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1 Introduction

The study of the dependence of financial assets is the key ingredient in a better under-
standing of the complex mechanisms underlying financial dynamics. Also, capturing the
proper dependence between financial assets allows for diversification benefits. Indeed,
it can be argued that the study of dependence is at the core of finance. There is a vast
literature, recent and more classical, presenting methods to estimate dependence and to
model dependent behaviours (Embrechts et al., 1999, 2002; Longin and Solnik, 2001). The
simplest way to describe the dependence of a set of financial assets is their correlation
matrix. This captures the linear component of pairwise dependence and is a basic ele-
ment generally in multivariate statistics (Mardia et al., 1979), and more specifically in
multivariate financial time series modelling, for classical methods like the Capital Asset
Pricing Model (CAPM) and Markowitz portfolio theory, and more recent applications
(Dimakos and Aas, 2004).

A correlation matrix is required to be a symmetric positive semidefinite matrix with
unit elements on its diagonal. We refer to such matrices as proper correlation matrices.
Estimation of a correlation matrix is based on observed time series of the n assets,
(Z1,t, Z2,t, . . . , Zn,t), for t = 1, 2, ..., T , under appropriate stationarity assumptions. It is
easy to obtain empirical proper correlation matrices with the necessary non-negative ei-
genvalues.

There are at least two common situations were the construction of a proper correlation
matrix is difficult. This is the case when not all assets are observed in the same time points
(Higham, 2002). For example, the first two assets (Z1,t, Z2,t) are available every day t,
while a third asset (Z3,t) is sampled only weekly. Here the three pairwise correlations
do not necessarily compose a proper correlation matrix. More generally, when sample
correlation matrices are constructed from historical data, but data are not available for
every time point for all variables of interest, the matrix with such pairwise correlations is
easily improper. A second situation which leads to improper correlation matrices is when
some assets are not observed at all, but an expert opinion is obtained on its correlation
with the other assets. Relevant credit or operational loss data might for example be hard
to obtain. In this case, expert opinions have to be called upon (Dimakos and Aas, 2004;
Medova, 2000).

Once an improper correlation matrix is obtained, symmetric with unit elements on
its diagonal, but not positive semidefinite matrix, it has to be transformed into a proper
correlation matrix in order to proceed with the analysis. The objective is then to find a
proper matrix, which is as close as possible to the illegal one. An important observation
is that this legalised matrix can be very different from the original one, even if only few
elements of the improper matrix originate from unmatched time series. In this paper we
propose two new methods, which rectify the illegal matrix and deliver a proper (actually
a positive-definite) correlation matrix, allowing to control the perturbation of each entry.

The methods proposed in the literature (Grubišić and Pietersz, 2007; Higham, 2002;
Pietersz and Groenen, 2004) measure the distance between matrices by means of the
Frobenius norm. Let us denote by C the improper correlation matrix. The problem is

Rehabilitation of improper correlation matrices 5



to find the proper correlation matrix M which minimises the Frobenius norm of the dif-
ference

||M −C||2F =
n∑
i=1

n∑
j=1

|mij − cij |2. (1)

An extension is given by the weighted Frobenius norm (Pietersz and Groenen, 2004),

||M −C||2W = ||W 1/2(M −C)W 1/2||2F (2)

where W is a given, fixed, symmetric positive definite weight matrix. The optimal M
matrix, according to either criteria, is found by numerical minimisation.

While the un-weighted Frobenius norm does not allow control of how the entries
of the improper matrix are perturbed, so does the weighted version, through the weight
matrixW , assigned by the user. If a weightwij is high for the correlation between the two
assets i and j, then the correlation distance (1) for this correlation, if possible, is lower at
the expense of other correlations with a lower weight. BecauseW must be a positive def-
inite matrix, there is no complete liberty in choosing weights. This is indeed a significant
problem in practice. In general, how confidence in the elements ofC is expressed through
the weight matrixW is not intuitive for the user. Furthermore, the norm (2) is symmetric
around C, while for more extreme correlations (close to -1 or 1), it is more natural to use
a non-symmetric distribution.

