Formal System Development using
Method Integration: a Case Study

DART /1002/04

Demissie B. Aredo
Olaf Owe

Tittel/Title: Formal System Development using Method Dato/Date: August
Integration: a Case Study Ar/Year: 2004
ISBN: 82-539-0510-6
Publikasjonsnr.:
Publication no.: DART/1002/04
Forfatter/Authors: Demissie B. Aredo,
Olaf Owe

Sammendrag/Abstract:

In this paper, we demonstrate feasibility of a development framework that integrates semi-
formal graphical modeling techniques with formal methods (FMs). In particular, the
framework integrates the Unified Modeling Language (UML) with the PVS environment to
exploit the synergy between them. System descriptions are given in the graphical UML
notations and translated into PVS specifications based on semantic definitions, which we have
proposed for the UML notations. The resulting semantic models are rigorously analyzed using
the PVS toolkit. The translation of UML models into PVS specifications is automated by the
PrUDE tool. This work contributes towards the improvement of the use of FMs in the
development of highly dependable systems in industrial settings and narrows the gap between
the theoretical foundation underlying FMs and their practical application.

Emneord/Keywords: Formal Methods, UML, OCL, OUN, PVS, Method
Integration

Tilgjengelighet/Availability: Public
Prosjektnr./Project no.:
Satsningsfelt/Research field: Software Engineering

Antall sider/No. of pages: 52

Formal System Development Using
Method Integration: a Case Study

Demissie B. Aredo! and Olaf Owe?

Norwegian Computing Center
P. O. Box 114 Blidern, N-0314 Oslo, Norway.

2Department of Informatics, University of Oslo
P. O. Box 1080 Blidern, N-0316 Oslo, Norway.

Abstract

In this paper, we demonstrate feasibility of a development framework that inte-
grates semi-formal graphical modeling techniques with formal methods (FMs). In
particular, the framework integrates the Unified Modeling Language (UML) with
the PVS environment to exploit the synergy between them. System descriptions
are given in the graphical UML notations and translated into PVS specifications
based on semantic definitions, which we have proposed for the UML notations.
The resulting semantic models are rigorously analyzed using the PVS toolkit. The
translation of UML models into PVS specifications is automated by the PrUDE
tool. This work contributes towards the improvement of the use of FMs in the
development of highly dependable systems in industrial settings and narrows the
gap between the theoretical foundation underlying FMs and their practical appli-
cation.

Keywords: Formal Methods, UML, OCL, OUN, PVS, Method Integration

1 Introduction

Semi-formal object-oriented analysis and design (OOAD) techniques such as the UML
(Unified Modeling Language) [28] have become quite popular among software devel-
opers. The structuring mechanisms, and intuitively appealing graphical notations are
among the features that have contributed to their acceptance. Their major limitation
in the context of critical systems development is, however, the lack of precise seman-
tic definitions for their notations - a significant barrier to their application to critical
system development in industrial settings. A greatly improved development process

1

1. Introduction

can be obtained if tools are augmented with deeper semantic analysis of the graphical
models [45].

On the other hand, formal methods (FMs) [46] have enormous potential in the devel-
opment, of highly dependable systems, and are increasingly finding practical uses due to
recent development towards automated tools. FMs are development approaches based
on a mathematical foundation allowing precise and rigorous specification of system
requirements, and ensure that the final software product meets the initial expectations
of the customer in terms of functionality as well as quality. Despite the rigor, practical
usability of formal verification approaches is limited due to their esoteric nature. A
framework that integrates a semi-formal modeling language, namely the UML, and a
formal verification environment, namely the PVS, and a supporting tool is the focus
of this paper.

The main objective of formal development methods is to specify system behavior
and desired functionalities precisely, and verify that the system meets the original
requirements. Formal specification is a basis of a meaningful and rigorous analysis
of system properties. Some verification environments provide specification languages
tailored towards a specific application domain together with a simulator, a model
checker or both, e.g. LOTOS [18], and the SPIN system [16]. Due to features inherent
in distributed systems, e.g. concurrency, dynamic reconfiguration, and complexity, a
simulation can examine only a fraction of possible system runs. Techniques related to
model checking, on the other hand, provide complete exploration of all possible runs
exhibited by a finite-state machine describing the system. Model checking has become
very popular because experiences indicate that checking all runs is more effective in
finding bugs [35] while requiring little or no insight in the formalism, and no user
interaction is required. Model checking can also be complemented with interactive
proof-checking if necessary. A major limitation of model checking is that the state
space must be finite even though advances involving symbolic execution have been
made.

The benefits of introducing FMs into a development process includes:

- Improved understanding of system requirements and reduced errors and omis-
sions;

- Possibility to check consistency and completeness of system specifications, and
prove that an implementation conforms with the specifications;

- Semantically-based CASE tools can be built to assist developers in analysis, de-
sign, implementation and program debugging. They may also support animation
and execution of formal specifications to provide a prototype of the system; and

- Formal specifications are used as guidelines in the identification of appropriate
test cases and their evaluation.

1. Introduction

Despite all these benefits, FMs still have difficulties in breaking through the software
industry. Very few organizations or projects are using FMs. A number of reasons have
been put forward as to why the formal development methods have not been widely
used in the software industry [36]:

- FMs are considered esoteric, due to the lack of training for software engineers in
the discrete mathematics and logic at the required level. Moreover, customers
are unlikely to be familiar with FMs, and hence they are not willing to pay for
the development activities they cannot monitor; and

- Lack of tool support: most of the effort in research on formal methods focused
on the development of languages and their mathematical underpinning and less
effort has been devoted to tool support.

As argued by Sommerville [36], the major challenge facing the software community
is not developing new techniques and methods, but transferring the existing software
engineering research results into the software industry. To address this issue, a number
of strategies for introducing FMs into software development process have been proposed
by the research community. Most of the strategies [11, 24, 42] advocate a lightweight
and selective application of FMs using visual modeling notations such as the UML [28]
as a front-end. FMs are used solely for analyzing specific aspects or properties of a
system. The baseline specification used to conduct further development activities, is
created and maintained using the graphical notations familiar to and popular among
software developers. In [41, 39|, we proposed a development framework integrating the
UML specification techniques [28, 34] with the Prototype Verification System (PVS)
[30] to support formal development of distributed systems. The integrated approach
has the following major contributions to the software engineering process:

e A formal specification of syntactic well-formedness constraints for UML in the
PVS specification language, which significantly improves the acceptance of FMs
among software developers by enhancing the development process with OOAD
techniques, and supported by a CASE tool.

e Defining formal semantics of graphical modeling language addresses the limita-
tions of OOAD techniques in the context of the development of highly dependable
systems by making UML models amenable to formal analysis.

In the sequel, we demonstrate practical usability of the integrated approach by present-
ing an example of a security-critical system. Major components and concepts of the
framework and a supporting CASE tool are revisited to make this paper self contained.

3

1.1 Outline of the Report

1.1 Outline of the Report

The rest of the report is outlined as follows. In Section 2, major aspects of the de-
velopment framework and the supporting CASE tool, namely, the PrUDE tool are
briefly revisited in order to make the report self-contained. Our focus is mainly on
concepts and notations that might be encountered in later sections. In Section 3, we
demonstrate practical usability of the integrated platform and the supporting tool by
presenting an example of the development of a security-critical system. Finally, in
Section 4, we summarize, draw some conclusions and discuss future research issues.

2 The Integrated Platform Revisited

The development of critical systems such as the e-banking, and access control systems
requires high-level of rigor and reliability. Integrating formal methods (FMs) into a
software development process improves software quality and reliability by revealing
subtle errors that may not be, otherwise, discovered before it is too late and too ex-
pensive to fix. It also increases productivity by supporting development of semantically
based tools.

Usually, developers describe different aspects of a system, using several description
techniques and notations. For instance, one might want to describe the functional
behavior of a system as a composition of the functional behaviors of the modules
constituting the system. Moreover, one might want to specify structural relationships
between the modules, e.g. modules that may directly communicate. At the time of
this writing, there is no single description technique or notation that conveniently can
capture complete behavior of a system from different view points, and at the level
of rigor necessary for reasoning about reliable systems. Hence, integrating several
specification techniques, notations, and formalisms is necessary.

