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ABSTRACT

When the reservoir parameters are stochastic, then the flow in a reservoir is de-
scribed by stochastic partial differential equations. Spatial stochastic relative per-
meability in one spatial dimension is modeled by the stochastic Buckley-Leverett
equation s(z,t); + f(s(z,t),z), = 0 for £ > 0 and ¢ > 0. f is the stochastic flux
function and s is the saturation. This equation is analyzed and it is proved that
the solution of this equation with Riemann initial data converges to the solution of
s(z,t); + f(s(x,t)), = 0 where f(s) is the spatial average of f(s,z) when f(s,z)
varies randomly with position.
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1. INTRODUCTION

Reservoir parameters vary spatially. The last decade it has become more usual to
model this spatial variation by stochastic models see e.g. (Haldorsen & Damsleth
1990) or (Holden, Omre & Tjelmeland 1992). If the reservoir properties are modeled
stochastically, the reservoir simulation becomes a numerical solution of a stochastic
differential equation. This is usually solved by intensive use of computer resources:
generate a realization of the reservoir and solve the differential equation with the
input data from the realization. The solution of the stochastic differential equation is
found from the statistics of the solutions of the differential equation. This approach
is f.ex. used by (Omre, Tjelmeland, Qi & Hinderaker 1991) and (Langtangen 1988).
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The theory of stochastic partial differential equations has successfully been used
to analyze many problems of applied mathematics. However, these equations are
mostly linear or first-order with randomness expressed in terms of “white noise” i.e.
the derivative of Brownian motion (Qksendal 1992) which makes it hard to apply to
reservoir simulation.

In this paper it is made stronger assumptions on the equations modeling the
flow and hence it is possible to do a rigorous analysis of a nonlinear equation with
more complicated stochastic properties. We will study the Buckley-Leverett equation
which models incompressible, immiscible two-phase flow in a porous medium in one
spatial dimension. Stochastic Buckley-Leverett equation has previously been stud-
ied (Holden & Risebro 1991). They found the solution when the flux function was
stochastic but not varying in space. In this paper the flux function varies spatially.
In real reservoirs there is a very large spatial variability. In the Buckley-Leverett
equation it is trivial to handle the case of spatial variable permeability. The practical
application of this result is therefore to handle spatial varying relative permeabil-
ity. We will assume that the flux function is monotonic. In (Langtangen, Tveito &
Winther 1992) it is shown that the Buckley-Leverett is unstable if the flux function
is not monotonic.

Geologist usually model the reservoir in a much finer detail than it is possible to
put into a reservoir simulator, see e.g. (Haldorsen & Damsleth 1990). It is neces-
sary to find effective values for the parameters in larger blocks which can be put
into a reservoir simulator. There is a large number of papers on finding effective
permeabilities. Most of these techniques are ad hoc see e.g. (King 1989). There are
also some papers on effective relative permeabilities, see (Ekrann & Dale 1992). Re-
cently (Tjolsen, Damsleth & Bu 1993) have by intensive use of reservoir simulation
shown that a spatial varying relative permeability can be replaced by the average
relative permeability without changing the reservoir performance considerably. This
paper will confirm their conclusion by a rigorous solution of the displacement in one
dimension.

2. THE BUCKLEY-LEVERETT EQUATION

In this paper we will model displacement of two phases in one spatial dimension
neglecting gravity, compressibility and capillarity using the standard equations used
in reservoir simulation. The velocity of a phase i, v; is modeled by Darcy’s Law:

k(x)

Vi = ———kpi(si, 2)pz(x)  fori=w,o
7
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where k() is the permeability, p; is the viscosity of phase 7, k. ;(s;, ) is the relative
permeability of phase ¢ with saturation s;, p is the pressure and x the spatial variable.
The indexes w and o stand for water and oil. Conservation of phase i gives:

¢si, + v, =0 for i = w,o.

where ¢ is the porosity. Adding the equation for conservation of each phase together
using that s, + s, = 1 gives:

kro(80,2) | Kruw(Sw,T)
k(z)(— + — Pz(7))z = 0.
(k(z) (2 e )pe(a)
The pressure is then

