
Note no SAMBA/45/09
Author Arnt-Børre Salberg

Date December 7, 2009

Land Cover
Classification of
Cloud-Contaminated
Multi-Temporal
High-Resolution Images

Arnt-Børre Salberg



Norwegian Computing Center
Norsk Regnesentral (Norwegian Computing Center, NR) is a private, independent, non-profit
foundation established in 1952. NR carries out contract research and development projects in the
areas of information and communication technology and applied statistical modeling. The clients
are a broad range of industrial, commercial and public service organizations in the national as
well as the international market. Our scientific and technical capabilities are further developed in
co-operation with The Research Council of Norway and key customers. The results of our projects
may take the form of reports, software, prototypes, and short courses. A proof of the confidence
and appreciation our clients have for us is given by the fact that most of our new contracts are
signed with previous customers.



Title Land Cover Classification of Cloud-Contaminated
Multi-Temporal High-Resolution Images

Author Arnt-Børre Salberg

Date December 7, 2009

Publication number SAMBA/45/09

Abstract
We show how methods proposed in the statistical community dealing with missing data may
be applied for land cover classification, were optical observations are missing due to clouds and
snow. The proposed method may be divided into two stages; (i) cloud/snow-classification and
(ii) training and classification.

The purpose of the cloud/snow classification stage is to determine which pixels are missing
due to clouds and snow. All pixels in each optical image are classified into the classes cloud, snow,
water and vegetation using a suitable classifier. The pixels classified as cloud or snow are labeled
as missing, and this information is used in the training and classification stages which deal with
the land cover classification. In the training stage the unknown parameters of the statistical distri-
bution modeling the land cover classes are estimated using the Expectation Maximization algo-
rithm. If a non-parametric classifier is applied, the training is omitted. In the classification stage
the pixels are classified into various land cover classes. Here we apply the Maximum Likelihood
(assuming normal distributions), k-NN and Parzen classifiers, all modified to handle missing fea-
tures.

The classifiers are evaluated on Landsat (both TM and ETM+) images covering a scene at
about 900 m a.s.l. in the Hardangervidda mountain-plateau in South Norway, where 4 869 in
situ samples of the land cover classes water, ridge, leeside, snow-bed, mire, forest and rock are
obtained. The results show that proper modeling of the missing pixels improves the classification
rate by 5-10%, and by using multiple images we increase the chance of observing the land cover
type substantially. The nonparametric classifiers applied ignores the missing-data mechanism,
and are therefore particularly suitable for remote sensing applications where the pixels covered
by snow and cloud may depend on the land cover type.

Keywords Missing data, land cover classification, cloud, snow

Target group Remote sensing

Availability Open

Project GB-JO

Project number 220412-WP5

Research field Remote sensing

Number of pages 23

© Copyright Norwegian Computing Center

3



1 Introduction

Land cover classification based on a single satellite image can be challenging due to bad weather
conditions and limited spatial and spectral resolutions. To increase the classification performance,
the use of multi-temporal satellite images has been applied (see e.g. Agrawal et al., 2003; Aurdal
et al., 2005; Jing et al., 2009). By using multi-temporal satellite images for land cover classification,
the ground vegetation may be observed at different phenological states. The vegetation species
are therefore more easily distinguished since we observe how the spectral signatures vary through
the growth season.

Often, information from a set of multi-temporal images is utilized after pixel level fusion of the
images. In pixel-level fusion the images are merged by stacking the multi-temporal pixels into a
vector of measurements (Solberg, 2007). The resulting feature vector will then be of higher dimen-
sion, and often possess stronger discrimination power since some classes may not be separable in
a single image (Jing et al., 2009).

The use of high-resolution images in a multi-temporal classification context has been limited,
mainly because high resolution images have longer revisit time than medium or low resolution
images (Solberg, 2007). In Northern Europe, clouds and snow may prevent us from observing
all pixels in optical remote sensing, and we are missing parts of the observed data. Moreover, the
number of training points are often a small subset of the whole image, and due to the missingness
of the data we may experience that we have only a few complete training vectors available. This
may cause rank deficient covariance matrices which makes the task of designing classifiers more
challenging.

When faced with data that contain missing observations, ad hoc solutions such as case dele-
tion or imputation are often applied to convert the data into a complete-data format (Dixon, 1979).
However, using such methods often introduces biased parameter estimates and distorted covari-
ance matrices (Schafer, 1997). Statistical analysis with missing or incomplete data has been well
documented (Little and Rubin, 1987; Schafer, 1997). In particular, parameter estimation with miss-
ing data has been studied extensively, and the Expectation Maximization (EM) algorithm being
one of the most popular methods for estimating unknown parameters of a probability density
function (PDF) (Little and Rubin, 1987).