When several description techniques and notations are involved in a development
platform, using a common underlying semantic domain is very essential. This signifi-
cantly reduces the effort to check consistency across language boundaries, by allowing
reasoning about system properties in a uniform manner. As mentioned in the previous
section, when it comes to practical applications, both the semiformal OOAD techniques
and the FMs have inherent strengths and limitations. We argue that a development
platform that pulls together strengths of FMs and OO graphical modeling technique
significantly improves the reliability of critical systems. The main objective of method
integration approach is to obtain a development framework and a supporting tool that
enhance application of FMs in an industrial setting, and at the same time make the
OOAD techniques amenable to rigorous analysis.

4

2.1 Notations and Formalisms

2.1 Notations and Formalisms

In the rest of this section, we present a brief overview of the notations and formalisms
involved in the integrated platform. We do not present a complete tutorial on the
notations, instead we focus only on key features that will be encountered in later sec-
tions. For detailed presentations, interested readers should refer to respective relevant
literatures.

2.1.1 The Unified Modeling Language

The Unified Modeling Language (UML) [28, 34] provides a set of standard notations
and modeling techniques for specifying, visualizing, and documenting artifacts of soft-
ware systems. UML supports a highly iterative, distributed software development
process, where every stage of the software life cycle, e.g. requirement analysis, and de-
sign, can be specified by using a combination of different description techniques. Our
work is based on UML 1.3.

At the time of this writing, there is no standard formal semantics for UML notations,
and this makes development of semantically-based CASE tools a difficult task. Most
tool vendors use in-house semantic definitions for UML notations. In the UML standard
[28] a semi-formal semantic guideline is provided for developers of UML tools.

Static structural system properties can be specified by UML diagrams such as class,
and component diagram, whereas dynamic properties can be captured by diagrams
such as the interaction diagrams, statecharts, and activity diagrams. An interaction is
specified by a sequence diagram consisting of a list messages exchanged between the
interacting objects involved in the interaction.

A sequence diagram is a particular type of diagram describing a specific pattern of
interaction between objects in terms of messages exchanged as the interaction unfolds
over time to effect the desired property. A message is a specification of a communi-
cation between objects, or an object and its environment, conveying information with
the expectation that an activity will ensue. A sequence diagram specifies roles of the
objects, i.e. sender or receiver, as well as the associated action that causes the commu-
nication to take place. However, it conveys a possible behavior rather than restricting
all possible behaviors. UML sequence diagrams are efficient description technique for
describing scenarios of systems with time-dependent functionality, like real-time ap-
plications. The simplicity of sequence diagrams makes them suitable for specification
of intended behavior that can easily be understood by every stakeholder: customers,
requirements engineers, and software developers alike [45].

We are interested only in externally visible properties of objects and ignore internal
changes. We distinguish between send and receive events associated with each message
when modeling the behavior of objects participating in the interaction specified by
a sequence diagram. Hence, in a specification of a message, correspondence between

5

2.1 Notations and Formalisms

the send and receive events constituting the message has to be established. In our
framework, a message is interpreted as a pair of send and receive events. Hence, a
sequence diagram is interpreted as a set of traces of events satisfying some specific
properties, such as the causality and the general ordering requirements [3].

UML supports the notion of time (see [28, chap. 3, pp. 98]) and allows specification
of the time when a message is sent and received. The notion of time can be captured by
stamping events by the time of their occurrences. This sort of information is useful for
expressing temporal properties of traces, e.g. the minimum time interval between the
occurrences of two events. Stamping of events with global time is crucial, for example,
to obtain the global history by merging traces of events by interleaving the events in
temporal order of their occurrences. The resulting trace is a specification of the global
history of the object under consideration.

An object participating in an interaction is represented as a set of infinite and
finite traces reflecting, respectively, non-terminating and terminating executions. For
safety properties, finite trace semantics is sufficient to specify behavior of a system
over a finite time interval. Hence, we define the semantics of a sequence diagram as
a prefix-closed set of finite traces, and represented in the PVS-SL as sets of lists of
events.

2.1.2 The Object Constraint Language

The abstract syntax of UML constructs is given in terms of UML meta-models, using
UML class diagrams enhanced with textual annotations. The graphical UML models
are not, expressive enough for precise and unambiguous specifications. There is a need
for description of additional constraints on objects in UML models.

In the UML standard [28], constraints on modeling elements are given as a set of
well-formedness rules expressed in the Object Constraint Language (OCL) [44] com-
plementing the English language. OCL is a specification language extension to the
UML notation provided as a part of the UML standard since UML v1.3 [28]. OCL
is an expression language that enables developers to formulate constraints and object
queries in the context of UML models. OCL expressions are used to specify invariants
attached to static structural elements such as classes and types, pre- and post-condition
of operations and guards for state transitions.

OCL is a declarative language, not a programming language, i.e. evaluation of OCL
expressions does not have side-effects on the associated UML model. Consequently, it
is not possible to write program logic or control-flow in OCL, or invoke processes or ac-
tivate non-query operations within OCL. As a modelling language, all implementation
issues, except their correctness, are out of the scope of OCL. Hence, unlike some other
formal languages such as Z [37], OCL specifications (specially invariants) are not easily
convertible into program code. However, in the development of larger systems heed to
the implementation is needed as it would not be feasible to back off in the middle of

6

2.1 Notations and Formalisms

the development and start coding from the scratch. A number of tools for parsing and
checking syntax of OCL specifications are available, e.g. OCL tool [27] developed at
the Dresden University of Technology, and Octopus [26] developed by Klasse Objecten.

To integrate constraints into UML models, invariants, and pre- and postcondition
are attached as comments to respective modeling elements. Constraints may, however,
turn out to be quite complex, with the impact that they are often specified separately.
The contextual modeling element is explicitly specified by the context clause.

OCL is a typed language based on the first-order logic. Logical operators and
universal quantifiers in the first-order logic, and set operations lead to a powerful
expressive language. Besides user-defined model types (e.g. classes, interfaces) and
predefined basic types (e.g. integer, real, boolean), OCL has the notion of object
collection types (e.g. sets, bags, sequences). Several operations such as the arrow
operation — are predefined on the object collection types. For example, consider the

<<enumeration>> Transaction

TransactionKind approvedBy Employee
withdraw kind: TransactionKind " :
deposit amount : nat * L.* | name string
transfer

Figure 1: Partial Description of a UML Class Diagram

partial description of a UML class diagram shown in Figure 1. The Transaction
and Employee classes are related by an association with one association end called
approvedBy. The following OCL expression specifies that each transaction of kind
withdraw or transfer involving an amount of funds above $10000 must be approved by
at least two employees.

context Transaction inv:
(self.kind = withdraw OR self.kind = transfer) AND self.amount > 10000
implies self.approvedBy->size > 2

Let us briefly explain the parts of the above OCL expression. The class name
following the keyword context specifies the class for which the invariant is defined. The
keyword ¢nwv indicates that this expression is a specification of an invariant, i.e. the
expression must always evaluate to true for each object of the context class. But, an
invariant can be violated during an execution of an operation. In other words, an
invariant must hold for an object when none of its operations is executing.

The keyword self is optional and refers to the object for which the expression is
evaluated. Attributes, operations, and associations of the object can be accessed by
dot notation, e.g. self.approvedBy results in a set of objects of class Employee
associated with the Transaction object for which the invariant is currently evaluated.

7

2.1 Notations and Formalisms

The arrow notation (—) indicates that the collection of objects proceeding the arrow
is manipulated by a predefined OCL operation following the arrow. For example, for
a given collection ¢, the expression c—size() returns the number of elements in the
collection.

There is a point to be made about constraints and inheritance in object-oriented
models. In object-orientation, it is a rule that classes at the lower level of an inheritance
hierarchy are always more specialized and concrete than the abstract classes at the
higher level. This principle continues to hold for constraints, in that a subclass may
strengthen constraints inherited from its superclass. In other words, a subclass inherit
constraints from its super class, and may have additional constraints. This may cause
problems where classes are freely reused.