0 k(.??)( T’O,(Lo’ ) rauldy, ))

w

where the constants a and py are determined by the boundary condition. This is put
into the equation for conservation of the water phase:

st + (v + o) f(5,2), =0

where the flux function is

v kr,w(s,T)
f(s’ ./I/') — w — Hw
Vo + Vs kr,w(8,x) + kr,o(1—s,z)
Haw Mo

where the w index is neglected in the saturation s. The saturation of the oil is found
from s, = 1 — s,,. For the rest of the article we will assume that % is constant
equal to one. This is only a scaling of the flux function f. This is the well-known
Buckley-Leverett equation if we neglect the spatial variability (Peaceman 1977). It
is usual to assume that k, ,(sy, ) and &, ,(S,, ) have the form shown in Figure 1.
This gives the flux function the typical s-shape shown in Figure 2.

We will study the solution for z > 0 with the boundary conditions f(s,(z,0),z) =
¢y > 0 for x > 0 and f(s,(0,t),0) = co > ¢; and assume that the flux function is
increasing in s. This is a typical water flooding situation where the reservoir is filled
by 0il s,(x,0) = 1 — sy (x,0) and water is flooding in from z = 0. The solution of the
Buckley-Leverett equation shows the displacement of oil by water.

In (Oleinik 1963) it is proved that there is a unique solution of the equation also
with a flux function depending in the spatial variable when the flux function is con-
tinuous in z. Uniqueness for discontinuous flux function is proved in (Holden &
Hgegh-Krohn 1990) and in (Gimse & Risebro 1990).
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FIGURE 1. Relative permeabilty for water and oil as a function of water sat-
uration. The relative permeabilities are only shown in the mobile interval, e.g.
Sew <S8 <1-8,,
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FIGURE 2. Fractional flow of water as a function of water saturation.
3. PIECEWISE LINEAR FLUX FUNCTION

First we will assume that the flux function is piecewise constant in x and continuous
and piecewise linear in s and the initial saturation distribution is piecewise constant.
This gives a particular simple solution (Dafermos 1972).

In a later section this discretisation is refined and the results are proved for more
general flux functions. This approach was used in (Holden & Holden 1992) which
was inspired by previous work (Glimm 1965). This is formalized as follows:

Divide the spatial distribution in the intervals

O=zo< 21 < ...

The flux function may be written

Sij — S

f(S,.Z') = fjfl

S — Sii_
+ f; nitl o for Sijo1<8<s;; and ;1 <z < Iy

Sij T Siyg—1 Siyj T Sig—1
See Figure 3. The solution depends on the concave envelope of the flux function
fe(s), see Figure 4. Notice that the concave envelope is defined relative to the end-
points s_ and s,. This is not included in the notation, except in the cases where
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FIGURE 3. Fractional flow of water approximated by a piecewise linear function.

FIGURE 4. The fractional flow curve of water and its concave envelope as a
function of water saturation.
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it may be confusing. Then the notation fe,_ . )(s) is used. The solution contains
discontinuities. These discontinuities are called shocks.
Assume first there is only one interval, i.e.

] f=(s) forz <0
f(s,x)—{ fi(s) forz > 0.

Let the initial situation be

s_ forx <0
5(2,0) _{ sy for x > 0.

with f_(s_) > fi(s4+). Since the flux function is increasing in s, the solution is
constant for x negative.
The solution is (see e.g (Holden & Hgegh-Krohn 1990) or (Gimse & Risebro 1990).)

S_ forx <0
s(z,t) = Sim1 for 0 < <wp
’ 51, for v; < £ < w;_y for j=1,...,m
St for vy < %

where the velocities are defined by

fi = fin

’Uj = .
51,5 — 81,51

f; are the breakpoints of the concave envelope of the flux function i.e. f; = fi.(s1,).
s1,0 and sq,,41 are defined by s19 = s; and fi(s1m11) = f-(s_) respectively.

If f_(s—) < fi(s+), the solution is as described above but with z and f replaced by
—z and —f respectively. If f is not monotone in s, the solution is more complicated,
see (Holden & Hgegh-Krohn 1990).