Pattern recognition with missing data has also received some attention (see e.g. DePasquale
and Polikar, 2007; Dixon, 1979; Marlin, 2008; Mojirsheibani and Montazeri, 2007a,b; Morris et al.,
1998; Pelckmans et al., 2005; Twala et al., 2008). Mojirsheibani and Montazeri (2007b) proposed
representations for the best (Bayes) classifier when some of the covariates can be missing with-
out imposing any assumptions on the underlying missing data mechanism. Furthermore, the
proposed classifiers (both parametric and non-parametric) are not based on any data imputation
techniques. Marlin (2008) focused on problems of collaborative prediction with non-random miss-
ing data and classification with missing features. Several procedures for classification with miss-
ing features using generative classifiers, the combination of standard discriminative classifiers
with single and multiple imputation, classification in subspace, and an approach by modifying
the classifier input representation to include response indicators.

In remote sensing applications, both statistical and non-statistical methods to handle missing
or incomplete data have received little attention. Aksoy et al. (2009) described how decision-
tree classifiers can be trained with alternative decision nodes for handling missing data in multi-
source information fusion, and showed the superiority of the classifier for land cover classification
for aerial, Ikonos and DEM-based data sets.

Digital elevation models (DEMs) have often been included as ancillary data in landscape clas-
sification tasks. Since a DEM has 100% coverage of the scene, it may play an important role of
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supporting training and classification when the optical observations are missing due to clouds or
snow. By establishing a model describing the interaction between the DEM-based features and
the observed optical features, we may utilize this knowledge when classifying data with missing
covariates.

In this paper we show and discuss how to handle missing observations of remote sensing
data for pixel classification of multi-temporal high-resolution satellite images, and in particular
we idenity the underlying missing data mechanism related snow and clouds (Sec. 3.1).

We propose a two-stage classifier for classifying cloud and snow contaminated pixel-level
fused multi-temporal images, where the first stage consists of identifying pixels containing snow
and clouds, and the second stage performs the land cover classification with proper modeling of
the missing observations (Sec. 3.3 - 3.5).

Recovering the original scene from cloud contaminated satellite scenes has been studied exten-
sively (Holben, 1986; Melgani, 2006), and Melgani (2006) proposed a method to reconstruct areas
of missing land cover observations from multi-temporal multi-spectral images using a contextual
prediction system. The proposed scheme also facilities estimation of the missing feature for Gaus-
sian and mixture Gaussian data assumptions, and may be used to reconstruct areas covered by
clouds and snow (Sec. 3.6).

2 Experimental data set

2.1 Remote sensing and DEM data
The optical data applied in this paper is Landsat ETM+ images (path/row 199/18) covering
Hardangervidda mountain plateau in South Norway (about 900m a.s.l) from late May to mid
September (2004-05-31, 2000-07-23, 2002-08-14, and 2002-09-15 ). The four Landsat images of the
scene are shown in Fig. 1, and the color images are created from band 3, 4 and 5. Blue pixels
correspond to ice/snow, white pixels correspond to clouds, and green/brown pixels correspond
to vegetation/soil. The images contain six spectral layers each, these were the standard Landsat
spectra except the thermal IR bands (bands 6-1 and 6-2) and the panchromatic band (band 8). The
images were radiometrically and geometrically corrected using the standard terrain correction
(Level 1T) which incorporates ground control and a DEM to obtain topographic accuracy.

The DEM has a spatial resolution of 25× 25m2. In order to match the Landsat pixel resolution
of 30 × 30m2, the DEM has been resampled using cubic interpolation. From the DEM the terrain
slope was calculated, and elevation and slope were used as ancillary data (Fig. 2).

2.2 In situ data
A total of 4861 pixels were labeled according to the ground truth vegetation type obtained from
field measurements. The vegetation and landscape features were divided into the following classes:
water, ridge, leeside, snowbed, mire, forest and rock (see Tab. 1). Please note from the table that the por-
tion of acquired sample points do not correspond to the priori land cover probabilities of Hardan-
gervidda. For testing of the classifiers, the sample points were divided into two sets (equal size
and randomly selected), one for training and one for testing. The proportion of observed (non-
missing) sample points is as low as 8.7% for snowbed vegetation in the May 31, 2004 image (see
Tab. 1), and full coverage for ridge, snowbed, mire and water for the Sep. 15, 2002 image. Estima-
tion of the priori probabilities for the land cover classes is based on the work by Gaare et al. (2005)
with necessary adjustments to differences in class definitions.
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Number of Observed sample points
Class sample points 2000-07-23 2002-08-14 2002-09-15 2004-05-31 Priori prob.

Water 1 395 71% 68.1% 99.9% 51.2% 9.3%
Ridge 1 345 47% 84% 100% 57.4% 27%

Leeside 360 75% 87.2% 98% 69.2% 21.9%
Snowbed 275 49.4% 88% 99.9% 8.7% 18.3%

Mire 554 67.3% 73.4% 100% 53.8% 9.2%
Forest 443 87.6% 78.1% 98% 86% 4.8%
Rock 489 58.3% 59% 92% 19.6% 9.7%

Total 4 861 63.3% 75.9% 98.8% 52.1% 100%

Table 1. Number of sample points in each land cover class of the Landsat images (labeled by acquisition
date), the proportion of cloud- and snow-free samples points in each class, and the corresponding priori
probabilities.