Constraints are specification of conditions that should not be violated. But, OCL
v1.0 does not describe the measure to be taken in case a constraint is violated. As OCL
is an expression language, one may argue that action does not need to be taken, and
the model will be in an invalid state. Kleppe et al [23], however, proposed an extension
of OCL by action clauses. The action semantics and object query language definitions
are among the main feature added to OCL v2.0 that is a part of UML v2.0.

Semantics of OCL expressions are described informally in the standard document
[28]. Richters et al [33] proposed a formal semantics for the OCL constructs. Several
extensions of OCL are proposed in the literature. Flake et al [12] propose temporal ex-
tension of OCL that enables developers to specify behavioral state-oriented constraints
and present a formal semantics of state-oriented constraints [13].

We have given a brief summary of basic concepts of OCL used in later sections,
and refer interested reader to the latest proposal of OCL 2.0 language definition [43]
for more details.

2.1.3 Motivation for Creating a more Expressive Language

The main goal of the ADAPT-FT project is to develop a platform supporting pre-
cise modeling of systems that are distributed, object oriented, and open. We wished
to address high level specification of such systems, as well as high level models and
implementations, based on a semantical foundation enabling formal methods suitable
for the setting of open distributed systems. In order to integrate well with UML (for
obvious reasons) we deliberately used well known UML concepts, and developed a mod-
eling language, which may act as a textual counterpart to more graphical languages,
and with more expressiveness capturing complete behavior. The language, known as
OUN, includes executable imperatives for high-level system implementation, as well
as a non-executable sub-language for system specification purposes. A compiler from
implementation in OUN to Java was developed, allowing execution of OUN programs
as well as an executable operational semantics in Maude [8].

8

2.1 Notations and Formalisms

We wished to contribute to the research direction of developing observable specifi-
cations of components, allowing top-down design of components where a ”black box”
specification of the observable behavior of aspects of a the component comes before
the design of its inside structure. This is a development strategy recommended by
theoreticians as well as practitioners; however, according to state of the art it seems
that the questions of how to formulate behavioral specifications, and how to integrate
them into an object oriented setting, are not quite settled — at least, when considering
specification methods understandable for programmers without special mathematical
training. In contrast, the state based style of specifying components requires the defi-
nition of a state-space within the components and requirements specifications can then
be given by means of invariants expressed in, say, first order logic or by means of tempo-
ral requirements expressed in temporal logic. OCL is oriented towards specification of
invariants, pre- and post-conditions by means of a language built upon first order logic
(with some adjustments). In particular, it does not support specification of observable
behaviors of objects and components.

We therefore found it interesting to develop OUN [29], allowing observable spec-
ification of (component) interfaces, supporting aspect oriented specification, as well
as specification of assumed or required environmental behaviors; along with imple-
mentation of interfaces through (component) classes defining state space, invariants as
well as imperative implementation of methods. In the language, a component is cap-
tured by an object of such a class, equipped with a local processor, and a local ”run”
method. Distribution is enhanced by facilities for asynchronous communication, and
object orientation is maintained by staying within a generalization of remote method
invocation. High-level language constructs for programming of processor release points
and passive waiting construct, through nested guards, allow components to dynami-
cally change from active to reactive behavior, and give a reasonable efficiency control
at a high level. In order to support openness such as dynamic reconfiguration, a dy-
namic class construct is provided, allowing software components to be upgraded during
execution.

Thus OUN may be used both for specification purposes as well as (high level)
implementation purposes. The language may be seen as an extension of the basic
mechanisms of OCL, through the OUN mechanisms for class level reasoning, extended
to black box specifications of observable behavior of aspects of components. In OUN,
behavioral specifications can be related to class level (OCL-like) specifications through
notions of abstraction and refinement.

Note that the OUN notation will not be used in the examples discussed in the
sequel. The intention of the brief summary of OUN presented above is to provide an
overview over the ADAPT-FT project, which greatly influences this work, by revisiting
the integrated platform and the notation it involves. More details can be found in the
OUN specific papers listed at the ADAPT-FT project web site, including [9, 21, 20].

9

2.1 Notations and Formalisms

2.1.4 PVS as Underlying Semantic Domain

The Prototype Verification System (PVS) [30] is an environment for constructing pre-
cise specifications and for developing proofs that can be mathematically verified. PVS
is based on a strongly typed higher-order logic with powerful verification and validation
mechanisms. A salient feature of PVS is its capacity to provide a highly expressive
and strongly typed specification language (PVS-SL) [30] tightly integrated with a type-
checker, and an interactive general-purpose theorem-prover.

The PVS type system has been augmented by predicate subtyping and dependent
typing mechanisms. Subtyping makes type checking more powerful by allowing stronger
checks for consistency and invariance in a uniform manner. Subtyping renders, how-
ever, type checking undecidable and proof obligations may be generated during type-
checking. A great deal of proof obligations can be discharged automatically using the
PVS theorem-prover, whereas more involved ones require interaction from the user.

The PVS environment provides semi-automatic tools with significant automation
including decision procedures for several common theories such as equality and linear
arithmetic [30]. A particular strength of PVS is its capacity to exploit the synergy
between its tools. For instance, the theorem proving can be used in type checking, and
information obtained from type checking and model checking can be used in theorem
proving. As the main goal of the ADAPT-FT project was to adapt, tune, redevelop,

UML OUN

PVS JAVA

Figure 2: Translations in the ADAPT-FT Platform

and extend, formal methods towards the special needs of open distributed systems,
an underlying semantical foundation was needed, preferably a foundation already im-
plemented with a series of powerful tools. PVS [30, 31] was a natural choice in this
respect, especially due to its strong type systems and functional sub-language, covering
inductive data types and inductively defined functions, and its reasoning capabilities
and tools, including some model checking facilities.

PVS provides a vehicle for defining the semantics of the OUN language, in a precise
manner, and for defining the associated specification formalism, including concepts for
refinement and composition, and at the same time allowing development and reuse of

10

2.2 Semantics of UML Notations in PVS

the semantical definitions in the design of tools, such as forms of reasoning tools. Even
though the nature of PVS may be mathematically challenging to software engineers, a
semantical basis is needed, from which engineering tools that are less esoteric may be
developed. For instance, in the ADAPT-FT platform, integrating UML, OUN, Java
and PVS, and by translating UML to OUN, Java and PVS, and OUN to java and PVS
(see the arrows in Figure 2), one may develop tools at the level of UML diagrams or
OUN programs, where the implementation of the tool is done at the PVS level (by
means of PVS translations). Tools giving yes/no answers require no insight in PVS,
and may provide useful feedback to the engineer. It would of course be desirable to have
tools giving UML or OUN related feedback, built from PVS related tools; however, this
is beyond the scope of the ADPAT-FT project.

2.2 Semantics of UML Notations in PVS

Rigorous analysis of UML models of large applications involves manipulation of huge
software artifacts, in which case tool support is crucial. This in turn calls for formal
semantic definitions for the graphical UML notations. Consequently, a formal semantics
facilitates verification, validation and simulation of models and improves the quality
of models and software design. In our case, formal semantic definitions for the UML
notations are proposed by representing them in a well-founded formalism, namely the
PVS specification language (PVS-SL).

A semantic definition for a UML sequence diagram captures properties that a sys-
tem is expected to exhibit, i.e. system interaction described by the sequence diagram.
Assumptions and invariants on the system are expressed in the PVS specification lan-
guage as axioms and conjectures respectively. A trace of events specifies a possible run
of the application specified by the sequence diagram if and only if the trace satisfies
the requirements stated as predicates, provided that the assumption are fulfilled. For
instance, for a trace that specifies a possible scenario of the interaction specified by
the sequence diagram, and a given object participating in the interaction, the projec-
tion of the trace onto the set of events on the object must satisfy the requirements
on the traces of the object. The requirements are stated as predicates on the set of
traces of events. Static semantic constraints on modeling elements given as a set of
well-formedness rules expressed in the Object Constraint Language (OCL) [44] can be
specified similarly.

