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Abstract— For a given ground cover class, there is no straight-
forward way of expressing the joint distribution of a set of
correlated radar images represented in amplitude or intensity.
In this article we propose a general transformation method that
permits incorporation of inter-image covariance while keeping
a good fit to the marginal distributions. The approach is here
studied for Gamma marginals, and the results of tests on a multi-
temporal series of ERS-1 multi-look images are presented.

I. INTRODUCTION

With the growing number and diversity of earth observation
satellites, the coverage of the earth in space, time and the
electromagnetic spectrum is increasing fast. This creates a
demand for image analysis methods that can handle multi-
sensor, multi-scale and multi-temporal data sets covering a
certain region. We have developed a new statistical model
for classification of such compound data sets [1], which is
currently being validated.

The observed pixel values of a given ground cover class
in multi-spectral optical images are well modeled by a multi-
variate Gaussian distribution, and the same model can be used
for the joint distribution of a set of overlapping multi-spectral
images. However, for detected radar images (amplitude or
intensity) neither marginal nor joint distributions are Gaussian.

Let us consider a set of radar images acquired over a given
area. The images will generally appear somewhat different,
e.g. because of:

• different acquisition geometry
• different acquisition dates (multi-temporal)
• different wavelengths (multi-frequency)
• different polarization combinations (polarimetric)

Despite the differences, the values of overlapping pixels in
the different images will in many cases be correlated. This
correlation can easily be taken into account for single-look
complex (SLC) images, where a multivariate complex Gaus-
sian distribution is well suited. However, for detected radar
images it is far more complicated to express a joint distribution
incorporating dependence between the images.

Assuming fully developed speckle [2] and ignoring spatial
correlations, the intensity Ī of a pixel in a multi-look radar
image is Gamma distributed
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)L
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R
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where x ≥ 0 is a realization of Ī , R = E[Ī] is the local radar
reflectivity, and L = R2/V ar[Ī] is the equivalent number of
independent looks (ENIL) of the image. If the radar reflectivity

of a given class has texture, it is frequently assumed to
be Gamma distributed as well, in which case the observed
intensities of the class are K distributed [3].

Some multivariate Gamma distributions are presented in [4].
However, there are restrictions on the dependence structure
that make these multivariate distributions unsuited for our
application.

In this paper we propose to use meta-Gaussian distributions
to model dependence between detected radar images. This
approach is very general and does not imply strong restrictions
on the dependence structure, as opposed to the multivariate
Gamma distributions in [4]. The meta-Gaussian approach can
be used to combine virtually any kind of marginal distributions
(e.g. Gaussian, Gamma and K distributions) into multivariate
distributions. It can therefore be a useful tool for joint analysis
of multi-temporal, multi-frequency and polarimetric radar data
represented in amplitude or intensity, and for combinations of
radar data and optical data.

II. META-GAUSSIAN DISTRIBUTION

The basic idea of meta-Gaussian distributions is to trans-
form the marginal values so that they become Gaussian,
measure the correlation on the Gaussian scale, and transform
them back again.

Let X = (X1, ...,XN ) be a stochastic vector with marginal
density gj for the jth component Xj of X. (In our setting
Xj is the value of a given pixel in image number j out of
N overlapping images.) Let furthermore Gj be the cumulative
distribution function corresponding to gj and Φ the cumulative
distribution function for the standard normal distribution.
General probability theory then says that

Yj = Φ−1(Gj(Xj)) (2)

is a standard normally distributed variable. The meta-Gaussian
approach is to model the dependence between the different
components of X through the dependence between the compo-
nents of Y = (Y1, ..., YN ). In particular, it is assumed that Y
is a multivariate Gaussian distributed vector with expectation
vector 0 and covariance matrix Σ. In order to keep each Yk

standard normal, we require the diagonal elements of Σ to be
equal to 1. Inverting (2), we obtain

Xj = G−1
j (Φ(Yj)). (3)