(a) (b)

(c) (d)

Figure 1. Landsat ETM+ images acquired at time instants (a) 23 Jul. 2000, (b) 14 Aug. 2002, (c) 15 Sep.
2002, (d) 31 May 2004
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(a) (b)

Figure 2. Acillary data used. (a) Elevation and (b) slope

Figure 3. Illustration of a typical missing data pattern for 12 different pixels. The feature vector is constructed
by stacking the features of the 3 images. Gray coloring corresponds to a missing observation.

3 Methods for land cover classification with missing
data

3.1 Modeling missing data in remote sensing
Given a set of geo-referenced high-resolution multi-spectral images, we construct a feature vector
for a given pixel by stacking all spectral data into a single vector x. Let the value for a given
feature at a given pixel be modeled as

x = rv + (1− r)w, (1)

where r = 1 if the pixel value corresponds to a land cover observation (not snow) v, and r = 0
if the pixel correspond to a cloud or snow observation w. Here we are interested in the land
cover observations v, and if v is not observed (i.e. r = 0) we consider v as missing. Hence, r is a
response indicator of the missing-data mechanism. A typical missing data scenario is shown in
Fig. 3, where we show a missing data pattern for 12 different pixels. Here we have constructed the
feature vectors by stacking 3 images each with 3 features. Gray coloring corresponds to missing
observations.

A graphical illustration of the causal dependencies for the missing data mechanisms is shown
in Fig. 4, where the data distribution of the land cover features X is modeled as p(X|Z,µ), µ is
a parameter vector and Z denotes the latent variables (if any). Now, let R denote the response
indicators for all features and all pixels. When modeling missing data, the missing mechanism
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Figure 4. Graphical illustration of the causal dependencies for MCAR (a), MAR (b) and not MAR (c).

that creates R plays a crucial role for designing algorithms for estimating unknown parame-
ters of the distribution of the land cover features and for designing the classifier. In particu-
lar, it is important to quantify the interaction between R and the observed and missing fea-
tures of X and any latent variables. The first category of missing data is called "missing com-
pletely at random" (MCAR). Data is MCAR when the response indicator variables R are inde-
pendent of the data variables X and any latent variables Z. Hence, we may express the distri-
bution for R as P (R|X,Z,θ) = P (R|θ), where θ is a parameter vector (Fig. 4(a)). Another cat-
egory of missing data is "missing at random" (MAR). The MAR condition may be expressed as
P (R = r|X = x,Z = z,θ) = P (R = r|Xo = xo|θ), where Xo denotes the observed features.
Hence, the missing data only depend on the observed features of X, not the missing features (Fig.
4(b)). Many algorithms for estimating unknown parameter assumes that the missing data is MAR.
In order to perform maximum likelihood estimation of µ or to perform likelihood ratio tests con-
cerning µ without regard for the missing data mechanism, we also need to assume distinctness
of the parameters in addition to MAR (Schafer, 1997). I.e., we need to assume that the parameters
θ and µ are distinct. If both MAR and distinctness hold, the missing data mechanism is said to be
ignorable (Little and Rubin, 1987; Schafer, 1997).

In optical remote sensing the missing observations (at least due to snow) may indeed correlate
with land cover class. However, within a land cover class we may assume that the missing data
mechanism of R is independent of the optical features of X. When using ancillary data based on
digital elevation models, these features are always observable and will therefore never be missing.
Thus, even if the missing data mechanism of the optical features is dependent of the DEM features
within a vegetation class, the missing data mechanism may be considered as MAR.

Another missing data source is sensor failure. On May 31, 2003 the Scan Line Corrector (SLC)
in the Landsat ETM+ instrument failed, resulting that approximately one-fourth of the data in a
Landsat 7 image is missing when acquired without a functional SLC. Pixels missing due to SLC
failure will be regarded as MCAR since the missing mechanism is not related to the observed,
missing or any other variable.

Even for cases where the missing data are not precisely MAR, a general procedure ignoring
the missing data mechanism still tend to be better than ad hoc procedures such as case deletion
and zero-insertion since by ignorable missing data procedures remove all of the nonresponse bias
explained by the observed data, whereas the ad hoc procedures may not (Schafer, 1997).
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3.2 Learning with missing data
Parameter estimation with missing data is a well explored topic in statistics, and one of the most
common algorithms applied to cope with missing data is the Expectation-Maximization (EM)
algorithm (Little and Rubin, 1987). We will here briefly review the EM algorithm.

When we have incomplete data, the maximum likelihood (ML) estimates of the parameters
of any probability density function (PDF) may be computed using the EM algorithm. The EM
algorithm ignores the mechanism causing the missing data, since it assumes that the probability
that a value is missing does not depend on the missing data value itself.