Our approach assumes that confidence in every pairwise correlation of the improper
matrix is described by a distribution with mean in the current value. We propose to use
the beta distribution, scaled to [−1,+1], which is sufficiently flexible, though easy to util-
ise in practice. In this way we express the problem by means of a probability density,
where the unknown parameters, here the elements of the proper correlation matrix, each
follow a beta distribution. We propose an algorithm that maximises the product of such
beta densities within the set of proper (actually positive definite) correlation matrices.
This is generally different from minimising (2), which can be seen as a special case.

It is important to reveal how the entries of the optimal proper matrix differ from
the corresponding elements in the original improper matrix. We present new ways of
visualising what we call transformation hotspots, that is positions where the correlation
has been adjusted significantly. This allows a detailed monitoring of the effects of the
procedure.

Our second approach makes use of the actual time series, from which the improper
correlation matrix originate. We combine the historic data with additional expert opin-
ions using a Bayesian approach. We consider the coefficients of the observed, invalid
correlation matrix C as realisations of random variables centred at the coefficients of a
proper correlation matrix Θ, on which we have prior opinions. Inference relies on Markov
chain Monte Carlo in this case, and is therefore more time demanding. Hence we do not
present results for this second approach, which should be regarded as a proof of concept,
which can be fully implemented as sketched in this paper. For the first method, inference
is much more rapid, as it is based on a numerical algorithm, and we show results for
this situation only. Our approach provides a tool for analysts and practitioners. It is easy
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to use, able to handle coherently both stringent and vague knowledge and expectations,
and is ready to be inserted into the pipeline of risk analysis and decision making.

This paper proceeds as follows. In Section 2, we present the likelihood based ap-
proach, using beta densities. We describe the Bayesian approach, combining data and
expert opinions, in Section 3. The algorithms are described in Section 4. We illustrate the
use of the first method on an example for a Norwegian life insurance company in Section
5. Finally, we conclude in Section 6.

2 Beta correlation matrices

In this section we introduce a stochastic model for correlation matrices. The model is
used as a tool for describing the willingness to relax from a current improper pairwise
correlation matrix. It is based on the univariate beta distribution.

Let us denote by C the improper matrix containing the available, but incoherent,
correlation values. This includes pairwise correlations estimated on data and possibly
additional assets, whose correlation were elicited by experts. We build a probability dis-
tribution for correlation matrices which is centred in C, with a spread around C, given
by the user to express his willingness to perturb individual entries inC. This probability
model is then used to determine a proper correlation matrix close to C.

A naive probability distribution for a symmetric matrix with elements in [−1,+1], as
correlations are, is obtained by assuming that each upper triangular entry of the mat-
rix is a realisation from a univariate distribution within [−1,+1]. One choice for such
a distribution is the translated and scaled beta distribution. If we generate each upper
triangular entry in this way, we obviously can also generate illegal correlation matrices.
Hence we shall restrict the support of the distribution on symmetric and non-negative
definite matrices with unit diagonal and elements in [−1,+1].

Let Yij be a random variable with values in [−1, 1], representing a random correlation
between two variables, for i = 1, . . . , n and j = i+ 1, . . . , n. A symmetric matrix contain-
ing correlations is uniquely determined by these Yij ’s. We call this matrix Y . The probab-
ility distribution f(Y ) ofY is given as the product over all i = 1, . . . , n and j = i+1, . . . , n
of the individual beta densities

f(yij ; cij , aij , bij) =
Γ(aij + bij)
Γ(aij)Γ(bij)

(1 + yij)aij−1(1− yij)bij−1

2aij+bij−1
. (3)

We shall centre Y around C by requiring that E(Yij) = cij , which implies that the two
parameters aij and bij are such that

aij − bij
aij + bij

= cij .

The spread around this centre is given by

Var(Yij) =
4aijbij

(aij + bij)2(aij + bij + 1)
.
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This value describes the willingness to relax this specific entry to accommodate for pos-
itive definiteness, or in other words, the analyst’s faith in the initial value cij .

Note that Y has C as its mean, as specified by the user, but C could also have been
Y ’s mode. That would give a different solution to problem, but would probably not be
easier for the user.