The formalization approach adopted for UML statecharts consists of definition of a
set, of elementary predicates describing properties of system states or operations. The
set of elementary predicates is then partitioned into elementary states and events. A
state describes a condition of the system that has a non-zero duration. We make a clear
distinction between concrete states of the system and the abstract notion of states in
UML statecharts. We define three categories of predicates associated with the notions
of state vertex, guard condition, and action respectively. The predicate associated

11

2.3 Tool Support

with a state corresponds to a condition that must hold for the state to be activated.
Predicates associated with an action corresponds to a condition that holds after the
execution of the action; that can be understood as action’s postcondition. Whereas
the state and guard conditions are boolean functions of values of the state variables
before the execution of an operation starts, the postcondition is a boolean function of
values of the state variables both before and after the execution of the operation.

A transition is enabled if the event instance generated matches its trigger, its guard
condition is true and its source state is active. An enabled transition may be eligible
for firing. Firing a transition will activate its target state and execute its action.

2.3 Tool Support

A tool support is a crucial component for successful application of a development frame-
work in industrial settings. A CASE tool enables developers to manage large-scale
projects, which usually involve manipulation of large software artifacts, and reduces
development time by enabling them to discover subtle errors automatically. Experi-
ences show that even the most carefully crafted formal specification and proof, can still
contain inconsistencies, omissions and other errors [14].

To address this issue, we have developed a research platform, called the PrUDE
(Precise UML Development Environment) tool [5]. The PrUDE integrates the UML
[28] modeling notations and the PVS [30] formalisms, and their respective tools. Most
of the commercial UML tools support only syntactic checks and code generation. Se-
mantic checks are crucial in the development of critical systems, and hence it is nec-
essary to integrate UML tools with a verification environment. In this regard, we use
the PVS specification and verification environment and its toolkit in developing of our
CASE tool, namely the PrUDE tool, to support not only formal verification but also
testing and structured reviews.

The PrUDE tool supports automated generation of formal specifications from UML
models in PVS based on the UML semantics proposed in [1, 3, 4, 38]. UML models
along with business rules are translated into PVS so that the theorem proving technique
is exploited in checking their validity and consistency. The resulting specification will
be an input to the PVS verification toolkit running at the back-end.

The PrUDE tool suite supports checking well-formedness, consistency, model check-
ing, proof checking and testing. The design models are created using a UML tool,
whereas model analysis steps are performed using the PVS toolkit. The interface of
the PrUDE tool to UML tools is based on the XMI [22] thus providing an explicit
data exchange format. Since most of the existing UML tools support model exchange
in the XMI format, the PrUDE platform is tool vendor independent, making it easily
adaptable to existing software development environments.

A major strength of the PrUDE tool is that it allows developers to deal with
graphical UML models they have created, with minimal interaction with the formal

12

2.3 Tool Support

stuff generated from the models and processed at the back-end. The latter is achieved

by identifying and implementing proof strategies that provide automated solutions for

verification of system properties based on the formal semantic definitions. Test cases

are generated from UML models that are valid, i.e. well-formed and model checked
successfully. The PrUDE tool provides an automatic test case generator and a test

execution component.

2.3.1 V&V Strategy in the PrUDE Platform

The V&V strategy underlying the PrUDE platform is shown in Figure 3. The rectan-
gular boxes denote major activities, whereas the eclipses denote the resulting artifacts.

The main steps in formal V&V process using the PrUDE tool are summarized below.

Start by developing design model using any UML CASE tool that supports model
exchange in the XMI format. The UML models in the sequel are developed using
the ArgoUML v0.12 [17] tool.

Describe properties of the modeling elements more precisely by adding suitable
assertions. The assertions can be specified either in standard mathematical no-
tations or OCL expressions.

The XMI model exported from the UML model is imported into the PrUDE tool.

Invoke the PrUDE tool and import the XMI file generated from the UML model.
That means, a project in the PrUDE tool consists of a UML model, possibly
augmented with business rules expressed as OCL constraints [44]. By using the
PrUDE tool we can check well-formedness of the UML models, generate semantic
models in PVS specification language, and analyze the resulting semantic mod-
els. Translation of UML models into PVS results in specification templates that
include generic assertions such as well-formedness rules defining static semantics
of UML models, and serving as the basis for the verification process. To perform
a meaningful analysis, we need to complete the specification by adding some
domain-specific assertions using the PVS property editor.

Finally, we analyze the semantic models by invoking PVS tools within the PrUDE
tool. Type-checking, model-checking, and proof-checking are among the major
analysis steps. In PrUDE, the PVS theorem prover can be invoked either in a
batch mode or in an interactive mode allowing users to guide the proof steps. If
a verification step fails, a PVS log file consisting of messages indicating errors or
omissions is output. We interpret the message and trace the discovered errors
back to the UML model, fix the errors and iterate through the above steps.

13

2.3 Tool Support

OCL business rules
/ A TT—— | Semartic
! |
: |
| B

conversion OCL2PVS =

| \ translation
I 2\
\ Error \\
) N
\\ N v
" \\\ - Type-checking
N | - Well-formedness-checking

) |

V alidation/V erification
~ - M odel-checking
- Proof-checking

Valid UML model
P> ™

‘ Test case generatio# ‘ Code generation ‘

AL V
Test cases
Program
! - Test executiory ,
N =

- Test coverage analysis

Figure 3: V&V Strategy Underlying the PrUDE Platform

If a verification process is successfully completed, i.e. a valid UML model is obtained,
we proceed with the development process using the UML models. We may refine them
to achieve an implementation of the system. The resulting program code can be tested
using the PrUDE tool based on the UML specification. Test cases are generated from
the valid UML model obtained after a series of V&V steps. The test cases are derived
from various constraints related to the model, e.g. invariants, pre- and post-conditions.
The current version of the PrUDE tool provides automatic test case generator and a
test execution component for Java programs.

2.3.2 Known Limitations of the PrUDE Tool

The PrUDE tool is a research prototype developed to automate some aspect of the
formal development framework we proposed. The PrUDE tool has some known limi-
tations mainly with respect to implementation-related issues.

Firstly, the translation of system properties described in OCL expressions into PVS
is done manually in the current version of PrUDE tool. Hence, developers are expected
to be familiar with the OCL notation, and to be able to use it to express business rules.
In the future, the PrUDE tool will be extended with a component that automatically
translates and integrates OCL expressions into PVS specifications, which should be
rather straightforward. Moreover, semantic definitions should be extended and more
proof strategies should be developed for the verification of domain-specific properties.

14

3. Case Study: a Banking System

Another shortcoming of the PrUDE tool is that feedback from the PVS theorem
prover, in the case of a failed proof, is rendered as an error message embedded in a
PVS message. By using the contextual vocabulary of the application domain in both
the UML models and the PVS log messages, developers can trace the cause of an error
message. But, the error message provides little support for automated tracing of the
component in the UML model that contains the error. In the future, we will implement
a parser that interprets the PVS error messages and translate them into a plain text
understandable to the developers.

3 Case Study: a Banking System

In this section, we illustrate practical usability of the integrated framework we proposed
[41] and the PrUDE tool by presenting an example of a formal development of a
critical system - an electronic banking system. A typical banking system consists of
the following main components: -

a set of account numbers

- an account master file - a data structure for storing the current balance for each
account;

- a list of transactions performed on the accounts during a given period of time;

- a set of journals for storing transactions that are received from teller stations but
not yet entered into ledgers;

- a set of ledgers for tracking the flow of funds on their way through the system;
- a set of automatic teller machines (ATMs), usually known as cash machines;

- audit trails for recording actions of employees - essential information for verifica-
tion of security requirements such as non-repudiation;

- a set of program modules for overnight batch-processing of transactions, i.e. for
posting the transactions into appropriate ledgers, and for updating the account
master file.

- several categories of actors - customers, employees, system administrators, audi-
tors, etc.