3.2.1 Gaussian distributions
For the case of missing values in Gaussian distributed data, estimation of the mean vector µ and
covariance matrix Σ has been studied extensively (Little and Rubin, 1987; Schneider, 2001), and
we will briefly review the algorithm

At the tth iteration of the EM algorithm let µ̂(t) and Σ̂(t) denote the current estimate of the
mean vector and covariance matrix, respectively. Further, let Xo the observed data. The E step
of the algorithm consists of calculating the sufficient statistics (Little and Rubin, 1987; Schneider,
2001)

E
{

Xi|Xo, µ̂(t), Σ̂(t)
}

=
N∑
i=1

x̂i(t) (2)

E
{

XiXT
i |Xo, µ̂(t), Σ̂(t)

}
=

N∑
i=1

(
x̂i(t)[x̂i(t)]T + Ĉi(t)

)
(3)

where x̂i(t) is an estimate of the feature vector Xi at iteration t and Ĉi(t) is defined as (Little and
Rubin, 1987)

Ĉi(t) =

Σ̂m(i)(t)− Σ̂m(i)o(i)(t)Σ̂
−1

o(i)(t)Σ̂o(i)m(i)(t), for elements corresponding to the missing part of Xi

0 for elements corresponding to the observed part of Xi

(4)
Let x̂o,i(t) and x̂m,i(t) denote the observed and missing part of x̂i(t). Then we have that

x̂o,i(t) = Xo,i and (5)

x̂m,i(t) = µ̂m(i)(t) + Σ̂m(i)o(i)(t)Σ̂
−1

o(i)(t)
[
xo,i(t)− µ̂o(i)(t)

]
. (6)

with missing data where µ̂o(i)(t) and µ̂m(i)(t) denotes the part of µ̂i corresponding to the ob-
served and missing part of Xi, respectively. Thus, the missing values are replaced by the esti-
mated conditional mean values of Xm,i given the set observed values Xo,i of Xi.

The M step of the EM algorithm is straightforward. Updated estimates of the mean vector and
covariance matrix are computed from the estimated complete data sufficient statistics (Little and
Rubin, 1987; Schneider, 2001)

µ̂(t+ 1) =
1
N

N∑
i=1

x̂i(t) and (7)

Σ̂(t+ 1) =
1
N

N∑
i=1

[
(x̂i(t)− µ̂(t+ 1))

(
x̂i(t)− µ̂T (t+ 1)

)T
+ Ĉi(t)

]
. (8)

Please note that Eq. (6) provides an estimate for the missing feature of the ith pixel, given the
observed features and the estimated mean and covariance matrix. This estimate may be used for
image restoration of areas covered by clouds or snow.
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Figure 5. Illustration of a typical scatter plot of pixel observations (digital number) of Band 1 and Band 6.
Crosses and dots correspond to cloud and land cover observations, respectively. The line indicates the
decision boundary between the vegetation and cloud class.

3.2.2 Gaussian mixture models
A possible disadvantage of using a Gaussian distribution to model the data, is the lack of flexi-
bility when compared to non-parametric methods. However, by using mixture models this draw-
back may be circumvented since finite mixture models are capable of modeling a wide range of
densities. The density of the Gaussian finite mixture model is defined as

f(x) =
G∑
i=1

piφ(x|µi,Σi),
G∑
i=1

pi = 1, pi ≥ 0,∀i, (9)

where φ(x|µi,Σi) denotes the density of the multivariate normal distribution with mean vector
µi and covariance matrix Σi. Gaussian mixture models may also be trained from incomplete
data using the EM algorithm for both estimation of the mixture components and for coping with
missing data (Ghahramani and Jordan, 1994; Lin et al., 2006).

3.3 Cloud and snow classification
In order to determine if clouds or snow occupy a given pixel, we need to perform cloud/snow
detection of the pixels in the acquired images. To illustrate the cloud/snow pixel detection prin-
ciple we consider a scatter plot of pixel observations of Band 1 and Band 6 (Fig. 5). In the figure
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the crosses and dots correspond to and cloud and land cover pixel observations, respectively. By
choosing a decision boundary according to the indicated line, we may perfectly separate the cloud
pixels from the land cover pixels, and the missing data mechanism may be considered as MAR.
Note that this is conceptually different from censoring of the data (which is not MAR), since the
cloud/snow detection does not change the distribution of the land cover observations. However,
if the cloud/snow pixels are not easily separated (i.e. the are erroneous classified pixels) from the
land cover pixels the MAR assumption is not satisfied.

3.4 Classification with missing data
In the Bayesian approach, the optimal classifier is obtained by determining the classifier that min-
imizes the expected loss or Bayes risk. Using a zero-one loss function the optimal Bayes classifier
corresponds to the minimum error classifier (Duda et al., 2001).

