A penalty scheme for solving American option problems

Bjørn Fredrik Nielsen, Ola Skavhaug, Aslak Tveito

University of Oslo and

The Norwegian Computing Center

<u>Outline</u>

- Options?
- American put, model problem.
- Penalty method.
- Numerical experiments.
- Multi-asset options.
- Conclusion.

Options?

- Option, a contract that gives the buyer the right (but no obligation) to buy (sell) an asset for a prescribed price at a prescribed expire date.
- European, American, Asian, Exotic, Barrier and Multi-asset options.
- European, exercise only permitted at expire.
- American, exercise permitted at <u>any</u> time during the life of the option.

Options?, continued ...

- No arbitrage, risk-free interest rate, continuous trading, etc.
- Black-Scholes equation

$$\frac{\partial P}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 P}{\partial S^2} + rS \frac{\partial P}{\partial S} - rP = 0.$$

- -P = P(S, t); risk-neutral price of the option.
- -S; underlying asset.
- -r; interest rate.
- $-\sigma$; volatility.
- European, fixed solution domain.
- American, moving boundary.

American put

- For $S > \bar{S}(t)$ and $0 \le t < T$ $\frac{\partial P}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 P}{\partial S^2} + rS \frac{\partial P}{\partial S} rP = 0.$
- For $0 \le S < \bar{S}(t)$ P(S,t) = E S.
- $\bar{S}(t)$; unknown moving boundary.

American put, continued ...

- E; Exercise price.
- No arbitrage, constraint

$$\underline{P(S,t) \ge \max(E-S,0)}.$$

- P, $\frac{\partial P}{\partial S}$ continuous.
- Final conditions (backwards in time!)

$$P(S,T) = \max(E - S, 0),$$

$$\bar{S}(T) = E.$$

Penalty method

• Recall the constraint

$$P(S, t) \ge \max(E - S, 0).$$

- Zvan, Forsyth and Vetzal (1998);
 - Discrete P gets close to the constraint.
 - Add a "LARGE" number to the discrete equations.
 - "Push" the appr. solution away from the constraint.
- Our approach; Add a continuous penalty term to the Black-Scholes equation.

• For $S \ge 0$ and $t \in [0, T)$

$$\begin{split} \frac{\partial P}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 P}{\partial S^2} + rS \frac{\partial P}{\partial S} - rP \\ + \frac{\epsilon C}{P + \epsilon - (E - S)} = 0. \end{split}$$

- $-C \ge rE$ positive constant.
- $-0 < \epsilon \ll 1$.
- Nonlinear PDE posed on a fixed domain.

The penalty term

$$\frac{\epsilon C}{P + \epsilon - (E - S)}$$

is

- of order ϵ if $P \gg (E S)$.
- $\bullet \approx C \geq rE \text{ as } P \to (E S).$

• Explicit scheme (backwards in time!);

$$\frac{P_{j}^{n} - P_{j}^{n-1}}{\Delta t} + \frac{1}{2}\sigma^{2}S_{j}^{2}\frac{P_{j+1}^{n} - 2P_{j}^{n} + P_{j-1}^{n}}{(\Delta S)^{2}} + rS_{j}\frac{P_{j+1}^{n} - P_{j}^{n}}{\Delta S} - rP_{j}^{n} + \frac{\epsilon C}{P_{j}^{n} + \epsilon - q_{j}} = 0.$$

• Theorem 1

For all $C \geq rE$,

$$P_i^n \ge \max(E - S_j, 0),$$

provided that

$$\Delta t \le \frac{(\Delta S)^2}{\sigma^2 S_{\infty}^2 + r S_{\infty}(\Delta S) + r (\Delta S)^2 + \frac{C}{\epsilon} (\Delta S)^2}.$$

• Fully-implicit (nonlinear equations);

$$\frac{P_j^n - P_j^{n-1}}{\Delta t} + \frac{1}{2}\sigma^2 S_j^2 \frac{P_{j-1}^{n-1} - 2P_j^{n-1} + P_{j+1}^{n-1}}{(\Delta S)^2} + rS_j \frac{P_{j+1}^{n-1} - P_j^{n-1}}{\Delta S} - rP_j^{n-1} + \frac{\epsilon C}{P_j^{n-1} + \epsilon - q_j} = 0.$$

• Theorem 2

For all $C \geq rE$,

$$P_j^n \ge \max(E - S_j, 0).$$

• No condition on Δt required!

• Semi-implicit (linear equations);

$$\frac{P_j^n - P_j^{n-1}}{\Delta t} + \frac{1}{2}\sigma^2 S_j^2 \frac{P_{j-1}^{n-1} - 2P_j^{n-1} + P_{j+1}^{n-1}}{(\Delta S)^2} + rS_j \frac{P_{j+1}^{n-1} - P_j^{n-1}}{\Delta S} - rP_j^{n-1} = -\frac{\epsilon C}{P_j^n + \epsilon - q_j}.$$

• Theorem 3

For all $C \geq rE$,

$$P_j^n \ge \max(E - S_j, 0),$$

provided that

$$\Delta t \leq \frac{\epsilon}{rE}$$
.