If f is independent of x, s(z,t) is monotone in z for a fixed ¢. But when f depends
on z, then s(z,t) is not necessarily monotone since we may have sy ,,11 > s_. The
function f(s(z,t),z) is however monotone decreasing since f is monotone in s, and
where s(z,t) may increase f(s(z,t),z) is constant since fi(S1m+1) = f-(s-).

If there are several x-intervals, the solution is found by the following construction:

Follow all the shocks from the initial discontinuity in the saturation. FEach time
two shocks collide or a shock collide with a x-discontinuity in the flux function, solve
the Riemann problem as above.

A solution may be as shown in Figure 5. This approach was used in (Holden &
Holden 1992).

In the first proposition we will need the following definitions:
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FIGURE 5. A typical solution is piecewise constant in the x-t plane.

The spatial average of f(s, ) for 0 < z < #, f(s) is defined by

(1) Define g,(y,x) as the s inverse of f by g1(f(s,r),x) =5.

(2) Define g2(y) as the spatial average of g1(y,x) by g2(y) = M.

(3) Define f(s) as the inverse of ga(y) by f(g2(y)) = y.
f. is defined similarly from the concave envelope f, of f.

Property A relative to the interval (c1, co) is defined as:

There is a constant d such that f.(s,x) = f(s,z) for f(s,z) > d and f.(s,z) > f(s,z)
for f(s,z) < d where f, is the concave envelope of f relative to the constants ¢; and
Cy.

In the flooding problem property A implies that the flux function has the same
value behind the shock for all the z-intervals. Property A is satisfied if f is concave
by d = f(c1, ) for all x > 0 and if f is convex by d = f(co,x) for all z > 0.

We may then state the following proposition for a typical water flooding situation :

Proposition 1

Assume the fluz function f(s,x) is piecewise constant in x and continuous, in-
creasing and piecewise linear in s.

Then the solution s(z,t) of

5t+f(87x)z:0
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for x > 0 with the boundary condition f(s(x,0),z) = ¢ for z >0 and f(s(0,t),0) =
co > c1 salisfies the following:
(1) s(z,t) is piecewise constant,
(2) f(s(z,t),x) is piecewise constant in (z,t) and decreasing in x for fized t > 0,
(3) for each fized value of x, T > 0, there exists a function h(s) satisfying

f(s) < h(s) < fe(s)
such that the value of the flux for the solution of
st + f(svx)x =0

and
St + h(S) r = 0
are identical for x = Z. If f(s,x) satisfies property A, then h.(s) = f.(s).

It is trivial to prove that there exists an effective flux function A(s). The main result
is that the flux function is bounded by f(s) and f.(s). If property A is satisfied, the
effective flux function is equal to f(s). If property A is not satisfied, the effective flux
function depends on f(s,z) in each x intervall. The function A(s) is not uniquely
defined since only the concave envelope of h(s) defines the solution. The concave
envelope of h(s) is however uniquely defined or equivalent there is a unique concave
h(s).

The solution of the saturation at x = Z, s(Z,t) is found from the flux function

f(s, 7).

Proof of proposition 1

The solution s(z,t) is found by the construction of a series of solutions of Riemann
problems as described in the beginning of this section. The same technique is used
in (Holden & Holden 1992).

It follows directly from this construction that s(z,t) and f(s(z,t),z) are piece-
wise constant and f(s(z,t),x) is decreasing in x for a fixed t value. f(s(z,t),z) is
continuous over the lines £ = x; except when a shock intersects the line x = z;.