Let x(`) be the part of x corresponding to the missing data indicator vector rk, f(x(k)|ωi) de-
note the PDF of the subvector x(`) given class ωi, and let ρ denote a binary vector with 0 at element
j if the the jth element of the feature vector x is missing, and 1 otherwise. The probability of se-
lecting class ωi given x(`) is then

P (ωi|x(`)) =
P (ωi)f(x(`)|ωi)∑C
j=1 f(x(`)|ωj)P (ωj)

. (10)

where P (ωj) is the priori distribution of class ωi. Now, let P (ρ = r`|x(`), ωi) denote the condi-
tional probability that the missing data pattern is equal to r`, given x(`) and class ωi. The optimal
classifier may then be formulated as (Mojirsheibani and Montazeri, 2007b)

Gm(x,ρ) = arg max
ωi

L∑
`=1

I(ρ = r`)P (ωi|x(`),ρ = r`) (11)

= arg max
ωi

L∑
`=1

I(ρ = r`)P{ρ = r`|x(`), ωi}f(x(`)|ωi)P (ωi) (12)

(13)

where L is the number of different indicator vectors r`. For parametric classifier the PDF of x(`)

for class ωi is modelled as f(x(`)|ωi,φ), where φ is a parameter vector.
Note that the missing data mechanism introduces an additional probability P{ρ = r`|x(`), ωi}

which is conditioned on the vector x(`) and class ωi. Further, by the inclusion of P{ρ = r`|x(`), ωi}
the classifier takes into account that the missing data mechanism may be different for different
land cover classes. In general, since the missing pattern depends on all elements of x(`) (and not
only the observed ones), the missing mechanism is not MAR. However, as we argued in Sec. 3.1,
within a given class the missing mechanism only depend on the observed values (for DEM based
ancillary data). If the P{ρ = rk|x(`), ωi} = P{ρ = r`} the missing mechanism is MCAR, and
the optimal classifier is simply the marginal distribution where the missing features have been
integrated out.

3.4.1 Nonparametric classification
Nonparametric kernel classification rules derived from incomplete (missing) data were discussed
in (Mojirsheibani and Montazeri, 2007b; Pawlak, 1993). Assume that we have the following train-
ing data set available

D = {(X1,ρ1), (X2,ρ2), . . . , (XN ,ρN )}, (14)

where ρi is an indicator vector of the observations in Xi.
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k-NN classifier The k-NN classifier relies on the distances between the observed feature vector
and the training vectors. Pattern recognition using k-NN in a missing data environment has been
considered by (Dixon, 1979; Mojirsheibani and Montazeri, 2007b; Morin and Reaside, 1981). Mo-
jirsheibani and Montazeri (2007b) proposed a nearest-neighbour approach that does not depend
on any MAR assumptions. Let Im be the index set corresponding to the elements in D with class
label ωm, and define

φk-NN
Im,` (x

(`)) =
∑
i∈Im

WIm,i(x
(`), r`) (15)

where

WIm,i(x
(`), r`) =


1, if X(`)

i is one of the k NNs of x(`) among all

those X(`)
j s, j ∈ Im for which ρj = r`

0, otherwise

(16)

Then the k-NN discriminant function for the mth class may be formulated as

Gm(x,ρ) =
L∑
`=1

I(ρ, r`)φk-NN
Im,` (x

(`)), (17)

where L denotes the number of possible indicator vectors rk. As a classification rule we choose
the class corresponding to the maximum discriminant function. The k-NN classifier works on the
selection of samples among the training data that has the exact same missing data pattern as the
test vector, and perform the k-NN rule among these samples. The discriminant function in Eq.
(17) applies an estimate of the class prior probability equal to P̂ (ωm,ρ) = |Im,ρ|/Nρ (van der
Heijden et al., 2004), where Im,ρ denotes the set of training vectors of class m where ρi is equal to
ρ, andNρ is the number of training vector with missing data pattern ρ. Scaling the rule in Eq. (17)
with P (ωi)/|Im,ρ| in order to incorporate the priori class probability does not make sense for k-
NN with small values of k. For the nearest neighbor rule, methods based on a weighted-distance
measure (Brown and Koplowitz, 1979) is preferred to include priori weighting.

Now, if the number of features missing is high and the number of training data vectors is low,
we may lack sample points where ρj = r`, and the feature vector x cannot be classified. To handle
such cases we propose an alternative indicator function;

Ĩ(ρ, r`) =

1, if 1T (ρ� r` − ρ) = 0

0, otherwise,
(18)

where � denotes elementwise multiplication. This indicator function ignores the values of r` at
elements where ρ is equal to zero and considers all r` that has 1s on corresponding locations as ρ.
However, the classifier is now biased with respect to the missing data mechanism.

Parzen classifier The Parzen classifier applies the Parzen density estimate as a means for classi-
fication (Fukunaga, 1990). Given a set of independent and identically distributed samples {x1, . . . ,xN}
drawn from the true density f , the Parzen window estimator for this distribution is defined as
(Fukunaga, 1990)

p̂(x) =
1
N

N∑
i=1

Wσ2(x,Xi) (19)

Here, Wσ2 is the Parzen window, or kernel, and σ2 controls the width of the kernel. The Parzen
window must integrate to one, and is typically chosen to be a PDF itself, such as the Gaussian
kernel. Hence,

Wσ2(x,Xi) =
1

(2πσ2)d/2
exp

(
−‖x−Xi‖2

2σ2

)
. (20)
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Figure 6. Two-stage classifier for pixel classification of cloud/snow contaminated multi-temporal images.