The matrix Y is symmetric and positive definite if and only if there exists a unique
lower triangular matrix X , with positive diagonal entries, such that Y = XX ′. This
defines an invertible transform g(Y ) = X . We can then transform the beta based density
on Y to obtain the density forX , applying the density transformation rules. We get

f(X) ∝
n∏
i=1

n∏
j=i+1

f(xix′j ; cij , aij , bij) |J(Y →X)|

where xi denotes the i-th row ofX , J(Y →X) is the Jacobian of the transformation and
the Euclidean norm ||xi||2 is 1 for all i’s. This last requirement ensures that the diagonal
elements of Y are 1 and also, by Schwarz inequality, that the off diagonal elements have
modulus less than one. Observe that we only obtain the density up to a proportionality
constant, because the transformation restricts the space to positive definite matrices, so
that the normalising constant is different. The Jacobian can be computed as

J(Y →X) = 2n
n∏
i=1

xn−i+1
ii ,

see (Gupta and Nagar, 1991, pp. 14).
The equations for the values of the parameters (aij , bij) take a simple form. Omitting

the indexes ij for the moment, if µ and σ2 are the mean and the variance of a standard
beta random variable V , with parameters a and b, then simple algebra leads to

a =µ
[
µ(1− µ)

σ2
− 1
]

b =(1− µ)
[
µ(1− µ)

σ2
− 1
]
,

with the constraint σ2 < µ(1 − µ) to assure existence. The random correlation Y is ob-
tained as Y = 2V − 1. Requiring it to have mean c and variance σ2

Y , we use the above
equations with µ = (c + 1)/2 and σ2 = σ2

Y /4 to find (a, b). The constraint in the trans-
formed space is now σ2

Y < (c+ 1)(1− c).
In practice, for ease of interpretation, we will restrict both a and b to be larger than one,

for example at least 1+εwith some small ε > 0, so that the transformed beta distributions
are always bell-shaped with their mode in the interval (−1, 1). We will allow the user to
specify an interval c ±∆ where he thinks c belongs to with high probability, say such as
99.73% as in the Gaussian case (Z ∼ N (0, σ2) ⇒ P (−3σ < Z < 3σ) ≈ 0.9973). We fix σ2

through the equation 3σY = ∆, that is, σ2 = (∆/6)2, in such a way that the constraints
a > 1 + ε and b > 1 + ε are met. This gives

σ2 = min

{(
∆
6

)2

,
µ2(1− µ)

(1 + ε+ µ)
,
µ(1− µ)2

(2 + ε− µ)

}
.
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It is easy to check that the above value of σ2 is always admissible. Since we do this for
every individual element ofY , we obtain a set of variances σ2

Y,ij , by which we can express
the willingness to change the value of the correlation indexed by ij from its current value
cij , for each pair i, j.

The mode of f(X), now specified up to a constant of proportionality, is a good can-
didate (when it exists) for a proper approximation ofC. Passing to the logarithm of f(X),
the task is to maximise

log f(X) =
n∑
i=1

n∑
j=i+1

[
(bij − 1) log(1− xix′j) + (aij − 1) log(1 + xix′j)

]
+

n∑
i=1

(n− i+ 1) log(xii)

(4)

subject to ||xi||2 = 1 and xii > 0 for all i’s. There is no simple solution to this maximisa-
tion problem, and in Section 4 we describe a method for optimisation based on available
computing libraries.

Let X̃ be a local maximum of f , giving the proper and non-singular correlation matrix
C̃ = X̃X̃

′
. Clearly, C̃ is a proper matrix that resembles the original improper C. How

strong this similarity is, and which of the entries have relaxed the most, depends on the
user’s choice of the set of variances σ2

ij . Indeed a very stringent choice can make the
solution impossible, or very hard. In general, there are many ways to accommodate an
improper matrix, even if the elements causing problems are just a few: X̃ can have many
elements which have changed.

An important question is how much C̃ differs fromC and where. While previous ap-
proaches focused on Euclidean-type metrics such as the Frobenius norm (Higham, 2002;
Pietersz and Groenen, 2004; Rebonato and Jäckel, 1999), our probabilistic formulation
induces a metric which is quite different. Two matrices X1, X2 can have the same Euc-
lidean distance but very different probabilistic distances, as measured by f(X1)−f(X2),
depending on the position within the support of the distribution. Our proposal is to
identify hotspots in X̃ , that is positions ij in the correlation matrix where c̃ij differs most
from cij : these would represent the correlations mostly affected by the rehabilitation pro-
cedure. To decide whether a given location ij is a hotspot, we calculate the following
quantity

hij =


P
(
Yij∈(c̃ij ,cij)

)
P (Yij≤cij) if c̃ij ≤ cij

P
(
Yij∈(cij ,c̃ij)

)
P (Yij>cij) if c̃ij > cij

(5)

where Yij = 2Vij − 1, with Vij ∼ beta(aij , bij). We can interpret hij as a (standardised)
measure of how far c̃ij is out in the tail of the distribution of Yij .