It is left to show that the flux f(s(x,t),z) for a fixed = Z is the value of the flux
for the solution where f(s,z) is replaced by a function h(s). We may assume that
x = T is one of the discontinuity points of f(s, )

It follows from the construction that s(z,t) only takes the values s; ; where there is
a break point in f(s,z). Similarily, f(s(x,t),z) only takes the values f;. We assume
that there is a break point in f(s,z) for s = ¢; and for f(s,x) = ¢, in each z-interval.
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Denote the shock in f(s(z,t),z) from the value f; to f;_j for ff_k. k =1 except for
the case where there is a shock over an interval where f.(s,z) > f(s,z). _
The solution is most easily described by finding the velocity of each shock, fj -k,
Assume first that f satisfies property A. Then no shocks will collide or be split in
several smaller shocks. The velocity of a shock fj ~% in the interval z; ; < z < z; is
fi—Fi—k
Si,;—sz,jfk : B
Let s; = iy ®,=ts;; where @, = Z. Then f(s;) = f; . Let ¢;; be the time the
Jj % shock uses to pass interval (xi_1,2;). The average velocity of the f]j ~* shock in
(0,7) is:

Vi =

Wk = z — z = x =
3TN s TN Zit®icl T e @m0 =85 k)
Ez:l £ Zizl v 5 Zj:l - fi—fi—k

fi—fims Y RV (C) i (OY)
oy P s,
Yoy T (i msig—k)  SiTSik A

which is the speed if f(s,z) is replaced by f(s).

It is left to prove that also in the case that assumption A is not satisfied, it is
possible to replace f(s,z) by h(s) where f(s) < h(s) < f.(s). It is then necessary
to handle the situation of collision of shocks and that shocks split in several smaller
shocks. ' _ ' '

The shocks f/™* and fj__,f’ collide when their average velocities u/ ™" and ug-:ﬁ’
becomes equal. This is exactly the situation where the concave envelope of f(s) in
(8j ', 5;) becomes different from f(s). The solution of s; + f, = 0 changes character
from separate shocks ij ~* and fj:,fl to one single large shock ff ~¥ Therefore also
in this situation we get exact solution with h(s) = f(s) replacing f(s,z) as long as
shocks do not splitt.

In the more complicated situation where shocks split up it is necessary to define
h(s) from the solution s(z,t). If a shock ff ~*" splits up in two smaller shocks f]j ~* and

ff:,f ’, this may be handled as if the two shocks existed already, but were overlapping.
This would be the case if the flux function f(s, z) was replaced by its concave envelope
fe(s,z) in the intervals where the shocks were overlapping. Therefore it is possible
to replace f(s,z) with h(s) = f4(s) where fy(s) is defined by

fe(sij—wsi)(8,@) for o' <z <z and s such that shocks f]j*l,...,f]j:,fle
fa(s,x) = are overlapping in the interval 2’ < z < z"
f(s,x) else.

This covers the situation where there are both splittings and collisions. As stated
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earlier the effective flux function is not uniquely defined since only the concave en-
velope of the flux function defines the solution. The above definition makes h(s)
concave and as large as possible. Since f(s,z) < fa(s,z) < f.(s,z), we have that

F(s) < h(s) = fa(s) < fo(s). W

This proposition describes the solution s(x,t) when the spatial variability in the
flux function is removed and the flux function is replaced by an average flux function
h(s) which satisfies f(s) < h(s) < f.(s). The solution does not only depend on an
average of the flux function, but also for which x values the function f(.,z) takes the
different values. In the following section we will prove that if the variability in f(., z)
is random, it is possible to give a stronger result.

4. STOCHASTIC FLUX FUNCTION

Also in this section we will assume that the flux function is piecewise constant
in z and continuous and piecewise linear in s. In addition, it is assumed in this
section that the flux function f(s,z) is stochastic as a function of x i.e. that there
is a distribution for the function f(.,z). We will assume that this distribution is
independent of x and there are no spatial correlation. Then the stochastic func-
tions {f(s, zo), f(s,x1), f(s,22), ...} are identical distributed independent stochastic
functions. zg, x1, ..., are the endpoints of the intervals where f(s,z) is constant as a
function of x.

We may formulate the following proposition:

Proposition 2
Assume the flux function f(s,z) satisfies

(1) Piecewise constant in x and the intervals where it is constant, is of equal
length.

(2) Continuous, increasing and piecewise linear in s.

(3) In each x interval f(s,x) is a stochastic function of s and independent and
wdentical distributed for each x interval.