Note also that the width of the Parzen window affects the density estimate much more than the
actual form of the window function (Scott, 1992; Wand and Jones, 1995).

Mojirsheibani and Montazeri (2007b) proposed the following Parzen window estimator for
missing data (without any MAR assumption);

p̂(x,ρ|ωm) =
L∑
`=1

I(ρ, r`)
(2πσ2)|P`|/2Nm,`

[∑
i∈Im

I(ρi, r`) exp

(
−‖x

(`) −X(`)
i ‖2

2σ2

)]
(21)

where |P`| is the number of elements in r` equal to one, and Nm,` is the number of elements in Im
where I(ρ,p`) is equal to 1.

The discriminant function for the Parzen classifier may be written as

Gm(x,ρ) = P (ωm)p̂(x,ρ|ωm), (22)

and we apply Silverman’s mean integrated squared error method (Silverman, 1986) to estimate
the smoothing parameter σ2.

Also here, we may encounter data shortness if we have too few training points, and for such
cases we therefore propose to consider the indicator function Ĩ(ρi, r`).

3.5 Two-stage classifier
To classify the cloud contaminated multi-temporal high-resolution images we propose a two-
stage classification approach (Fig. 6). In the first stage, the cloud/snow contaminated pixels of
each input image are identified by the pre-classification procedure (Sec. 3.3). Since cloud/snow
pixels have totally different spectral signatures from land cover vegetation and rocks the perfor-
mance of the pre-classifier is expected to be high. In Stage 2, the sensor images, the ancillary data
(if any) and the corresponding cloud/snow maps are pixel-level fused by vector stacking the fea-
tures of each pixel. The pixel-level fused image and the corresponding observed/missing map
are then sent to the classifier for land cover pixel classification. The classifier may be any classifier
capable of dealing with missing data (for instance, any of the classifier described in Sec. 3.4). The
output of the classifier is then the land cover class map.
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3.6 Image reconstruction of cloud/snow contaminated images
The knowledge of the class-dependent mean vectors and covariance matrices of the optical fea-
tures may be used to estimate the missing observations by using the observed features of a given
pixel. To do so, first we perform a land cover classification of the scene as described in the previ-
ous section to determine the land cover class of each pixel in the scene. Then, assuming that the
data is Gaussian, we may apply the minimum mean-squared error estimator (Scharf, 1991)

x̂m = µ̂cm + Σ̂
c

mo[Σ̂
c

o]
−1(xo − µ̂co) (23)

to estimate the missing features of the pixel-level fused multi-temporal images. Here c denotes the
land cover class obtained from the land cover classification. If we use a Gaussian mixture model,
an estimate of the missing data may be obtained as

x̂m =
G∑
i=1

ŵi

[
µ̂cm,i + Σ̂

c

mo,i[Σ̂
c

o,i]
−1(xo − µ̂co,i)

]
(24)

where ŵi is the posterior probability of x belonging to the ith sub-class, i = 1, . . . , G (Lin et al.,
2006).

From the equations above we note that by using the knowledge about the detected land cover
class for given pixel, and how the features correlates within the corresponding class, we may
estimate the missing parts of the feature vector. As a final step, the estimated features are assigned
to its corresponding image, and a reconstructed image is obtained.

4 Experimental results

4.1 Land cover classification of Hardangervidda
To test the missing feature classification method in a remote sensing context we applied the two-
stage classifier to a sequence of three Landsat ETM+ images (2000-07-23, 2002-08-14 and 2002-
09-15). The feature vector was constructed by stacking the six multi-spectral bands into an 18-
element feature vector. In some experiments elevation and slope were also applied as features,
and the feature vector was in those cases augmented to a 20-element vector.

4.1.1 Stage 1 - Cloud/snow classification
Before we classify the land cover we perform cloud/snow classification of the three Landsat im-
ages. Since cloud and snow were easily observable in the high-resolution multi-spectral image,
we first performed a visual inspection of the image to determine if there were any clouds or snow
present. If, so training data corresponding to cloud, snow, water and vegetation observations were
manually labeled, and the image was classified to the labels cloud, snow, water and vegetation.
The classifier was the built-in SVM classifier in Environment for Visualizing Images (ENVI), with
Gaussian kernel function. Fig. 7(a-c) show the results of the cloud/snow classification where the
Landsat images are classified into the four classes snow/ice (white), clouds (yellow), water (blue),
and vegetation (green). From these image, pixels that were classified to clouds or snow/ice were
labeled as missing, and pixels classified as water or vegetation were labeled as observed. The pro-
portions of pixels classified as non-missing (vegetation and water) for 2000-07-23, 2002-08-14, and
2002-09-15 images were 63.3%, 75.9%, and 98.8%, respectively.