Another related hotspot classification method is that of considering, for every entry
in the correlation matrix, a set of intervals (q(α/2), q(1−α/2)), based on the quantiles of the
relevant beta distribution, as α takes different values, such as 0.10, 0.25, 0.50, 0.75. Then a
location ij would be coded 0 if c̃ij belongs to the innermost interval, and correspondingly,
from 1 up to 4. Code 4 is given if it does not belong to any interval, hence out in the tail,
and the location is classified as a hotspot.
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3 Sketching a Bayesian approach

In the previous section we assumed that an improper correlation matrix was available
along with expert opinions on the reliability of each entry, expressed with the help of
beta densities. In this section, we consider a different situation: we assume that each
entry of the illegal correlation matrix comes along with an inherent measure of precision,
obtained, for example, directly from the same data that gave origin to the point estim-
ate of the correlation. In addition, we assume that expert opinions are elicited on their
strength of belief in each entry, and we assume that expert opinions are not based on the
same data. We combine the two sources of information following a Bayesian approach,
considering the coefficients of the observed improper correlation matrix C as realisa-
tions of random variables centred at the coefficients of an unknown, “true”, symmetric
positive-definite matrix Θ. On this latent matrix Θ, we have obtained prior opinions.
Symmetry and positive-definiteness are ensured by considering the Cholesky decom-
position Θ = LL′; the posterior distribution of the coefficients of L is then used to obtain
Bayes estimators of the coefficient of a proper correlation matrix C̃, which acts as an
estimate for Θ.

We assume that an empirical correlation cij , i 6= j, is observed along with a measure
of its spread given by upper and lower bounds, bij and aij , representing for example
the 95% confidence interval of the ij correlation obtained from data analysis. We use
triangular distributions cij ∼ T r(θij , aij , bij), defined on [aij , bij ] and with mode at θij , so
that the density is given by

f(cij |θij , aij , bij) =

{
2

bij−aij

cij−aij

θij−aij
cij ≤ θij

2
bij−aij

cij−bij
θij−bij cij > θij .

(6)

Other likelihood models for cij are possible, e.g. transformed beta distributions, but
we found triangular distributions flexible and mathematically easy to treat.

Next, we choose a prior model for the unknown parameters θij , i 6= j; note that θii =
1, i = 1, . . . , n. We will explore various possible choices of priors. We assume first that the
θij ’s are independently beta distributed on the interval [−1, 1], with densities given as in
(3), but now for θij :

π(θij |αij , βij) =
Γ(αij + βij)
Γ(αij)Γ(βij)

(1 + θij)αij−1(1− θij)βij−1

2αij+βij−1
. (7)

Denoting by θ the vector with components θij , 1 ≤ j ≤ i ≤ n (and analogously for
other matrix elements, e.g. c), we combine (7) for all θij to obtain the joint prior density

π(θ|a, b) ∝
∏

1≤j≤i≤n

{
(1 + θij)αij−1(1− θij)βij−1

}
. (8)

The matrix Θ = {θij}1≤i,j≤n, with off-diagonal entries drawn from (8), is symmetric
since we take θji = θij for all pairs (i, j), but its values, even when drawn from the
corresponding posterior distribution, are not leading, in general, to a positive definite
matrix. Therefore we should restrict ourselves to θij ’s such that Θ ∈ SΘ, the space of
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all symmetric positive-definite matrices, with coefficients within [−1, 1]. In this way, we
would give up the independence property of all θij and, even worse, we would impose
very complex bounds on θij and simulation from the posterior distribution would be a
very burdensome task.