Further, by using standard results from probability theory on



transformations, the multivariate density of X is

f(x;γ) =|Σ|−1/2 exp{−1
2
y(x;γ)T (Σ−1 − I)y(x;γ)}

×
p∏

j=1

gj(xj ;γ) (4)

where γj are the parameters of the marginal distribution gj ,
y(x;γ) = (y1(x1;γ1), . . . , yN (xN ;γN ))T and yj(xj ;γj) =
G−1

j (Φ(xj);γj).
It should be noted that for Σ = I, the distribution reduces to

a product of independent marginals, making the interpretation
of Σ similar to the correlation matrix for multivariate Gaussian
distributions. No assumptions are here made about gj , except
that the inverse of the cumulative distribution Gj must exist.

In practice, gj will usually be chosen from a parametric
family of distributions. If all gj are Gaussian, the density (4)
reduces to a multivariate Gaussian distribution. If all gj are
lognormal, we obtain the ordinary multivariate lognormal
distribution. For gj being Gamma distributions, we obtain
a multivariate Gamma distribution. If some gj are Gaussian
and some are Gamma, a multivariate distribution combining
Gaussian marginals with Gamma marginals is obtained. Such
combinations permit joint analysis of optical and radar images.

In this article we concentrate on Gamma marginals and
multivariate Gamma distributions obtained through the meta-
Gaussian approach.

III. CLASSIFICATION

Using the framework introduced in the previous section, we
may for each class k ∈ {1, ...,K} define a multivariate density
fk(x) describing the distribution of a vector of observations
x from class k. Define zi to be the class of pixel i and xi

to be the observed values in pixel i. Neglecting contextual
dependence, the Bayes classification rule is

ẑi = argmax
k

{πkfk(x)} . (5)

Contextual classification methods can also be applied in the
ordinary way. Assume e.g. a Potts model

p(z) ∝ e
∑

i αzi
+β

∑
i∼j I(zi=zj)

where I(·) is the indicator function and i ∼ j means that i
and j are neighbors in a graph. Making the usual assumption
of conditional independence of observations given classes, the
posterior distribution for z is given by

p(z|x) ∝ p(z)
∏

i

fzi
(xi). (6)

Maximum a posteriori (MAP) estimates of z can be obtained
by global maximization of (6). Such a maximization is rec-
ognized as a difficult problem and therefore approximative
algorithms such as the iterative conditional modes (ICM) [5]
are usually applied. An efficient algorithm for obtaining global
maxima has been presented in [6].

TABLE I

GROUND TRUTH

Class label Class name Number of pixels Number of pixels
in training set in test set

1 forest 2559 11985
3 orchard 48 66
4 hard wheat 2985 8195
5 soft wheat 2264 5782
6 maize 2876 10598
7 sunflower 2384 5479
8 barley 141 161
9 oilseed rape 2749 7012
10 peas 623 1573
11 clover 488 793
14 prairie 722 1899
17 bare soil 1162 2993
20 road 404 923
21 water 537 1990
24 urban area 1581 4008

IV. ESTIMATION

In order to apply the classification rules discussed in the
previous section, the parameters involved needs to be esti-
mated. Based on a training set with known classes, maximum
likelihood (ML) estimation can in principle be performed.
Such estimates are, however, computationally costly to obtain,
mainly because of the constraints on the covariance matrix
Σ (all diagonal elements needs to be equal to one, and in
addition, the matrix needs to be positive definite). We have
therefore also considered a simpler approach, where Lj and
Rj , j = 1, . . . , N , first are estimated marginally based on data
from the corresponding component only. Estimates of Σ are
then obtained by maximizing the likelihood with the estimated
Lj and Rj inserted.

Based on theory on estimation functions [7], it can be shown
that the estimates obtained are asymptotically consistent and
normally distributed. The asymptotic variances for these esti-
mates will differ from the ML estimates, but in our experience
the efficiency loss is small.