4.1.2 Stage 2 - Land cover classification
To classify the land cover of the Hardangervidda scene into the classes water, ridge, leeside, snowbed,
mire, forest and rock, we first constructed the response indicator matrix R from the cloud/snow
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(a) (b)

(c) (d)

Figure 7. Cloud/snow classification of the four Landsat ETM+ images acquired at time instants (a) July 23,
2000, (b) August 14, 2002, (c) September 15, 2002, and (d) May 31, 2004. The color corresponds to snow/ice
(white), clouds (yellow), water (blue), vegetation (green), and sensor failure (black stripes).
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classification (see Sec. 4.1.1). In order to evaluate the classifiers we randomly divided the data sets
into two halves, one for training and the other for testing, 100 times. Since the prior probabilities
of the land cover classes and the acquired portion of sample points differed substantially (see
Tab. 1), prior class probabilities were not applied, and we assumed that each class had an equal
prior probability (expect for the k-NN-rule where prior probabilities was not included). For the
Gaussian classifier, the EM-algorithm was stopped after 50 iterations. For the Parzen and kNN
classifier, the data were rescaled to zero mean and unit variance in all feature directions. The
mean values and standard deviations needed to perform the scaling were estimated from the
training data only. Euclidean distance measures was used for the k-NN classifier. The smoothing
parameter provided by Silverman’s method and used in the Parzen classifier was too high, and
adjusted to σ/8 to obtain higher classification performance.

For all methods the classification performance improved when using pixel-level image fusion
(Tab. 2, column "Accuracy excl. missing data"). For the Gaussian and k-NN classifiers, the per-
formance increased from 62.8% and 63.4% to 74.9% and 75.2%, respectively. As expected the por-
tion of pixels that were classified also increased, which resulted in an even higher classification
performance when considering all pixels (column "Accuracy incl. missing data"). For all classi-
fiers we observed that the performance improved when including the DEM-based ancillary data
(elevation and slope). The best classifier was the 1-NN classifier based on three Landsat scenes
(2000-07-23, 2002-08-14 and 2002-09-15) and elevation and slope (Tab. 2) with a classification accu-
racy of 80.9%. From the confusion matrix of this classifier we see that the classifier tended to mix
snowbed and ridge vegetation (Tab. 3). Comparing the confusion matrix of the 1-NN classifier
(Tab. 3) with the one of the Gaussian classifier (Tab. 4) we see that the Gaussian classifier more
often classified rock as water and ridge as mire. However, it classified snowbed and mire more
correctly than the 1-NN classifier.

The land cover map, the output of the two-stage classifier, shows that we were able to classify
all pixels in the scene using the images 2000-07-23, 2002-08-14, and 2002-09-15 and slope even
with this severe amount of cloud-contaminated pixels (Fig. 8). Note that we have not included
elevation as a feature for creating the thematic map of the land cover since we did not have
training samples supporting the range of variation of the elevation in the scene.

4.2 Image reconstruction of cloud/snow contaminated images
Using the proposed image reconstruction algorithm we pixel-level fused the Landsat images
(2000-07-23, 2002-08-14 and 2002-09-15) and the slope image into an image of 19 features. The
missing features were then estimated and stored in its corresponding Landsat image. From the
subset of the original 2002-08-14 image we successfully reconstructed the vegetation cover by
clouds (Fig. 9). However, note that the cloud shadows still remain in the reconstructed image.

To evaluate the image reconstruction algorithm further we pixel-level fused the 2004-05-31
ETM+ SLC-OFF image (Fig. 1(d)) and its corresponding cloud-snow map (Fig. 7(d)) with the
2000-07-23 and 2002-09-15 ETM+scenes, and terrain slope. Using the image reconstruction algo-
rithm we were able to reconstruct and remove the stripes of the ETM+ SLC-OFF image (Fig. 10).
From the figure we observe that the stripes in the reconstructed image are barely visible, and the
algorithm also seemed to capture the optical features of the hidden land cover. Please also note
that this scene is of a completely different phenological state than the other scenes.
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Water Ridge Leeside Snowbed Mire Forest Rock
Water 97 0 0 0 0 0 8
Ridge 0 83 22 38 21 2 3
Leeside 0 5 45 6 5 14 0
Snowbed 0 5 5 47 2 0 2
Mire 0 6 8 6 70 2 1
Forest 0 1 19 1 1 81 0
Rock 3 1 1 3 0 0 85

Table 3. Confusion matrix for the 1-NN classifier using the Landsat ETM+ images 2000-07-23, 2002-08-14,
and 2002-09-15 and elevation and slope.

Water Ridge Leeside Snowbed Mire Forest Rock
Water 96 0 0 0 0 0 16
Ridge 0 68 15 22 9 1 1
Leeside 0 6 45 9 5 12 1
Snowbed 0 9 7 61 3 0 6
Mire 0 15 7 5 81 1 0
Forest 0 1 26 1 2 86 0
Rock 4 1 0 2 0 0 76

Table 4. Confusion matrix for the Gaussian classifier using the Landsat ETM+ images 2000-07-23, 2002-08-
14, 2002-09-15 and elevation and slope.

