification into a reduced number of classes,
corresponding to those having the strongest correlation between compo-
nents. These classes are given in Table 2. In this case, the overall portion of
correctly classified pixels for the three classification rules were 0.620 (IML),



Table 2: Result of classification of multi-temporal series of ERS-1 images
into a reduced set of 5 classes with the IML, MGML and MGEF methods.

Class Size Size IML MGML MGEF
training test | PCC Sens. | PCC Sens. | PCC Sens.
soft wheat* 2264 5782 | 0.721 0.847 | 0.762 0.839 | 0.712 0.858
maize* 2876 10598 | 0.600 0.823 | 0.632 0.834 | 0.629 0.895
barley* 141 161 | 0.727 0.028 | 0.708 0.032 | 0.696 0.037
road* 404 923 | 0.611 0.377 | 0.548 0.252 | 0.706 0.234
urban area* 1581 4008 | 0.523 0.676 | 0.493 0.752 | 0.648 0.764

0.638 (MGML) and 0.659 (MGEF), i.e., a non-negligible improvement is
obtained by incorporating covariance through meta-Gaussian distributions,
especially with the MGEF method.

We also investigated the impact of the models on simulated data. The
simulated data were obtained by simulating from a meta-Gaussian dis-
tribution (Gamma marginals) for each class. The class parameters were
given from the MGEF estimates from the real data, where the parame-
ter estimates from the marginal distribution are kept untouched. To ob-
tain stronger correlations between images, the off-diagonal elements of the
Cholesky decomposed covariance matrix were multiplied by a factor 5. This
procedure gives stronger correlations in the covariance matrix and the same
relative change for each class. Note that the marginal distributions of each
class are Gamma with approximately the same parameters as for the real
data. The only change is stronger correlation. The number of training
and tests samples are also the same. The overall portion of correctly clas-
sified pixels for the three classification rules were here 0.422 (IML), 0.482
(MGML) and 0.648 (MGEF), i.e., a significant improvement is obtained by
incorporating covariance through meta-Gaussian distributions, especially
in the case of EF estimation. Information on the individual classes is given
in Table 3. The large difference between the results of MGEF and MGML
is probably due to a more robust estimation procedure for MGEF. The
MGML method seems to encounter numerical problems in maximizing a
very complex likelihood function.

6 Conclusion

We propose a general transformation method that permits incorporation
of inter-image covariance while keeping a good fit to the non-Gaussian
marginal distributions of radar images.

Tests on a multi-temporal series of 4-look ERS-1 images indicate that
the advantage of taking inter-image covariance into account increases with
its strength. The proposed method should therefore be tested on data sets



Table 3: Result of classification of a simulated data set with strong inter-
image covariance into 15 classes with the IML, MGML and MGEF methods.

Class Size Size IML MGML MGEF
training test | PCC Sens. | PCC Sens. | PCC Sens.
forest 2559 11985 | 0.477 0.624 | 0.534 0.533 | 0.553 0.811
orchard 48 66 | 0.485 0.006 | 0.303 0.009 | 0.758 0.026
hard wheat 2085 8195 | 0.422 0.645 | 0.537 0.683 | 0.593 0.808
soft wheat 2264 5782 | 0.349 0.368 | 0.586 0.506 | 0.720 0.617
maize 2876 10598 | 0.284 0.779 | 0.214 0.565 | 0.650 0.803
sunflower 2384 5479 | 0.381 0.509 | 0.590 0.477 | 0.607 0.674
barley 141 161 | 0.565 0.045 | 0.627 0.071 | 0.807 0.090
oilseed rape 2749 7012 | 0.409 0.616 | 0.578 0.771 | 0.579 0.816
peas 623 1573 | 0.594 0.261 | 0.690 0.389 | 0.713 0.418
clover 488 793 | 0.398 0.075 | 0.521 0.127 | 0.554 0.174
prairie 722 1899 | 0.312 0.173 | 0.465 0.235 | 0.491 0.313
bare soil 1162 2993 | 0.365 0.394 | 0.659 0.394 | 0.718 0.562
road 404 923 | 0.469 0.122 | 0.092 0.085 | 0.931 0.405
water 537 1990 | 0.902 0.823 | 0.876 0.935 | 0.985 0.925
urban area 1581 4008 | 0.582 0.562 | 0.100 0.450 | 0.881 0.795

with stronger inter-image covariance. Partially polarimetric radar images
are of particular interest. The choice of parameter estimation method is
decisive. The use of estimation functions seems more robust than maxi-
mization of the likelihood, and it is also much faster.
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