Let f,(s,x) satisfy the above requirements where n is the number of x interval where
fu(s,x) is constant in (0,%). The solution s,(z,t) of

St + fu(s,2); =0

for x > 0 with the boundary condition f(s(z,0),x) = c; for x >0 and f(s(0,%),0) =

1
¢y > ¢ satisfies the following: fn(sn(Z,t),T) — f(8(Z,t)) pointwise in t when n — 00
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with probability 1. 5(x,t) is the solution of

st + f(s)e = 0.
f(s) is defined from the distribution of f(-,x)

In this proposition we state that when the number of intervals n increases and
f(s,z) is independent and identical distributed in each x interval, f,(s,(z,t),Z) —

f(5(z,t)). The effective flux function A(s) is not uniquely defined since only the con-
cave envelope of the flux function defines the solution. It is however independent of z.

Proof of proposition 2
For a given function f,(s, ) we have from proposition 1 that h, .(s(Z,t)) = fu(s(Z,1),T)
and

Fu(8) < hu(s) < Fae(s).

It is obvious that lim, . f,(s) = f(s) with probability 1 from the law of large
numbers where f(s) is defined from the distribution of f(s,z). It is left to prove
that lim, 0 (fn.c(5) = hne(s)) = 0 i.e. that the effective flux function approaches the
spatial average flux function.

Assume that several neighboring shocks are not overlapping in the solution of
5(z,t). The expected velocity for these shocks are increasing with decreasing values
of s. Therefore, the probability for an overlap at x = T will vanish as n — oo. These
shocks may have a different velocity than the slope of f,(s) due to an overlap in some
(early) interval. But the difference in average velocity will vanish as n — oc.

Assume the contrary, that several shocks are overlapping in the solution §(z, t), i.e.
(fe(s,z) > f(s,z) for dy < f(s,7) < dy. By the law of large numbers there will only
be interaction for small values of x when n is large. Hence, it is possible to study a
sequence of shocks which overlap in the solution s isolated from other shocks. Part
of the time shocks which overlap in the solution of s, will be overlapping and part of
the time not overlapping in the solution of s, (z,t). These shocks split up in some of
the z intervals if f.(s,z) = f(s,z). But since the expected average velocity is larger
for larger values of s these shocks will for n sufficent large be overlapping arbitrary
close to z with probability 1. When the shocks join to one large shock, this shock will
have exactly the same velocity as the slope of fn(s) since the velocity only depends
on the values e; where h,(e;) = d; for i=1,2. The velocity with spatial variable flux
is therefore arbitrary close to the velocity when the flux function is f W
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5. GENERAL FLUX FUNCTION

In the previous sections we had very strong assumptions on the flux function,
piecewise constant in x and piecewise linear in s. It is possible to approximate a
more general flux function with functions satisfying these strong assumptions. In
this section we will prove similar theorems by approximating the flux function by
flux functions which satisfy the assumptions in the propositions in the previous sec-
tions.

Theorem 1
The solution s(x,t) of
5t+f(sax)w =0
for x > 0 with the boundary condition f(s(x,0),x) = ¢; for x >0 and f(s(0,t),0) =
co > ¢1 and f(s,x) piecewise continuous in & and continuous and increasing in s for
fized x satisfies the following:
(1) f(s(z,t),z) is decreasing in x for fizred t > 0,
(2) for a fizred T > 0, the flux of the solution is identical to the flux of the solution
of the equation
St + h(S)m =0
where h(s) satisfies
f(s) < h(s) < fels).
If [ satisfies property A, then

Proof of theorem 1
Define a sequence of flux functions f;(s, z) for i=1,2,... which satisfies:

(1) The assumptions in proposition 1.

(2) fi(s,2) = f(s,) and 2Legiasd > L) for fi(s, ) > c1.
This is f.ex. satisfied by letting f;(s, z) be the maximum function which satisfies re-
quirements above and which have breakpoints in (s, z) = (3;, 5) for integers n and m.
Let the influx boundary condition be an increasing sequence ¢; < f;(s(0,%),0) < ¢
while the initial condition is constant f;(s(x,0),z) = ¢; < co. Then the corresponding
solutions s;(x,t) are an increasing sequence for each fixed (z,t) since % increases
when ¢ increases.