To restrict the prior measure to just symmetric positive-definite matrices, we recall
that all positive definite matrices can be expressed by the Cholesky decomposition as
Θ = LL′, with L being a lower triangular matrix with positive diagonal entries. Denote
its elements by lij . The relation between the coefficients θij , i ≥ j, of Θ and lij is given by

θij =
j∑

k=1

likljk.

We consider now the prior distribution on l. The expression of the Jacobian is

J(Θ→ L) = 2n
n∏
i=1

ln−i+1
ii (9)

(Gupta and Nagar, 1991, pp. 14).
Combining (8) and (9), we get the prior distribution

π(l|a, b) ∝
n∏
i=1

ln−i+1
ii

∏
1≤j≤i≤n

{
(1 +

j∑
k=1

likljk)αij−1(1−
j∑

k=1

likljk)βij−1

}
. (10)

Constraints on the elements ofL are needed to ensure that the positive definite matrix
is actually a correlation matrix. We need to impose that lij ’s are in L such that

L =

lij :
i∑

j=1

l2ij = 1, i = 1, . . . , n

 .

Because of Schwarz inequality, it turns out that lij ’s satisfy also−1 ≤
∑j

k=1 likljk ≤ 1, 1 ≤
j < i ≤ n.

We combine (6) and (10) by Bayes theorem to obtain the posterior distribution of l

π(l|c,a, b) ∝
n∏
i=1

ln−i+1
ii

∏
1≤j≤i≤n

{
(1 +

∑j
k=1 likljk)

αij−1

(
∑j

k=1 likljk − aij)
I{cij≤

Pj
k=1 likljk}

·
(1−

∑j
k=1 likljk)

βij−1

(bij −
∑j

k=1 likljk)
I{cij>

Pj
k=1 likljk}

}
I{L}.

(11)

where I{·} is the indicator function of a statement.
A point estimate L̂ can be obtained as the posterior mean of the posterior density

(11). The uncertainty around L̂ is well described by an appropriate credibility interval.
It is necessary to run an MCMC (Markov chain Monte Carlo) algorithm to obtain these
estimates, as described in Section 4.

We could have expressed the distributions of cij directly with the parameters lij ; in
this case the mode θij of the triangular density (6) would be replaced by∑j

k=1 likljk√∑i
k=1 l

2
ik

√∑j
k=1 l

2
jk

.
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However, while expert opinions on θij can be easily obtained, it is not realistic that experts
are confident to elicit priors on the lij ’s.

4 Algorithms

We describe the algorithms to obtain an estimated proper correlation matrix, for both our
approaches, as described in Section 2 and Section 3.

4.1 Beta correlation matrices
The constrained maximisation of log f(X) in equation (4) should be done over n(n +
1)/2 − 1 variables, that is, the lower triangle of X except for the entry x11, which takes
unit value. We can transform the problem in an equivalent one with simpler constraints
by dividing each row ofX by its norm:

Find the maximum of

log f̃(X) =
n∑
i=1

n∑
j=i+1

[
(bij − 1) log

(
1− xi
||xi||

x′j
||xj ||

)
+ (aij − 1) log

(
1 +

xi
||xi||

x′j
||xj ||

)]

+
n∑
i=1

(n− i+ 1) log
(

xii
||xi||

)
(12)

subject to x11 = 1 and xii > 0, i = 2, . . . , n.
Thus we operate on unnormalised row vectors and the new function f̃(X) does not

change its value as long as the row vectors of X do not change direction. If X∗ is a local
maximum of f̃ , then an admissible solution X̃ is obtained by normalising its rows and it
is a local maximum of f as well. Although it is quite involved, it is possible to write down
the gradient of log f̃ explicitly and to use the quasi-Newton optimisation method with
box constraints as in Byrd et al. (1995). The optimal legal and non singular correlation
matrix is then obtained as C̃ = X̃X̃

′
.