V. RESULTS

The pixelwise Bayes classification rule (5) has been used
to examine whether the use of meta-Gaussian distributions
significantly improves the classification accuracy compared
to marginal Gamma distributions that are assumed to be
independent. It should be stressed that the focus is not on
achieving the highest possible classification accuracy, but on
revealing differences between the two approaches.

The data set considered here consists of a multi-temporal
series of 6 ERS-1 images of Bourges, France. The images were
acquired with monthly intervals during the summer season
1993, and 4-look amplitude images were generated from the
original SLC images. The training set consists of vectors of
amplitude observations from 21 523 pixels where the ground
truth (class label) is known. The test data set contains 63 457
pixels. Table I contains the name, label value and number of
pixels in training set and test set of each of the 15 classes.

The training set is used to estimate the parameters of the
models and to construct the classification rule. The test set is
used to find the probabilities of correct classification on the
basis of the classification rule.



TABLE II

CONFUSION MATRIX FOR IML METHOD

C \ Ĉ 1 3 4 5 6 7 8 9 10 11 14 17 20 21 24
1 0.472 0.128 0.007 0.003 0.021 0.058 0.034 0.067 0.021 0.075 0.030 0.063 0.002 0.002 0.018
3 0.076 0.394 0.015 0.061 0.061 0.030 0.045 0.030 0.106 0.045 0.106 0.000 0.030 0.000 0.000
4 0.006 0.050 0.431 0.265 0.002 0.001 0.048 0.002 0.017 0.019 0.109 0.002 0.042 0.005 0.002
5 0.007 0.048 0.249 0.384 0.003 0.001 0.048 0.004 0.017 0.023 0.106 0.002 0.095 0.010 0.003
6 0.130 0.088 0.018 0.005 0.184 0.053 0.052 0.102 0.048 0.100 0.033 0.111 0.004 0.001 0.072
7 0.080 0.069 0.011 0.005 0.028 0.334 0.043 0.057 0.120 0.158 0.019 0.048 0.002 0.001 0.023
8 0.062 0.087 0.056 0.037 0.000 0.012 0.447 0.050 0.012 0.075 0.118 0.012 0.019 0.012 0.000
9 0.070 0.055 0.009 0.009 0.042 0.036 0.099 0.428 0.080 0.083 0.051 0.023 0.007 0.003 0.004
10 0.010 0.051 0.009 0.010 0.006 0.116 0.025 0.074 0.528 0.076 0.053 0.022 0.013 0.000 0.005
11 0.076 0.098 0.050 0.019 0.015 0.086 0.097 0.103 0.086 0.295 0.058 0.009 0.003 0.001 0.004
14 0.007 0.096 0.091 0.197 0.001 0.006 0.064 0.028 0.046 0.023 0.351 0.005 0.077 0.008 0.000
17 0.158 0.098 0.014 0.007 0.058 0.065 0.038 0.079 0.069 0.073 0.054 0.241 0.007 0.002 0.038
20 0.017 0.039 0.015 0.135 0.003 0.010 0.026 0.011 0.016 0.014 0.131 0.008 0.556 0.013 0.005
21 0.002 0.004 0.005 0.020 0.000 0.001 0.005 0.003 0.001 0.001 0.008 0.000 0.121 0.828 0.003
24 0.278 0.059 0.008 0.008 0.015 0.044 0.024 0.023 0.012 0.039 0.030 0.034 0.005 0.004 0.415