Online processing includes a number of program modules for adding transactions to
appropriate combinations of ledgers. For instance, if a customer has successfully de-
posited a certain amount of funds into an account, then a transaction is created and
the same amount of funds is debited from the saving account ledger, and credited to

15

3.1 Summary of System Requirements

the ledger recording the cash in the drawer. That means, a successfully completed de-
posit transaction involves modifications of both the drawer and the debit ledgers. This
scenario is useful for monitoring the overall balance of the bank and activities of bank
employees.

3.1 Summary of System Requirements

Functional requirement specification is a description of services that the system is
expected to provide, how the system should react to a particular set of events, and
how the system should behave in particular situations. The banking system is expected
to provide the following list of functionalities. Note that the system requirements are
significantly simplified and details are left out.

e The system must provide an authentication mechanism.

e Customers should be able to deposit, withdraw, or transfer funds, and inquire
balances on their accounts.

e Customers should be provided with magnetic cards and PIN codes that will be
used in the authentication process to use the ATM terminals. The ATM terminals
should allow customers to choose a specific service, e.g. cash withdrawal, or
balance enquiry by pressing an appropriate key on the terminal.

e Customers should be able to change PIN codes.

e Cancellation of a transaction should be allowed, if necessary, before its comple-
tion. A successfully completed transaction is kept in a journal until it is processed
and posted to the appropriate ledgers and the account master file is updated.

Non-functional requirements are constraints put on the system, e.g. security require-
ments, and response time requirements. For an electronic banking system, a strong
security mechanism is crucial to prevent customers from cheating each other and the
bank, to prevent bank employees from cheating the customers and the bank, and to
provide sufficient information for reconstruction of transactions and evidence to trace
illegal actions. Different security models can be implemented to achieve the security
requirements. In the Clark-Wilson model [7], for instance, security critical data items
are constrained so that they can only be accessed or modified by users with appropriate
level of security clearances. Data items are tagged with values specifying the level of
access right required to access them, whereas actors are tagged with different levels of
security clearances resulting in an access control matrix.

16

3.2 UML Models for the Application Domain

3.2 UML Models for the Application Domain
3.2.1 Functional and Structural Models

Using the UML modeling techniques, major components and aspects of the banking
system and its business rules can be captured from different viewpoints. System func-
tionalities and expected behaviors can be viewed as interactions between the system
and its environment - actors such as customers, bank employees, and system adminis-
trators.

UML use case diagrams are description technique for specifying, at a high level
of abstraction, what the system is supposed to do. Use cases are often used in the
early stages of the design process to capture the intended system requirements. For
instance, the use case diagram shown in Figure 4 describes major functionalities of
the banking system. A possible realization of a use case can be modelled as an in-
teraction and can be specified by a sequence diagram. Structural system properties

Withclraw Fund Authenticate

Change PIM %

BankEmployee

1

Depasit Fund Customer

Inguire Balance

1
[0

Figure 4: A Use Case Diagram Modeling System Functionalities

can be captured using class diagrams in terms of classifiers and relationships between
them. This enables system developers to focus on design issues at a suitable level of
abstraction by avoiding implementation details. The class diagram shown in Fig. 5, for
example, models major components of the banking system: the classes Bank, Person,
Account, BankCard, Transaction, Ledger, Journal, ATM, CardReader, CashDispenser,
and ATMSession and relationships between them. The links connecting the classifiers
model communication, containment, and dependency relationships. For example, the
classes Account and Bank are connected by a composition relationship that specifies
the fact that an instance of the class Bank contains one or more instances of the class
Account, whereas an instance of the class Account is contained in exactly one bank.
A class specifies the data structure of its instances in terms of attributes and their

17

3.2 UML Models for the Application Domain

FPersan

age : hat Journal
narne : String trans - List
address : String SeRE e
entarPing Account addTrans
enterChaiced) 0.* lacckum : String removeT ransd
enterAmountd balance : int
collectCashi 0..* |creditLirmit : nat
coIIeFtCardo trans o List kept_in
oty updates
cepositd 0"
e) cradit_ta Led
o - olcter updatewithdraw(Transaction 0.* - = ger
= updateDeposity) 0% transiD © nat frans : List
BankCard checkBalanced kind : nat name : 5tring
cardType : sring f o o \arifyRing amount : int o~ dekit_to amount ; int
numkber : String % o add?2 Journal(- addTrans(
2 add2Ledgersg sumTrans{d
accoungs
o * 1.*
ledgers
Bank
4 ledgers : Set
__lbalanced : Boolean
e i 0.* | CashMachine ATMSession
« |checkBaancen id : nat sessionlD : nat
i 2 readPing
e updateBalanced i opensession
readiChoiced
closeSessiond
CashDispenser reacamount(
CardReade
cash ; nat
ejectCard
readiCardg

Figure 5: Class Diagram Describing Structure of the System

behaviors in terms of operations manipulating the data structures. The class Account,
for instance, specifies a data structure that stores account number, current balance on
an account, and a PIN code, and operations for manipulating them.

Remark 3.1 The UML diagrams presented in the sequel are generated by using the
ArgoUML [17] CASE tool. The stick arrowhead (—) on an association end in Figure
5 specifies the direction of navigation. The default multiplicity on an association end
1s 1 and association ends without explicit multiplicity assume the default value.

The structural model of the banking system is shown in Figure 5 and briefly summa-
rized below.

e An instance of Bank may contain one or more instances of the class Account,
whereas an object of the class Account belongs to exactly one Bank. A bank
may own zero or more cash machines, issue zero or more bank cards, have zero
or more customers, etc.

e A cash machine contains exactly one cash dispenser, one card reader, and at most
one ATM session at a time.

e A transaction is associated with exactly one account, whereas an account may
contain several transactions that are temporally ordered based on their time of
completion.

18

3.2 UML Models for the Application Domain

e We assume that an account is owned by exactly one customer, whereas a customer
may own several accounts. This can easily be relaxed to accommodate the case
where an account is owned by a set of customers.

e There are two associations between the Transaction and the Ledger classes.
This is to capture the fact that every transaction is posted to a pair of ledgers;
one recording credit to the bank and the other recording debit from the bank.
This enables us to effectively record flow of funds and to monitor overall balance
of the bank.

3.2.2 UML Sequence Diagrams

UML sequence diagrams are used to specify dynamic behavior of a system in terms
of interactions between system components. They are useful for every stakeholder as
they enable customers to visualize the specifics of their business processing; analysts
to visualize the flow of processing; developers to visualize the objects that need to be
developed and operations on those objects. An interaction is a possible realization of a
use case described in terms of temporally ordered list of messages exchanged between
the objects involved in the interaction.

Sequence diagrams exist in two variants, namely the generic and instance forms.
The generic form of sequence diagram describes must-interactions, whereas the instance
form describes may-interactions between objects. Damm et al [10] define a variant
known as Live Sequence Charts (LSCs), the main addition being the ability to specify
a temperature (hot or cold) to specify the must and may interactions respectively. A
generic sequence diagram describes the interaction of classes, and documents all of the
messages that can be exchanged between objects of the classes. An instance form of a
sequence diagram describes a single possible scenario that may or may not occur. In
the sequel, we consider the instance forms of UML sequence diagrams.