With regards to the initial value for the optimisation routine, we cannot use the out-
put of Rebonato and Jäckel (1999) or of Pietersz and Groenen (2004), because these may
produce numerically singular matrices and the unique Cholesky factorisation then does
not apply. Therefore we apply the following procedure:

1. calculate the spectral decomposition of C = SΛS′ with the eigenvalues in the diag-
onal matrix Λ sorted into descending order (λ1 ≥ λ2 ≥ · · · ≥ λn);

2. if i denotes the index of the last positive eigenvalue, then modify the eigenvalues
with index j = i + 1, . . . , n letting λj = λi/2(j−i) and denote by Λ0 the new matrix
with the modified eigenvalues;

3. set C0 = SΛ0S
′, which is now a non-singular and positive definite matrix;

4. apply the Cholesky factorisation to C0 = X0X
′
0 and use X0 to initialise the al-

gorithm.
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4.2 Bayesian approach
In order to obtain the posterior mean of (11), we need to implement a Metropolis-Hastings
algorithm, which samples from the posterior distribution of l. For example, the Gibbs
Sampler would be feasible, since all the conditional posterior densities are given up to a
proportionality constant. Since we have supposed that the lij ’s are in L, i.e. such that∑i

j=1 l
2
ij = 1, i = 1, . . . , n, we preserve this condition by updating the blocks l(i) =

{lij , j = 1, . . . , i}, i = 1, . . . , n. We need to specify the full conditional distributions
π(l(i)|c, l(−i)), where l(−i) = l \ {l(i)}.

For a given i, i = 1, . . . , n, the elements of the i-th row appear in both the priors and
in the likelihood in correspondence with either θit or θsi, with 1 ≤ t ≤ i and i < s ≤ n.
We define the set of such indices as Ai.

Therefore, we get

π(l(i)|c, l(−i)) ∝ ln−i+1
ii

∏
(s,t)∈Ai

{
(1 +

∑t
k=1 lskltk)

αst−1

(
∑t

k=1 lskltk − ast)I{cst≤
Pt

k=1 lskltk}
·

·
(1−

∑t
k=1 lskltk)

βst−1

(bst −
∑t

k=1 lskltk)
I{cst>

Pt
k=1 lskltk}

}
I{L}.

Once m samples {l(r)}mr=1 from the posterior distribution of l are obtained, after the
necessary burn-in which assures that approximate convergence has been reached, pos-
terior point estimators of the entries of Θ can be computed, thus forming C̃, which can
be used instead of the improper matrixC. We choose the estimator c̃ij that minimises the
posterior expected squared loss

E

(
j∑

k=1

likljk − c̃ij

)2

, (13)

under the posterior distribution of l. It is well known that the posterior mean

E

j∑
k=1

likljk

minimises (13) and, therefore, it is the Bayes optimal estimate of θij under the squared
loss function. For the (i, j) entry, this estimate can be approximated as

1
m

m∑
r=1

j∑
k=1

l
(r)
ik l

(r)
jk ,

by ergodicity of the MCMC. Each element

j∑
k=1

l
(r)
ik l

(r)
jk

in this sum is the (i, j) entry of a correlation matrix C̃
(r)

. Then, C̃ = 1
m

∑m
r=1 C̃

(r)
is still

a correlation matrix.
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1 0.77 0.32 0.06 −0.13 0.2 0.2 −0.05 0.14 −0.08 −0.04 0 −0.9

0.77 1 0.24 0.06 −0.02 0.2 0.2 −0.04 0.07 −0.13 −0.03 −0.02 −0.9

0.32 0.24 1 −0.16 0.02 0.25 −0.03 −0.11 0 0.01 0.04 −0.06 −0.9

0.06 0.06 −0.16 1 0.16 0.3 0.37 −0.28 −0.26 0.18 0.08 0.02 0

−0.13 −0.02 0.02 0.16 1 0.68 0.29 −0.54 −0.06 0.16 0 0.04 0

0.2 0.2 0.25 0.3 0.68 1 0.64 −0.85 −0.16 0.21 0.04 0.04 0

0.2 0.2 −0.03 0.37 0.29 0.64 1 −0.59 −0.23 0.14 0.1 −0.01 0

−0.05 −0.04 −0.11 −0.28 −0.54 −0.85 −0.59 1 0.06 −0.2 −0.05 0.02 0

0.14 0.07 0 −0.26 −0.06 −0.16 −0.23 0.06 1 0.27 −0.54 0.46 0

−0.08 −0.13 0.01 0.18 0.16 0.21 0.14 −0.2 0.27 1 −0.2 0.47 0

−0.04 −0.03 0.04 0.08 0 0.04 0.1 −0.05 −0.54 −0.2 1 −0.36 0

0 −0.02 −0.06 0.02 0.04 0.04 −0.01 0.02 0.46 0.47 −0.36 1 0

−0.9 −0.9 −0.9 0 0 0 0 0 0 0 0 0 1

Figure 1. Illegal correlation matrix C among major risk factors. The shades of red correspond to
a grid with step 0.4 over the interval [−1, 1]. See Table 1 for abbreviations.