Numerical experiments

• Model parameters;

$$r = 0.1,$$

 $\sigma = 0.2,$
 $E = 1,$
 $T = 1.$

• Reference solution; Implicit Front-Fixing.

Numerical experiments, continued ...

• Explicit;

ϵ	L_1	L_2	L_{∞}	H_1	CPU-time
10^{-1}	$2.50\cdot 10^{-2}$	$2.61 \cdot 10^{-2}$	$4.23 \cdot 10^{-2}$	$1.00 \cdot 10^{-1}$	129.5s
10^{-2}	$5.04 \cdot 10^{-3}$	$6.31\cdot 10^{-3}$	$1.32 \cdot 10^{-2}$	$4.05 \cdot 10^{-2}$	129.5s
10^{-3}	$6.22 \cdot 10^{-4}$	$9.49 \cdot 10^{-4}$	$2.50\cdot 10^{-3}$	$1.10\cdot 10^{-2}$	129.6s
10^{-4}	$1.18 \cdot 10^{-4}$	$1.51 \cdot 10^{-4}$	$3.02 \cdot 10^{-4}$	$2.50 \cdot 10^{-3}$	130.2s

• Fully-implicit;

ϵ	L_1	L_2	L_{∞}	H_1	CPU-time
10^{-1}	$2.50\cdot 10^{-2}$	$2.61 \cdot 10^{-2}$	$4.23 \cdot 10^{-2}$	$1.00 \cdot 10^{-1}$	7.8s
10^{-2}	$5.03\cdot10^{-3}$	$6.30 \cdot 10^{-3}$	$1.32 \cdot 10^{-2}$	$4.05\cdot 10^{-2}$	7.8s
10^{-3}	$6.19 \cdot 10^{-4}$	$9.45 \cdot 10^{-4}$	$2.49 \cdot 10^{-3}$	$1.10 \cdot 10^{-2}$	7.8s
10^{-4}	$1.20 \cdot 10^{-4}$	$1.54 \cdot 10^{-4}$	$2.99 \cdot 10^{-4}$	$2.50 \cdot 10^{-3}$	8.4s

• Semi-implicit;

ϵ	L_1	L_2	L_{∞}	H_1	CPU-time
10^{-1}	$2.50\cdot 10^{-2}$	$2.61\cdot 10^{-2}$	$4.23 \cdot 10^{-2}$	$1.00 \cdot 10^{-1}$	2.8s
10^{-2}	$5.03\cdot10^{-3}$	$6.31\cdot 10^{-3}$	$1.32 \cdot 10^{-2}$	$4.05\cdot 10^{-2}$	2.8s
10^{-3}	$6.21 \cdot 10^{-4}$	$9.48 \cdot 10^{-4}$	$2.49 \cdot 10^{-3}$	$1.10 \cdot 10^{-2}$	2.8s
10^{-4}	$1.19 \cdot 10^{-4}$	$1.52 \cdot 10^{-4}$	$3.01 \cdot 10^{-4}$	$2.49 \cdot 10^{-3}$	2.8s

Multi-asset options

- Assets; S_1 , S_2 .
- Option price; $P = P(S_1, S_2, t)$.
- Black-Scholes equation

$$\frac{\partial P}{\partial t} + \frac{1}{2}\sigma_1^2 S_1^2 \frac{\partial^2 P}{\partial S_1^2} + \frac{1}{2}\sigma_2^2 S_2^2 \frac{\partial^2 P}{\partial S_2^2} + \rho\sigma_1\sigma_2 S_1 S_2 \frac{\partial^2 P}{\partial S_2 \partial S_1} + rS_1 \frac{\partial P}{\partial S_1} + rS_2 \frac{\partial P}{\partial S_2} - rP = 0.$$

• ρ ; correlation between the assets.

$\underline{\text{Multi-asset}}$ options, continued ...

• Payoff function at expire

$$\phi(S_1, S_2) = \max(E - (\alpha_1 S_1 + \alpha_1 S_1), 0).$$

• American options \rightarrow constraint

$$P(S_1, S_2, t) \ge \phi(S_1, S_2).$$

• Penalty term

$$\frac{\epsilon C}{P + \epsilon - (E - (\alpha_1 S_1 + \alpha_1 S_1))}.$$

• Analysis,

$$C \ge rE$$
.

Multi-asset options, continued ...

- We define explicit, fully-implicit and semi-implicit schemes.
- $\rho = 0$, i.e. independent assets, we prove that the constraint is fulfilled.
- $\rho \neq 0$, numerical experiments indicate that the constraint is satisfied.
- Fine meshes, the semi-implicit scheme is preferable.

Conclusion

- Both American single- and multi- asset options can be priced efficiently by penalty methods.
- Explicit scheme; easy to implement, inefficient.
- Fully-implicit scheme; "hard to implement", efficient.
- Semi-implicit; "easy to implement", efficient.