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ABSTRACT 

 
The increased availability of high resolution remote sensing 
imagery has opened up for new opportunities for road 
traffic monitoring applications. Vehicle detection from 
satellite images has a potential ability to cover large 
geographical areas and can provide valuable additional 
information to traditional ground based equipment. This is 
especially the case for remote rural roads where ground 
based counting can be both expensive and difficult. In this 
paper we present a solution for satellite-based traffic counts 
intended for such roads. The solution, which is currently 
under development, aims at covering all steps necessary in 
the process of extracting this information, and several novel 
approaches have been developed to achieve this. 
 

Index Terms— traffic information, road segmentation, 
cloud detection, vehicle detection, contextual analysis. 
 

1. INTRODUCTION 
Traffic statistics is a key parameter for operation and 
development of road networks. The primary source of 
traffic statistics today is ground based counts generated 
from various types of equipment mounted in or close to the 
road. Important statistics describing traffic are derived from 
these counts. The most important one is the so-called AADT 
(Annual Average Daily Traffic), which is the average 
number of vehicles passing a location during one day, taken 
as an average over a year. In Norway AADT is estimated 
using ground based vehicle counts in combination with 
statistical models. However, for fairly large parts of the 
Norwegian road network AADT is still unknown. This is 
especially the case for roads in rural districts where 
installation and operation of equipment for ground based 
counts are both difficult and expensive. 
 Over the last few years, very high resolution satellite 
sensors have opened up for alternative means of obtaining 
traffic statistics. A significant advantage of satellite based 
technology is that it does not require installation of 
equipment in the road, and one image can cover a large 
geographical area. In this paper we present a solution for 
satellite-based traffic counts on remote roads intended to 
cover all the necessary steps in the process of estimating the 
counts necessary for AADT computations. 
 

There are a few existing approaches addressing the problem 
of extracting traffic information from satellite images 
[6][7][10], but most of these studies focus on larger roads 
like highways, and none of these describe solutions for the 
full process needed to achieve an operational system. The 
solution presented in this paper aims at addressing all the 
necessary steps, including road segmentation, cloud 
detection and vehicle detection. To handle this, a set of 
novel information extraction approaches have been 
developed, aimed at enabling robust performance under 
varying conditions as needed for an operational solution. 
 

2. METHODS 
In our approach automatic road segmentation is 

performed by using a novel approach for combining GIS 
data and an image to obtain a suitable representation of the 
region of interest where an active contour model is applied 
in the search for the road. Areas occluded by clouds or lying 
in the cloud shadows are identified through land cover 
classification based on spectral features, where a specialized 
approach has been developed to cater for variations in 
conditions (atmospheric, botanic and phenological) between 
training and test images. Vehicles are detected through a 
two-stage approach, where a novel elliptical blob detection 
algorithm in scale space is applied to identify vehicle 
candidates, and contextual analysis is used to separate 
vehicle candidates from tree shadows. Finally, spectral, 
geometric and contextual features are extracted and used to 
classify the candidates as vehicles or non-vehicles, 
obtaining the traffic counts. Through the next sections these 
methods are described in some more detail. 
 
2.1. Automatic road segmentation 
The detection of vehicles from satellite images requires that 
the road to be analyzed has been identified and masked out 
in the image. Vector data are available from a GIS and need 
to be exploited both to identify the right roads, as there may 
be several roads covered by an image, and to find the 
position of the road in the image. If the images and vector 
data were very accurately co-registered, the road could be 
delimited simply by selecting an area corresponding to the 
width of the road around the vector data. Unfortunately, this 
is seldom the case. 



 
Figure 1:Top: Transformation to alternative representation. 
Bottom: Results from segmentation. 

Although the vector data and image data are not 
accurately co-registered, the vector data will still provide 
useful information about the approximate position and trace 
of the road. We therefore use this information to extract an 
area in the image around the road vector with a size relative 
to the expected magnitude of the geographical displacement. 
We extract such an area by sampling the image along lines 
perpendicular to the road vectors, where the result of this 
transformation is a long and narrow image along the road 
(Figure 1, top). In the case where the vector and image data 
are perfectly co-registered, the road will run as a straight 
line along the middle of this image. But still, when this is 
not the case, the complexity of the road trace will be greatly 
reduced through this transformation. Hence, we can limit 
both the search area and the search direction simplifying the 
problem of finding the road in the image.  