Since the solutions are bounded by s such that f(s,z) = cg, the sequence s;(z, t)
will converge for each (z,t). Define s(z,t) = lim;_, s;(z, )
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First we prove that s(x,t) is a solution of the equation. Let ¢(z,t) be a continuous
differential function with bounded support in the interior of x > 0 and ¢ > 0. s;(x,t)
is a weak solution, i.e.

0= //(si,t + fiz(8i,2))pdrds = —//(siqﬁt + fi(8i, )by )dxds.

Since s(z,t) = lim; o S;i(2, 1),

//(5¢t + f(5,7) ¢ )drds = 0.

Therefore, s(x,t) is a solution of the equation.

Since f;(s(z,t),x) is decreasing in x for fixed t > 0 also f(s(z,t),z) is decreasing
in z for fixed t > 0.

The effective flux function h(s) may be defined as h(s) = lim; o hi(s). This
sequence converges since it is increasing and bounded. Obviously the inequalities

f(s) < h(s) < fe(s)
also holds in the limit and the solution is uniquely defined if assumption A is satisfied.

[ |
It is also possible to generalize proposition 2:

Theorem 2
Consider the solution s(z,t) of

St + fm(Sax) =0

for x > 0 with the boundary condition f(s(x,0),x) = ¢; for x >0 and f(s(0,t),0) =
¢y > ¢1 and where f(s,x) is piecewise constant in x, constant in interval of equal
length, continuous and increasing in s, f(0,2) = 0 and f(1,x2) = 1. Assume in
addition that f(s,x) is stochastic as a function of x and for each x interval f(s,z)
are independent and identical distributed. Then the solution s,(x,t) where n is the
number of x intervals in (0,7), satisfies fn(sn(%,t)) — f(3(Z,1)) pointwise in t with
probability 1 when n — co. §(x,t) is the solution of

si+ f(s, 1), = 0.

This theorem is proved similarly as the proof of theorem 1 using proposition 2.
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FIGURE 6. Five typical fractional flow curves and the averages f(s) and f.(s)
calculated from the distributions. Notice that f.(s) is almost equal to the concave
envelope of f(s). This implies that for this data set it is no practical importance
wether the average is taken before or after the concave envelope operation.

6. NUMERICAL EXAMPLE

The theorems in the previous section are illustrated by a numercial example. Let
the relative permeability functions be

B 0 S < Sew
krw(S) = { (S —S.)* S > Sew

0 S>1-5,,
km(s):{ (1—8,—5)° S<1-5,

and the fractional flow function be
krw(S)

15) =
ro(S) | krw(S)
Ho + Hw

where
Sew ~ Uniform(0,

(0

Sro ~ Uniform(0,

a ~ Uniform(1.5, 4)

B ~ Uniform(1.5, 4)

ey ~ Uniform(1,1.5)
o = 1.0

0.3)
0.3)

Y

Figure 1 and Figure 2 show typical relative permeability and fractional flow func-
tions from this distribution. Figure 6 shows five different relative permeability func-
tions from this distribution. In addition it is shown the spatial average flux function
f(s) and the spatial average of the convex envelopes, f.(s). Notice that f.(s) is al-
most equal to the concave envelope of f(s). This implies that for this data set it is no
practical importance wether the average is taken before or after the concave envelope
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FIGURE 7. The solution s(z,t) for a fixed value of ¢ with the effective flux func-
tion as the flux function.

operation. The size of the interval for the effective flux functions in theorem 1 is in
practise neglectable.

Figure 7 shows the solution s(z,t) for a fixed value of ¢ for the above problem with
the effective flux function as the flux function.

Notice that the endpoints of f(s) and f.(s) are both equal the arithmetic average
of the endpoints in each interval if ¢ is constant. This implies that the effective
endpoints are equal to the arithmetic average of the endpoints in each interval if ¢ is
constant. Therefore, we may expect that (f).(s) and f.(s) are almost equal for quite
general distributions.
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