In an implementation of a behavior specified by a sequence diagram, a message
corresponds to a method call on an object involved in the interaction. In a statechart
diagram a message maps to an event that triggers a state transition. For example,
the withdraw Fund use case shown in Figure 4 can be realized by the set of possible
traces of events that lead to a successful withdrawal of funds, or to an unsuccessful
attempt that is interrupted, for example, due to lack of sufficient funds in the account,
or a wrong PIN code. For this discussion, we can assume that the authentication is
successful. The sequence diagram shown in Figure 6 describes a scenario that leads
to a successful withdrawal of funds from an ATM terminal. The interaction begins
when a customer inserts a card into the card reader, which extracts information such
as account number, balance on the account, PIN code, etc. and opens a session that
interacts with the customer. The session prompts the user to enter a PIN code, and the
ATM validates the PIN code. If the PIN code is valid, a list of the available services

19

3.2 UML Models for the Application Domain

r . CardReader A Account cd : CashDispenser
ml: readCard

2 | opensession ats | AT MSession

m3 | enterPin

F Y

m4 : readPin

b 4

m5 ; werifyPin

< ______________________

mé ; pinlk

F Y

m7 : enterChoice

md : readChoice

b 4

F Y

m3 : enterAmount
m10 : readAmount

h 4

11 : checkBalance

h 4

< ______________________

ml2 : balanceCk
mi3 : proviceCash

e I

ml4: cashOk

A

ml5 collectCash
16 : updatewithcraw

h 4

ml7 : ejectCard

m18 : collectCard
| ml8: closeSession

Figure 6: Sequence Diagram for a Successful Withdraw Funds Use Case

(deposit, withdraw, or transfer funds) is displayed. The customer selects a service,
the Withdraw in this case, by pressing an appropriate key. The ATM session prompts
the customer to enter the amount of funds to be withdrawn. When the customer
enters the amount, availability of sufficient funds on the account, and sufficient cash
in the dispenser are verified. If there is sufficient funds, the ATM deducts the amount
from the balance of the account and updates the information on the card. The cash
dispenser provides the cash and a receipt to the customer and the card reader ejects
the magnetic card and closes the session. The ATM completes the transaction and
sends it to the banking system. The system may keep the transaction in a journal for
batch processing or add it to appropriate ledgers.

The balance on the account should be updated only after the transaction is com-
pleted and cash is delivered to the customer. In cases where a transaction is interrupted,

20

3.2 UML Models for the Application Domain

topState

T4 withdraw [(balance-a«0) AND (balance-a> creditLimit)]

T2: withdraw [balance - a > 0 TY: withdraw [balance-a » creditlimit]

| Credit | | Dehit |

Td: j updateDeposit O Td: J updateDeposit
Tw [updateWithdraw O Twe. S updatewithdraw O

T1: opkn
TZ: deposit

—

b deposit [balance+a <

T7: deposit [halance+ax Q]

Figure 7: Statechart Diagram for the Account Class

e.g. due to invalid PIN code, or insufficient funds in the account or in the cash dis-
penser, the system allows the customer, respectively, to reenter the PIN code a limited
number of times, or to try a smaller amount of funds. If a transaction is interrupted,
appropriate messages will be sent to the actors, e.g. a customer or an employee.

The sequence diagram shown in Figure 6 does not specify whether or not an account
is updated before cash is successfully delivered to the user. It does not specify whether
a successful authentication, i.e. correct PIN code, and availability of sufficient funds
both in the account and the cash dispenser, are prerequisite for the delivery of cash
either.

3.2.3 UML Statechart Diagrams

UML statecharts are used to model dynamic system properties as a complete life cycle
of an individual object. This enables us to visualize interactions between the object
and its environment. State machines are the basis for important security requirements
specification [15]. To show that a given system property is fulfilled using a state
machine, it suffices to identify some states satisfying that property and prove that all
transitions preserve the property. In that case, if the initial state has this property,
then by induction, the system property holds always. The essential features of a state
machine are the notions of state and state transitions occurring at discrete points in
time. A state is a representation of a behavior of an object, or the system as a whole,
at a given point in time capturing exactly the aspects relevant to the problem. For
example, an account can be either in the Debit state or the Credit state. The directed
links connecting the states describe transitions between the states. The possible set
of state transitions can be specified by a nezt state function, which defines, for every
state, the set of next states depending on the present state and the triggering event.

21

3.2 UML Models for the Application Domain

A transition is labelled by a string of a general form n:e[c]/sa, where n is a tran-
sition name, e is a trigger event, c is a guard condition, and sa is a sequence of actions.
For instance, in the statechart diagram shown in Fig. 7, which models complete life cy-
cle of the class Account, T1,T2, . ..,T7 denote transition names, withdraw and deposit
are trigger events, and balance - a > 0 is a guard on the transition T2. Sequences of
actions are not explicitly shown in the statecharts diagram. For transitions triggered
by event deposit, i.e. transitions T3,T6,T7, the list of actions includes updating of the
balance with balance:=balance + a, whereas the withdraw event triggers transitions
T2,T4,T5, leads to updating of the balance with balance:=balance - a. In the se-
quence diagram shown in Fig. 6, the later corresponds to the receiving and processing
of the updateWithdraw event by an account object.

Assertions on states, guard conditions and actions in statechart diagrams are trans-
lated into PVS expressions and integrated into the semantic model using the PrUDE
tool. A predicate on a state specifies a condition that must hold whenever the object
to which the state machine is associated is in that state. For instance, properties of an
account, when it is in the Credit and Debit states, can be captured by the following
local predicates.

State : TYPE+

acc: VAR Account

Credit, Debit : VAR State
pred(Debit) = balance(acc) < 0
pred(Credit) = balance(acc) > 0

A guard condition on a transition is a predicate that specifies the condition that
must hold for the transaction to fire. A guard condition can be viewed as a pre-
condition for the operation associated with the event triggering the transition. Guard
conditions on state transitions are translated into predicates in PVS specification lan-
guage. For instance, the guard conditions on the transitions in Figure 7 can be
translated into the following predicates in PVS, where the guards g2,g4,g5,g6,g7
correspond to the transitions T2,T4,T5,T6,T7.

Guard : TYPE+ : [Account, nat — bool]

amount : VAR nat

g2, g4, gb, g6, g7 : VAR Guard

g2 (acc,amount) (balance(acc) - amount > 0)

g4 (acc,amount) (creditLimit + amount < balance(acc)) AND
(balance(acc) - amount < 0)

g5 (acc,amount) (creditlLimit + amount < balance(acc))

g6 (acc,amount) = (balance(acc) + amount < 0)

g7 (acc,amount) (balance(acc) + amount > 0)

The creditLimait is an attribute of the Account class, which specifies the maximum
amount of funds a customer can withdraw in debt, i.e. a fixed value that shows how

22

3.2 UML Models for the Application Domain

far the balance on the account can go below zero. The bank may change, through ne-
gotiation and agreement with the customer, the value of the creditLimit of an account.

3.2.4 Specification of Business Rules in OCL

UML diagrams are not detailed enough to address all the relevant aspects of system
specification. Among other things, we need to describe additional constraints on el-
ements in UML models that specify conditions and properties to be maintained, e.g.
data invariants, pre- and post-conditions on operations, and complex multiplicity in-
variants. In this subsection, we describe some examples of constraints on the UML
models given in previous sections using OCL [44, 28] expressions.
Rule 1: An instance of the class BankCard, and the Account with which it is associated
must belong to the same bank. In reference to the class diagram shown in Figure 5,
this property can be captured with the following invariant.
context BankCard inv:

sel f.bank = sel f.account.bank
Rule 2: For every instance of the class BankCard, the card holder must be the same
as the owner of the account with which the card is associated.
context BankCard inv:

sel f.holder = sel f.account.owner This rule can easily be modified to specify the
case where an account is owned by several customers, e.g. a woman and her husband, by
simply changing the type of the attribute owner to a set and the equality requirement
to membership in a set.
Rule 3: The sum of the amounts of all transactions kept in the ledgers must be zero.
This is equivalent to requiring that processing of every transaction preserves the overall
balance of the banking system. Symbolically,

iamount(l) =0 (3.1)

where [is a ledger and n denotes the number of ledgers in the bank. This is a more
complicated and important invariant that enables the banking system to prevent mali-
cious acts by monitoring activities of its employees. For instance, if an employee wants
to credit a given amount of funds to his own account, then he has to debit the same
amount from another account, rather than just modifying the account’s master file.
This requirement can be expressed as an invariant in OCL.

context Bank inv:

sel f.ledgers — collect(trans.amount — sum) — sum = 0

where collect is a predefined OCL operation on the collection type to return a sub-
collection of elements satisfying the predicate given as parameter. The relationships
between the collections ledgers, transactions, etc. are as shown in Figure 5. This

23

3.2 UML Models for the Application Domain

invariant is translated to a conjecture in PVS specification (see Theorem 3.1) and
checked directly using the PVS theorem prover.