In this new representation we know that the road 
should run through all the lines of the transformed image. 
Hence, we should be able to find and trace the road by 
analyzing this image line by line. To do this we use a snake-
based approach. Snake models initialized by road vector 
data have also previously been used for road extraction [1], 
however our transformed image space greatly simplifies the 
process. We determine the external and the internal forces, 
where the external force is found from the transformed 
image data and designed to find the road, which typically 
appears as a bright ribbon, by computing the average over a 
window corresponding to the expected width of the road. 
The internal force is based on local smoothness of the trace 
of the road, where the assumption is that the position on two 

adjacent lines will not change dramatically. We then use 
dynamic programming (Viterbi) to find the set of points that 
optimize the sum of internal and external forces over the 
whole set of lines. 

As the road surface in the panchromatic image will 
appear as rather heterogeneous, the road segmentation 
approach is performed in the multispectral resolution where 
the blue band was found to be the best choice. The resulting 
road mask is then resampled and adjusted through to 
achieve a smooth panchromatic representation. 
 
2.2. Automatic cloud and cloud shadow detection 
In order to increase the performance of the system, images 
that are partly covered by clouds will also need to be 
included in the analysis. However, when using cloud 
contaminated images cloud and cloud shadow masks are 
required both to estimate the correct observed road length 
for the statistics, and to assist the vehicle detection 
algorithm. To detect clouds and cloud shadows in the 
images we apply a classification based approach. A main 
challenge here is that there may be a poor match between 
training data and test data due to atmospheric, geographic, 
botanic, and phenological variations of the image data. To 
solve this we build on earlier approaches [4][11] that aim at 
exploiting intrinsic relationships between the training and 
test data to adapt the training data distributions to the 
distributions describing the classes in the test domain 

Training data for each class is constructed by visual 
inspection and labeling of regions in a set of training images 
with reduced resolution. Our set of classes included clouds, 
cloud shadows, green vegetation, water, haze and bare 
ground (concrete, asphalt, soil etc.). We model the data 
representing each class using a multivariate Gaussian 
distribution where the mean vector and covariance matrix is 
estimated from the training data.  

Although the data distribution for a given class varies 
between the training images, and also varies between the 
training images and the test images, the training data 
domain and test data domain are generally neither identical 
nor uncorrelated. This makes it possible to utilize the 
existence of an intrinsic relationship between the two data 
domains, and adapt the training data distributions to the 
distributions describing the classes in the test domain [11]. 

Bruzzone and Prieto [4] proposed a method for 
retraining a classifier when test data differs (slightly) from 
the acquired training data. Although appealing, it suffers 
from a weakness in the sense that many parameters need to 
be estimated. When applying this method to our data we 
obtain a very good statistical fit of the likelihood to the test 
image, but the mixture components have no longer a 
physical meaning in the sense that, e.g. the mixture 
component of a given land cover type no longer models that 
land cover type, but something else. Building on this 
method we have therefore developed an alternative 



approach which applies a low rank modelling of the 
parameters in order to 

 
Figure 2: Clouds (red outline) and cloud shadows (blue outline) 
have been identified. 

reduce the number of degrees of freedom and the flexibility 
of the model. By doing so, we force the class structure of 
the training data to be maintained in the test image. We also 
extend the method by incorporating several training images, 
each with different class dependent data distributions. 

For cloud detection we model each class of a given 
training and test image using band 2 and 3 as features with 
Gaussian distribution. We assume that the covariance matrix 
of a given class in the test image is simply the average 
covariance matrix of all training images, and the 
corresponding mean vector is the average mean vector of all 
training images plus a component of rank one. For cloud 
shadow detection we have also included NDVI and the ratio 
between band 2 and 4 as features. We model a given class 
mean vector in the test image as a weighted average of the 
corresponding training image mean vectors (constrained to 
have only non-negative weights). The classification process 
is a two-stage procedure, where we in the first stage classify 
the clouds, and in the second stage classify the cloud 
shadows. The detected cloud pixels are masked out in the 
test images prior to the cloud shadow classification stage. 

As a postprocessing step an additional contextual 
analysis is performed where information about the azimuth 
and elevation angle of the satellite and the sun is used to 
remove falsely detected shadow areas. The shadow of each 
cloud is located in the opposite direction relative to the sun 
apparent azimuth. Since there is no need to resolve the 
clouds with high resolution, we perform the described cloud 
classification on an image down-sampled by a factor of 8. 
 

 
 
2.3. Vehicle detection 
The vehicle detection uses a two-stage approach of object 
segmentation followed by classification of these objects as 
vehicles or non-vehicles (first introduced by Eikvil et al 
[5]). The segmentation stage is based on scale space 
elliptical blob detection and aims at finding image objects 
representing possible vehicle candidates. Since vehicles 
have an elliptical shape in high resolution satellite images, 
we have extended the scale space circular blob detection 
approach proposed by Blostein and Ahuja [3] to the more 
general approach of detecting elliptical blobs. The image is 
convolved with an elliptical Laplacian of Gaussian filter at 
various scales. Locations where the estimated scale is close 
to the scale of the filter, and the estimated contrast is higher 
than a preset threshold, are treated as points of interest. 
Details on the scale space filtering step can be found in [9].  