TABLE III

CONFUSION MATRIX FOR MEF METHOD

C \ Ĉ 1 3 4 5 6 7 8 9 10 11 14 17 20 21 24
1 0.471 0.114 0.007 0.003 0.024 0.059 0.033 0.063 0.021 0.077 0.030 0.069 0.003 0.003 0.023
3 0.076 0.394 0.030 0.030 0.030 0.045 0.045 0.015 0.091 0.061 0.106 0.030 0.030 0.000 0.015
4 0.005 0.059 0.453 0.250 0.006 0.002 0.039 0.002 0.016 0.018 0.107 0.001 0.036 0.007 0.001
5 0.006 0.056 0.281 0.366 0.004 0.003 0.043 0.004 0.018 0.021 0.108 0.002 0.076 0.012 0.001
6 0.126 0.087 0.017 0.009 0.239 0.050 0.045 0.105 0.045 0.104 0.030 0.106 0.004 0.002 0.032
7 0.073 0.066 0.009 0.011 0.035 0.345 0.041 0.060 0.126 0.151 0.020 0.046 0.003 0.001 0.013
8 0.050 0.118 0.037 0.075 0.000 0.012 0.435 0.043 0.012 0.062 0.099 0.012 0.019 0.025 0.000
9 0.066 0.062 0.009 0.009 0.038 0.034 0.085 0.438 0.078 0.093 0.047 0.024 0.009 0.005 0.003
10 0.007 0.055 0.010 0.008 0.009 0.120 0.024 0.076 0.526 0.078 0.051 0.022 0.013 0.001 0.003
11 0.082 0.087 0.043 0.030 0.014 0.076 0.088 0.105 0.091 0.310 0.057 0.008 0.006 0.000 0.004
14 0.008 0.113 0.092 0.162 0.002 0.007 0.060 0.028 0.044 0.025 0.345 0.005 0.099 0.008 0.001
17 0.141 0.100 0.014 0.012 0.061 0.059 0.033 0.083 0.073 0.077 0.049 0.273 0.006 0.002 0.016
20 0.020 0.054 0.016 0.150 0.002 0.010 0.027 0.011 0.023 0.012 0.113 0.009 0.531 0.013 0.011
21 0.003 0.012 0.007 0.022 0.000 0.000 0.003 0.002 0.002 0.001 0.007 0.000 0.096 0.841 0.008
24 0.283 0.052 0.009 0.007 0.015 0.049 0.022 0.022 0.014 0.044 0.032 0.041 0.007 0.005 0.396

We compare two approaches. One consists in assuming that
all components are independent with Gamma marginals. ML
is used to estimate the parameters involved in this case. We
will denote this method by independent maximum likelihood
(IML). The other approach is the meta-Gaussian with Gamma
marginals. For this model, both ML estimation and the use
of estimation functions are considered. These methods are
denoted by MML and MEF, respectively.

For both models, the marginal distributions (1) are described
by parameters γj = (Lj , Rj). For the meta-Gaussian model,
the dependence is described through the correlation matrices
Σ on the Gaussian scale (one for each class).

The overall portion of correctly classified pixels in the test
set for the three methods were 0.387 (IML), 0.400 (MML)
and 0.397 (MEF), i.e., the differences are very small. Tables II
(IML) and III (MEF) shows the confusion matrices. The results
for MML were similar to those of MEF. We would expect that
high correlations within a class would give less confusion with
other classes when taking the covariances into account (MEF)
than when assuming independence (IML). This is mostly the
case, but there are exceptions.

To further investigate the impact of the magnitude of the
inter-image correlation, we performed classification into a
reduced number of classes, corresponding to those having
the strongest correlation between components, which were the
ones with labels 6, 8, 17, 20, and 24. In this case, the overall
portion of correctly classified pixels for the three classification
rules were 0.411 (IML), 0.475 (MEF), and 0.458 (MML),
i.e., a significant improvement is obtained by incorporating
covariance through meta-Gaussian distributions.

VI. CONCLUSION

We propose a general transformation method that permits
incorporation of inter-image covariance while keeping a good
fit to the non-Gaussian marginal distributions of radar images.

Tests on a multi-temporal series of 4-look ERS-1 images
indicate that the advantage of taking inter-image covariance
into account increases with its strength. The proposed method
should therefore be tested on data sets with stronger inter-
image covariance. Partially polarimetric and multi-frequency
radar images are of particular interest.

Using a contextual classification rule such as (6), rather
than the pixelwise classification rule (5) used here, would give
much higher classification accuracy.
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