

Mapping road traffic conditions using high resolution satellite images

NOBIM June 5-6 2008 in Trondheim

Siri Øyen Larsen, Jostein Amlien, Line Eikvil, Ragnar Bang Huseby, Hans Koren, and Rune Solberg, Norwegian Computing Center

Collaborators:

Norwegian Public Roads Administration (Statens Vegvesen)
Norwegian Space Centre (Norsk Romsenter)

Outline

- Background
- ► Algorithm
 - Masks
 - Segmentation
 - Shadow prediction
 - Feature extraction
 - Classification
- ▶ Results
- ▶ Conclusion

Background

- Road network maintenance and development
- Annual Day Traffic (ADT)
 - statistical tools developed by NR
- ▶ Today: induction loops in the road
 - expensive
 - limited geographical coverage
- ► In the future: automated counts using high resolution satellite images ?

Masks

- Road mask
 - manual delineation
 - automatic generation
 - buffer mask from midline vectors
 - rectification (manually selected reference points)
- Vegetation mask
 - roadside tree canopy and vegetation between lanes
 - NDVI + Otsu

Segmentation

Image histogram of masked panchromatic image

Segmentation

- Segmentation of dark segments:
 - strict threshold: Otsu [Imin , μ σ]
 - loose threshold: Otsu [Imin , μ 0.5 σ]
- Segmentation of bright segments:
 - loose threshold: Otsu [μ + σ , Imax]
 - strict threshold: μ + 3σ

Segmentation

Segmentation thresholds

Segmentation examples

Vehicle shadows

Prediction of vehicle shadows

- ▶ A dark segment that
 - overlaps the expected shadow zone of a bright segment
 - 2) is close in distance to the bright segment
 - is considered to be a vehicle shadow
- ▶ To predict this we need
 - a segmented image containing dark segments
 - a segmented image containing bright segments
 - a distance map to bright objects
 - a structure element representing the expected shadow zone

Sun azimuth relative to image **Direction of shadow**

Sun elevation Length of shadow

Dilate bright segments with expected shadow zone

Subtract bright segments

Predicting shadows 2

dark segments

distance to bright segments

expected shadow zones

For each dark segment:

if distance to bright segment is small & it overlaps an expected shadow zone vehicles

otherwise

shadows

Classification

- Maximum likelihood
 - multivariate Gaussian distribution
 - general class covariance matrices

- Six classes:
 - Bright car
 - Dark car
 - Bright truck
 - Bright vehicle fragment
 - Vehicle shadow
 - Road mark arrow

Region features

Preclassification	Main classification	Post classification		
Rule based	Maximum likelihood	Rule based		
►Area	►Intensity mean	► Distance to		
►Elongation	►Gradient mean (Sobel)	nearest shadow		
	►Intensity standard deviation			
	► Length of bounding box			
	►1st Hu moment	A small bright segment close to a shadow is		
	Spatial spread ($\frac{\mu_{20} + \mu_{02}}{\mu_{00}^2}$)	more likely a vehicle fragment (as opposed to a road mark)		
		,		

Illustration of features

Classification results

- Classification rate: 70,6%
- Classification rate not including reject segments: 88,7%
- ► Two-class (car/no car) classification rate: 81,0%

Given label True label	Bright vehicle	Dark vehicle	Vehicle shadow	Road mark	SUM
Bright vehicle	96	0	0	11	107
Dark vehicle	0	59	7	0	66
Vehicle shadow	0	10	62	0	72
Road marking	0	0	0	2	2
Reject	11	20	22	10	63
SUM	107	89	91	23	310

Validation

- Counts from road stations:
 - # of cars passing per hour
 - average speed
 - extract sub image that cover a road segment in the vicinity of the station
 - estimate # of vehicles that "should" appear in the image
 (based on # of vehicles per hour + speed + length of road)
- Manual counts:
 - two persons have independently counted vehicles in the images
- Automatic counts in image:
 - using the described methods

Validation results

Location	Length of road segment (m)	Time of image acquisition (UTC)	Manual count in image	vehicles in image (from in- road counts 10-	Predicted # of vehicles in image (from in- road counts 11- 12 UTC)	Number of objects classified as vehicles
Sennalandet	19 718	10:35	12	10	9	-
Kristiansund # 1	1 055	10:56	22	25	25	17
Kristiansund # 2	5 775	10:56	32	27	28	22
Østerdalen north	31 779	10:39	44	51	40	80
Eiker	7 836	10:42	57	57	67	39
Sollihøgda #1	7 819	10:32	63	58	61	64
Sollihøgda # 2	6 139	10:32	30	38	41	26

Challenges

Different lighting conditions

The hypothesis about the image histogram does

not hold anymore

Challenges

Reject segments

- ► Heteregeneous group of segments that do not belong to any of the classes, e.g.:
 - tree shadows
 - other types of road marks
 - part of bridges, signs, roundabouts, etc.

Conclusion

- ► The majority of vehicles that are correctly segmented are also correctly classified
- The segmentation routine should be improved in order to find even vehicles with low contrast
- Additional features and context based information should be examined in order to reject non-vehicle segments

The SatTrafikk project

- Started in 2006 with the ESA (European Space Agency) project Road Traffic Snapshot, Institute of Transport Economics (Transportøkonomisk Institutt) also involved
- SatTrafikk: 2007 ?
- Main utility: estimate Annual Day Traffic,
 - used by Norwegian Public Roads Administration, especially useful for (country side) high ways where inroad
 - counts are expensive
- Software developed by NR
- ► Funding: Norwegian Space Centre

Thank you for the attention!