This invariant is supposed to hold after completion of each transaction in an on-
line processing, or daily in a batch processing. It significantly improves the security
mechanism of the banking system by allowing monitoring of its overall balance. We
specify a number of ledgers for recording different types of transactions. To simplify
our discussion, we assume that the bank contains only three ledgers, namely:

- a drawer ledger for recording transactions affecting the amount of cash in the
drawer;

- a credit ledger for recording transactions that affect the credit of the bank; and
- a debit ledger for recording transactions that affect the debit of the bank.

Note that the sets of transactions recorded in the ledgers are not mutually disjoint.
When a transaction is successfully completed, it is processed and added to a pair of
relevant ledgers. For instance, a deposit transaction is added to the drawer ledger to
reflect the increment of cash in the drawer, and at the same time to the debit ledger to
reflect the increment in the debit from the bank, i.e. the amount the bank must owe
its customers.

Rule 4: The system must not allow withdrawal of an amount of funds that makes
the balance on the account less than the pre-agreed creditLimit - a fixed amount
of funds that the customer can withdraw in debt disregarding ongoing transactions.
For customers without such an agreement, creditLimit is equal to zero. Moreover, if
a withdrawal is successfully completed, the balance on the account must be updated.
These requirements are specified as pre- and post-conditions on the withdraw operation
as follows:

context Account :: withdraw(amount : nat) : nat

pre: sel f.balance — amount > sel f.credit Limit

post: sel f.balance = sel f.balance@pre — amount
where balance@pre indicates the value of variable balance at the start of the execution
of the operation.

A pre-condition on an operation corresponds to a guard condition on a state transi-
tion that must be fulfilled for the transition to be fired. State transitions must preserve
local invariants, but a state transition may be undesirable globally. That is, when a
transition is fired, the effect of actions associated with the transition may lead to unde-
sirable behavior. For instance, transferring funds to a wrong account number is possible
as far as the pre- and post-conditions are fulfilled. That is, the pre- and postcondition
are necessary but not sufficient to enforce such requirements.

Rule 5: If a person is both a customer and an employee of a bank, then the person must
not be allowed to modify his own account. This requirement is related to the separation

24

3.2 UML Models for the Application Domain

of duties security design principle. To enforce this requirement, every employee must
be identified uniquely, for instance by a combination of social security number and a
password, and a set of accounts that the employee can update must be specified. This
requirement is expressed in OCL as follows:

contextPerson inv:

sel f.updates — excludes(sel f.owns)

where excludes is a predefined OCL operation, and the updates attribute contains the
set of accounts an employee can modify (see section 3.4 for more discussion).
Rule 6: After a successful withdrawal transaction, the effect of the withdrawal must
be reflected on the account by updating its balance before the cash is dispensed. What
if the cash dispenser fails to deliver the cash after the balance is updated? This is an
instance of the transaction integrity problem that can be handled by a new transaction
that reestablishes the correct balance.

In general, transactions can be kept in a journal until they are processed and added
to appropriate ledgers by batch processing modules during the night. In our example,
however, we assume that a transaction is put into ledgers immediately after it is suc-
cessfully completed. System properties described in OCL expressions are integrated
into the PVS specifications generated from the UML models and verified using the
PVS toolkit.

Rule 7: For any account, at most one ATM session can be associated with the account
at any given time. This requirement prevents concurrent withdrawals from the same
account by requiring uniqueness of an ATM session. This can be implemented by
updating the balance on the account before a new ATM session can be started.
context ATMSession inv:

self.allInstances — forall(sl,s2|sl <> s2 implies sl.account <> s2.account)
where the allInstances and the — are predefined OCL operations on types and object
collections respectively.

Rule 8: The balance on an account is equal to the difference between the sum of
deposited funds and the sum of withdrawn funds. This constraint can be specified as
an invariant expressed in OCL, and translated into a conjecture in PVS and discharged.

context account inv:
sel f.balance =
self.trans — select(transKind = deposit)) — collect(trans.amount) — sum

- (self.trans — select(transKind = withdraw)) — collect(trans.amount) — sum

where select and collect are OCL operations and trans is the list of transactions
performed on the account object. The select operation returns a sub-list of trans
for which the boolean expression is true. The collect operation derives a collection
of objects of type different from the original collection. It returns a bag of natural

25

3.3 Formal Analysis Using the PrUDE Tool

numbers, i.e. amounts associated with the transactions selected. The sum operation
returns the total sum of the amounts in the set of transactions to which it is applied.

3.3 Formal Analysis Using the PrUDE Tool

The main purpose of integrating semi-formal modeling techniques with formal meth-
ods (FMs) is to exploit the mathematical foundation underlying FMs in reasoning
about correctness of the graphical models. This requires translation of graphical UML
models, and OCL constraints to PVS specifications to make them amenable to rigor-
ous analysis. The translation of UML models is based on the semantic definitions we
proposed for UML notations [1, 3, 4, 38] and implemented in the PrUDE [5] tool to
support automatic translation of UML models into formal specifications in PVS. The
translation of OCL expressions into PVS is rather straightforward since OCL is based
on first-order logic and PVS is based on higher-order logic.

The formal system development process using the PrUDE platform consists of the
following major steps.

e Analysis and design of a system using UML modeling techniques. In this step,
structural and behavioral properties of major system components, relationships
between the components, and possible interactions between them are described
using the UML modeling techniques and notations. Any UML CASE tool that
supports model exchange in the XMI format can be used to automate this step.
In the sequel, the ArgoUML [17] tool is used.

e PVS specifications are obtained by translating UML models and rigorously an-
alyzed using the verification mechanisms and tools provided by the PVS envi-
ronment in order to prove that the specifications satisfy the requirements. If an
error is discovered during this step, e.g. if a type-checking fails, then the above
steps are repeated until an error-free, UML model is obtained.

e When a valid, i.e. a well-formed, UML model is obtained the developer proceeds
with the implementation and code generation in a language of interest. Most of
the UML CASE tools support generation of skeletons of codes in programming
languages such as Java, C++, etc.

Specifications of generic properties of UML models, e.g. the well-formedness con-
straints, can be captured by the semantic definitions for UML notations and obtained
from the translation of UML models into PVS. The resulting PVS specifications are
analyzed using the PVS verification tools such as the type-checker, theorem-prover
and model-checker. The PVS specification shown in appendix B is, for instance, auto-
matically generated from the sequence diagram shown in Figure 6 using the PrUDE
tool.

26

3.3 Formal Analysis Using the PrUDE Tool

The following are examples of generic properties of UML models. These properties
follow from well-formedness constraints put on UML models.

e For every object involved in a given interaction that is specified by a sequence
diagram, its class should be specified at least in one class diagram.

e For a given class and a statechart diagram describing its life cycle, an operation
that triggers a state transition must be in the set of methods of the class.

As mentioned previously application-specific properties should be added directly into
the PVS specification. For instance, the invariant stated as Theorem 3.1 specifies the
requirement that the overall balance of the bank must be preserved by a processing of
a transaction, i.e. the addition of the transaction into a pair of appropriate ledgers (see
Rule 3 in Section 3.2.4). In other words, for every transaction and a bank, processing
of the transaction, i.e. its addition to a pair of appropriate ledgers, should preserve the
overall balance of the bank.

To specify and verify this requirement, we start by declarations of transaction,
ledger, bank, types. In fact these declarations are extracted from the PVS specification
resulted from the translation of UML models. Note that the excerpt from the PVS
specification contains the minimal information necessary for the following discussion.

TransactionKind : TYPE+ = {deposit, withdraw, transfer}

Transaction :TYPE+ = [# transId: int,
transKind: TransactionKind,
amount: nat #]
Ledger : TYPE+ = [# kind : LedgerKind,
trans : list[Transaction] #]
Bank : TYPE+ = [# accounts: setof[Account],
drawer : Ledger,
credit : Ledger,
debit : Ledger #]

A bank consists of a set of accounts, and three ledgers for recording cash in the drawer,
the credit, and debit of the bank. A ledger consists of a list of transactions in the order
of their occurrences. To every transaction there is an amount of funds.