After having identified these points of interest, we 
extract the vehicle silhouettes from the list of candidate 
vehicle centers, i.e., we define the spatial extension of the 
blob surrounding the blob center. The object silhouettes are 
found using a simple region growing technique starting 
from the blob center. Once we have found the object 
silhouettes, we can extract many features describing the 
objects, and use classification to separate vehicles from non-
vehicles.  

For dark vehicles there is a risk that these are grown 
together with tree shadows along the road. Hence a special 
algorithm is used to separate dark vehicles from tree 
shadows [9]. This algorithm is based on the observation that 
while vehicles may have grey levels similar to the tree 
shadows, the shape of the region can still reveal that there is 
a vehicle connected to the tree shadow. Based on the 
characteristics of the contour of the region around the 
transition zone from vehicle to shadow, two criteria of the 
presence of a vehicle have been defined: (i) the border 
contour of the region has a strong negative curvature, and 
(ii) the outward normal vector of the contour points of the 
region is in the same direction as the road. These two 
criteria form the basis of our algorithm for separating dark 
vehicles from tree shadows. In addition, contextual 
information based on sun angle and a vegetation mask 
derived from the multispectral image, are used to identify 
areas along the road where tree shadows may appear. 

The objects remaining as potential vehicle candidates 
are classified using a hierarchical scheme.  First objects are 
classified as either dark or bright according to the 
appearance relative to the background. Then these two 
classes are classified separately. The features used in this 
classification are based on spectral, geometric, and 
contextual characteristics, and slightly different feature sets 
are used for the dark and the bright objects. Classification is 
performed using a K-nearest-neighbor classifier with K = 3, 
classifying the objects as either vehicle or non-vehicle.  



 

 
Figure 3:Top: Elliptical blob detection. Bottom: Separation of 
vehicle objects from tree shadows. 

 
 

3. RESULTS 
3.1. Road segmentation 
The road segmentation approach was applied to a set of 
Quickbird and WordView-2 scenes covering approximately 
120 kilometers of road. Visual inspection showed a smooth 
road mask and demonstrated that the algorithm was robust 
with respect to the existence of trees and tree shadows 
occluding parts of the road, and was also able to handle road 
surfaces with changing spectral response. The algorithm can 
however be confused by bright objects/areas appearing very 
close to the road. Still, this is less of a problem for rural 
areas which is the designated application area for our 
solution. For use in urban areas an extension of the 
algorithm to the use of the full multispectral information 
could reduce the problem. 
 
3.2. Cloud and cloud shadow detection  
The algorithm was applied to a large set of Quickbird and 
WorldView-2 scenes, covering many different areas in 
Norway. The approach was evaluated through visual 
inspection and showed good performance. In addition to 
being able to detect clouds and cloud shadows, the approach 
was also able to distinguish clouds from haze. However, as 
the current algorithm is intended for summer images some 
snow covered areas were misclassified as clouds. Still, 
including a winter image may have some undesirable effects 
since the spectral signature of snow is similar to clouds. 
 
3.3. Vehicle detection 
The algorithm has been evaluated on a set of 6 Quickbird 
panchromatic satellite images with 0.6m resolution covering 
approximately 70 kilometers of road and containing 182 
vehicles. The results show that we are able to detect 
vehicles that are fully connected with the cast shadow, and 
at the same time ignore false detections from tree shadows. 
The performance evaluation shows that we are able to 
obtain a detection rate as high as 94.5%, and a false alarm 
rate as low as 6%. 

4. CONCLUSIONS 
A first approach covering the main steps needed for a fully 
automatic satellite based system for extraction of traffic 
information has been developed. The different steps have 
been tested on a variation of scenes, covering long stretches 
of rural roads, and show promising results. Future work will 
focus on full integration of these steps to reach a fully 
operational solution. To achieve this, the algorithms’ 
performance will need to be adapted to each other, and 
problems related to robust handling of potential errors and 
inaccuracies will need to be handled. 

Initial research on the expected quality of AADT 
using today’s statistical model [2], given the availability of 
one or a few satellite images per year has also been 
performed. For roads with relatively large AADT as seen in 
a national context the results were promising, with the 
precondition that the vehicle detection algorithm is fairly 
accurate. Hence, the currently achieved detection rates of 
94.5% demonstrate that a satellite-based solution is a viable 
alternative for obtaining traffic statistics. 
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