(a)

Unclassified

Water

Ridge

Leeside

Mire

Forest

Rock

Snowbed

(b)

Figure 8. The land cover map obtained from the Landsat ETM+ images 2000-07-23, 2002-08-14, and 2002-
09-15 and slope using a Gaussian classifier.
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(a) (b)

Figure 9. (a) Sub-section of the 2002-08-14 image. (b) Reconstructed version of the 2002-08-14 sub-section.

(a) (b)

Figure 10. (a) Sub-section of the 2004-05-31 image. (b) Reconstructed version of the 2004-05-31 sub-
section.
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5 Discussion and conclusions

In this paper, we performed land cover classification of multi-temporal optical remote sensing
images using statistical methods to handle missing data due to clouds and snow. The proposed
method is a two-stage approach, where we first classify the pixels that contain clouds or snow,
and label these pixels as missing. Then, using the obtained missing data indicators the pixels
are classified to the land cover classes of interest using learning and classification algorithms
suitable for handling missing observations. The results showed that by processing the missing
observations properly we may obtain increased classification power by pixel-level fusion of cloud
and snow contaminated satellite images.

If too many images are applied in pixel-level fusion we risk running into the curse of dimen-
sionality when the training data set is limited (Duda et al., 2001), and nearest neighbor classifiers
suffer from bias in high dimensions (Hastie and Tibshirani, 1996). Further improvement of the
classification performance may be obtained by careful selection of features using feature selection
and/or feature extraction (van der Heijden et al., 2004), by considering methods such as the dis-
criminant adaptive nearest neighbor (DANN) classification (Hastie and Tibshirani, 1996), or by
using bootstrap methods such as Bagging (Duda et al., 2001). Note that it is also possible to apply
an automatic procedure without labeled training data to classify snow and clouds pixels in the
Landsat scenes (Hollingsworth et al., 1996; Irish, 2000).

When using terrain elevation as ancillary data we should not classify pixels at altitudes dif-
ferent than what is spanned by the training data. If so the elevation feature would act as an out-
lier, and may affect the classification results substantially. Other ancillary data than the elevation
and slope may be applied. The topographical wetness index based on the upslope contributing
area (Tarboton, 1997) is one particular interesting choice. Topographical correction of the inten-
sity values using e.g. c-correction may also be applied to increase the performance, particularly
for north-facing steep slopes which are often in shadow. Furthermore, we may also consider fea-
tures extracted from synthetic aperture radar (SAR) images. Full polarimetric SAR images have
successfully been applied for vegetation classification (e.g. Doulgeris et al., 2008) and may there-
fore possess a valuable contribution to both land cover classification and image reconstruction of
cloud-contaminated high-resolution images.

Even if the clouds are 100% correctly detected in the cloud/snow detection stage, cloud shad-
ows are expected to degrade the classification performance. Due to the low brightness of the
shadows, the shadowed pixels are often classified as water. However, by including proper ancil-
lary data, such as slope, the classification performance for pixels in the shadow increases since
the slope of water bodies is zero.

The optimal discriminant function given in Eq. (13) contains the probability P{ρ = r`|x(`), ωi},
which is an important difference from discriminant functions for the non-missing data case (Duda
et al., 2001), but also other classifiers proposed for missing data (Duda et al., 2001; Morris et al.,
1998). Even for the MAR missing data mechanisms this probability is in general conditioned on
the class ωi, i.e. the optimal classifier takes into account that the missing data mechanism may de-
pend on the class ωi. For remote sensing this is definitely an important issue, since the degree of
snow covering a given area depends on the land cover class or vegetation. For ancillary data, such
as elevation and slope, this is definitely the case (snow cover tends to depend on the elevation and
slope). However, as pointed out in Sec. 3.1, elevation and slope are always observable and there-
fore not dependent on the missing data mechanism. Obtaining an estimate for P{ρ = rk|x(k), ωi}
is not easy (Mojirsheibani and Montazeri, 2007b) since the probability changes through the season
(e.g. nearly all data will be missing during the winter months).

Censoring of intensity values due to camera saturation also causes the "true observations" to
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be missing. However, in this case the missing data mechanism is not MAR (Little and Rubin,
1987). Fortunately, the non-parametric classification methods given in Sec. 3.4.1 do not require
any MAR assumptions in order to be valid. For the case of parameter estimation, the censored
missing data requires careful modeling (Little and Rubin, 1987).

We also expect, as shown by (Besag, 1986), that by including spatial contextual modeling the
classification performance will improve. Markov random field based models optimized using
iterated conditional modes may be performed on the initial classification results for any classifier.
We do not have training data for evaluation of such models, and have therefore not applied any
contextual information, however, it is expected that the land cover map will be smoother.

Proper modeling of the missing data mechanism is the desirable for land cover classification
using cloud- and snow-contaminated multi-temporal images. In particular, nonparametric clas-
sifiers are suitable since their design does not depend on the missing data mechanisms, and is
therefore suitable for remote sensing applications where the pixels covered by snow and cloud
may depend on the land cover type.
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