5 Case study

Abbreviation Risk factor
NS Norwegian stocks
IS International stocks

RE Real estate
HF Hedge fund

NGB Norwegian government bonds
NB Norwegian bonds
IB International bonds

LB Long term bonds
USD USD/NOK
EUR EUR/NOK
JPY JPY/NOK

GBP GBP/NOK
CI Credit indicator

Table 1. Abbreviations for case study correlation matrix.

To illustrate the beta correlation method (Section 2), we provide an example based on
real data. The correlation matrix (Figure 1, Table 1 for abbreviations) contains major risk
factors for the assets of a Norwegian life insurance company; market risk (stocks, bonds,
hedge funds and real estate) and credit risk. Their stock and bond portfolio is exposed
to currency risk, and here the four most important currencies are included. Finally, the
company is exposed to credit risk (as recent events during 2008 have so clearly demon-
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0.77 1 0.04 0 0.01 −0.03 0 −0.01 −0.01 0.01 0 0 0.1

0.32 0.24 1 0 0.02 −0.04 0 −0.01 −0.01 0.01 0 0 0.21

0.06 0.06 −0.16 1 0 0 0 0 0 0 0 0 0.01

−0.13 −0.02 0.02 0.16 1 −0.01 0.01 −0.01 −0.01 0 0 0 0.03

0.2 0.2 0.25 0.3 0.68 1 0 0.01 0.01 −0.01 0 −0.01 −0.07

0.2 0.2 −0.03 0.37 0.29 0.64 1 −0.01 0 0 0 0 −0.01

−0.05 −0.04 −0.11 −0.28 −0.54 −0.85 −0.59 1 0.01 0 0 0 −0.02

0.14 0.07 0 −0.26 −0.06 −0.16 −0.23 0.06 1 0 0 0 −0.02

−0.08 −0.13 0.01 0.18 0.16 0.21 0.14 −0.2 0.27 1 0 0 0.02

−0.04 −0.03 0.04 0.08 0 0.04 0.1 −0.05 −0.54 −0.2 1 0 0

0 −0.02 −0.06 0.02 0.04 0.04 −0.01 0.02 0.46 0.47 −0.36 1 0.01

−0.9 −0.9 −0.9 0 0 0 0 0 0 0 0 0 1 CI
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0 1 1 0 0 1 0 0 0 0 0 0 3

0.35 0 1 0 0 1 0 0 0 0 0 0 3

0.38 0.46 0 0 0 1 0 0 0 0 0 0 4

0.04 0.05 0.04 0 0 0 0 0 0 0 0 0 0

0.2 0.14 0.22 0.04 0 0 0 0 0 0 0 0 1

0.36 0.35 0.45 0.02 0.18 0 0 0 0 0 0 0 2

0.04 0.03 0.02 0.04 0.07 0.03 0 0 0 0 0 0 0

0.11 0.13 0.15 0.03 0.17 0.08 0.11 0 0 0 0 0 1

0.15 0.12 0.14 0.02 0.07 0.14 0.01 0.09 0 0 0 0 1

0.07 0.09 0.1 0.01 0.06 0.08 0 0.06 0.01 0 0 0 0

0.01 0.01 0 0.01 0.01 0.03 0.01 0.02 0.04 0.03 0 0 0

0.04 0.04 0.04 0 0.03 0.07 0 0.06 0.02 0.05 0.04 0 0

0.79 0.81 0.97 0.08 0.39 0.72 0.1 0.25 0.28 0.23 0.04 0.11 0

(a) Left panel: C in lower triangle and diagonal; C̃ −C in upper triangle. Right panel: hotspots with normal-
ised tail probabilities (lower triangle) and hotspots with quantile intervals (upper triangle). The five greylevels
are relative to a grid over [0, 1] with step 0.2 for the former and they increase from dark grey to white as the
optimised values move out of intervals for the latter.
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(b) Beta distributions with mean (solid vertical line) and optimal
correlation (dashed line) for the 9 hottest hotspots.

Figure 2. Example 1: optimisation with ∆ = 0.2 for all correlations.
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Figure 3. Same as Figure 2, but with ∆ = 0.02 for the correlations between CI and NS, IS, RE
(−0.9) and between IS and NS (0.77).
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strated), against both reinsurers and bond issuers. The correlation matrix was originally
estimated from historical data. Then some of the correlations were manually altered by
experts. Furthermore, the correlations of all assets with a new credit indicator were added
by experts, expressing a priori guesses, since relevant credit indicator data were absent.
The non-zero correlations of -0.9 of the credit indicator may seem extreme. In some cases
they are chosen to be extra high, to perform sensitivity testing.

The correlation matrix is illegal, with one negative eigenvalue (≈ −0.3). We adjust
the matrix with two sets of expert opinions on the correlations. In both sets the beta
distributions have the original correlation values as means; the variances are all equal
with ∆ = 0.2 in the first set, whereas ∆ = 0.02 for the correlations between CI and NS, IS,
RE (−0.9) and between IS and NS (0.77) in the second set. This second specification has
the purpose of checking what is the effect, on the whole matrix, of a strong unwillingness
to modify certain particular entries. The results of the optimisation with the two different
sets of variance parameters are shown in Figures 2 and 3, respectively. Clearly, a very
concentrated distribution for some correlations may have an undesirable effect on other
correlations, like the correlations between IS and RE and between NS and RE in Figure 3.
In the same figure, the correlations between CI and NS, IS, RE have not changed much in
absolute terms (0.01, 0.01 and 0.02, respectively), but in terms of the hotspots, the change
is substantial, since the normalised tail probabilities for the three pairs are all above 0.9.
This is not surprising, because the beta distributions assign 99.73% probability to the
interval −0.9 ± 0.02 for these three correlations. In the same example, the correlations
between IS and RE and between NS and RE are also extreme hotspots, with a normalised
tail probability of 1, but here the change in absolute terms is also large. This can also
be seen from the two upper left windows of Figure 3(b), which shows how the solution
deviates from the a priori guess.

The estimated matrices shown are obtained from an initial starting value as specified
in the previous Section. We also tried very different starting values, obtained from ran-
domly generated correlation matrices, and the resulting local maxima are very close to
the maximum reached from the fixed starting point.

6 Conclusions

We consider two situations, which are often encountered in practical financial analysis.
In one case we assume that an improper correlation matrix is given, possibly in part
obtained as a collection of estimated pairwise correlations from time series data, that
are not fully aligned in time. In addition, experts can express their belief in these point
estimates, by assigning beta densities to each entry which are more peaked around the
current correlation if this is considered reliable, while it is flatter for correlations which
are less safe.

In the second case, for each entry of the improper correlation matrix, we assume that
a measure of precision is available along with the point estimate of the pair correlation,
for example its empirical variance. Note that in this case, we cannot assume that the
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improper correlation matrix can be enlarged with a new non-observed asset, since in this
case the same expert opinion would be used twice. Unfortunately, the Bayesian approach
relies on MCMC for inference. Such an algorithm is less robust in use compared with
the simple numerical optimisation necessary to obtain a proper correlation matrix in the
first case. More research is needed to devise a fast alternative to MCMC, before it can
enter financial practice. One alternative approach is given by Rue and Martino (2009),
who are using an integrated nested Laplace approximation to compute very accurate
approximations of the posterior marginals.

Our approach leads to a very practical operational tool. A user friendly version can
be based on a screen with the improper correlation matrix, the possibility to assign beta
densities on each off-diagonal entry as a measure of confidence in the given correlation
and the willingness to accept changes. The user may then elicit beta densities via their
mean and standard deviation. When a beta distribution is given, a small figure appears,
with the plot of the actual beta density, illustrating the choice made. The optimal proper
matrix has actually followed all wishes as expressed by beta densities. However, for some
entries, it might be necessary to move out to the tails of the corresponding beta densities.
Such cases are shown in our hotspot matrix, that represent where major stress has been
introduced to legalise the full matrix. Alternatives to beta densities are of course possible.
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