The recursive function sum_ledger computes the sum of the amounts of funds asso-
ciated with the list of transactions given as a parameter. When the PVS specification
was typed, a TCC was generated in order to ensure termination of the recursion. The
TCC was discharged automatically using the theorem-prover command (grind).

sum_ledger (1t:list[Transaction]) : recursive nat = CASES 1t OF
null : O,
cons(t,1tl) : amount(t) + sum_ledger(ltil)

27

3.3 Formal Analysis Using the PrUDE Tool

ENDCASES
MEASURE length(1t)

The predicate balanced?() defined on the Bank type states the condition that must
hold when a bank is in the balanced state, i.e. the sum of all ledgers is equal to zero.

b : VAR Bank
balanced?(b): bool = sum_ledger (trans(drawer(b)))
+ sum_ledger (trans(credit(b)))
+ sum_ledger (trans(debit(b))) = 0

Processing of a transaction means addition of a successfully completed transaction
into a pair of ledgers, depending on the kind of the transaction. More specifically,
the transaction is appended to the sequence of transaction in the ledgers. It may
be necessary to alter the amount associated with the transaction, for instance, when a
withdrawal transaction is added to the drawer ledger. The auxiliary function neg() was
defined for this purpose, whereas the function processTrans () specifies the processing
of transactions.

t : VAR Transaction
neg(t) : Tramsaction = t WITH [amount:=-amount(t)]

processTrans(t,b) : Bank = IF transKind(t)=withdraw THEN
b WITH [drawer:=drawer(b) WITH [trans:=cons(neg(t),trans(drawer(b)))]
credit:=credit(b) WITH [trans:=cons(t,trans(credit(b)))]]

ELSE IF transKind(t) = deposit THEN

b WITH [drawer:=drawer(b) WITH [trans:=cons(t,trans(drawer(b)))],
debit:=debit(b) WITH [trans:=cons(neg(t),trans(debit(b)))]]

ELSE b
ENDIF

ENDIF

where WITH is a PVS construct for overriding values of fields of a record. Since the
effect of processing a transfer transaction is the same as that of withdraw transaction,
it is not considered in the definition of the processTrans() operation. The definition of
the processTrans() operation is based on the assumption that a transaction is processed
immediately after it is completed, otherwise the operation would have been recursive.

Now let us specify the requirement as a theorem and prove it by invoking the PVS
theorem-prover.

Theorem 3.1 For any transaction t and a bank b, processing of the transaction pre-
serves the overall balance of the bank. In other words, if the bank is in a balanced state,
and a transaction is successfully processed, then the bank remains balanced. Symboli-
cally,

thm2: THEOREM FORALL t,b: balanced?(b) => balanced?(processTrans(t,b))

28

-

3.3 Formal Analysis Using the PrUDE Tool

The following is a slightly reformatted excerpt from a proof of the theorem generated
by the PVS toolkit.

thm?2

‘ {1} FORALL t, b: (balanced?(b) => balanced?(processTrans(t,b)))

Trying repeated skolemization, instantiation, and if-lifting, then Expanding the defini-
tion of sum_ledger, and then Expanding the definition of processTrans, this simplifies

to:
thm2
{-1} (CASES trans(credit(b!1)) OF
null: O,
cons(t, 1tl): amount(t) + sum_ledger(ltl)
ENDCASES)
+(CASES trans(debit(b!1)) OF
null: O,
cons(t, 1tl): amount(t) + sum_ledger(ltl)
ENDCASES)
+(CASES trans(drawer(b!1)) OF
null: O,

cons(t, 1tl): amount(t) + sum_ledger(ltl)

ENDCASES) = 0
{1} (CASES (IF transKind(t!1) = withdraw THEN

cons(t'1l,trans(credit(b!1)))
ELSE b!1‘credit‘trans ENDIF) OF
null: O,
cons(t,1t1): amount(t) + sum ledger(1ltl)
ENDCASES)
+(CASES (IF transKind(t!'1l)=withdraw THEN
b!1‘debit‘trans
ELSE cons(neg(t!1), trans(debit(b!1))) ENDIF) OF
null: O,
cons(t,1t1): amount(t)+sum ledger(1tl)
ENDCASES)
+ (CASES (IF transKind(t!1l) = withdraw THEN
cons(neg(t!1), trans(drawer(b!1)))
ELSE cons(t!'1l, trans(drawer(b!1))) ENDIF) OF
null: O,
cons(t,1t1): amount(t)+sum ledger(1tl)
ENDCASES) = 0

Lifting IF-conditions to the top level,
thm2 :

29

3.3 Formal Analysis Using the PrUDE Tool

{-1} IF null?(trans(credit(b!1)) THEN
(0 + (CASES trans(debit(b!1)) OF
null: O,
cons(t, 1tl): amount(t) + sum_ledger(ltl)
ENDCASES)
+ (CASES trans(drawer(b!1)) OF
null: O,

cons(t, 1t1): amount(t) + sum_ledger(ltl)
ENDCASES)) = 0
ELSE amount (car(trans(credit(b!1))))
+ sum_ledger(cdr(trans(credit(b!1))))
+ (CASES trans(debit(b!1)) OF

null: O,
cons(t, 1t1): amount(t) + sum_ledger(ltl)
ENDCASES)
+ (CASES trans(drawer(b!1)) OF
null: O,

cons(t, 1tl): amount(t) + sum_ledger(ltl)
ENDCASES) = 0

ENDIF
{1} IF transKind(t!1) = withdraw THEN
(CASES cons(t!1,trans(credit(b!1))) OF
null: O,
cons(t,ltl): amount(t) + sum_ledger(1ltl)
ENDCASES)
+ (CASES b!1‘debit‘trans OF
null: O,
cons(t,1ltl): amount(t) + sum_ledger(1ltl)
ENDCASES)
+ (CASES cons(neg(t!1), trans(drawer(b!1))) OF
null: O,

cons(t,1t1l): amount(t) + sum ledger(1t1)
ENDCASES) = 0

ELSE
(CASES b!1‘credit‘trans OF
null: O,
cons(t,1t1): amount(t) + sum_ledger(ltl)
ENDCASES)
+ (CASES cons(neg(t!1l), trans(debit(b!1))) OF
null: O,
cons(t,ltl): amount(t) + sum_ledger(1ltl)
ENDCASES)
+ (CASES cons(t!1, trans(drawer(b!1)))
null: O,

cons(t,ltl): amount(t) + sum_ledger(1tl)
ENDCASES) = 0
ENDIF

30

3.4 Model-based V&V in Making Design Decisions

Trying repeated skolemization, instantiation, and if-lifting,
This completes the proof of thm2.

Q.E.D.

3.4 Model-based V&V in Making Design Decisions

In the UML standard document [28] it is stated that associations on base classes are
inherited by its subclasses. We briefly discuss this issue, present a concrete example of
a deviation of designers’ understanding of the issue, and illustrate how the proposed
development framework may assist developers in making design decisions in cases when
the semantics of the UML notations is ambiguous and/or inconsistent with intuitive
informal semantics.

In UML, the semantics of specialization/generalization relationship between classi-
fiers satisfies Liskov’s substitutability principle [25] stated as follows:

If S is a subtype of type T', then objects of T in a program may be substituted
with objects of type S without altering the desired properties of the program,
e.g. its correctness. In other words, if p(z) is a property provable about an
element = of type T, then p(y) should be true for an element y of type S.

Let us consider the specialization/generalization hierarchy of the classes extracted from
the class diagram shown in Figure 5, modified/refined and shown in Figures 8 and 9
so that they suit the discussion in this section. When applied to the inheritance
hierarchy shown in Figure 8, Liskov’s substitutability principle states that objects of
specialized classes, namely the Employee and Customer classes, are substitutable for
objects of the base class Person. In other words, the associations between classes
Person and Account are inherited by the subclasses Customer and Employee of the
class Person. Thiat means, both subclasses are associated with the class Account by
the two associations they inherit from the base class.

In PVS semantic models, we specify the inheritance hierarchy by representing
classes and subclasses as PVS types and subtypes, respectively. Subtyping satisfies
Liskov’s substitutability principle.

Person : TYPE+

Employee : TYPE+ FROM Person
Customer : TYPE+ FROM Person
p : VAR Person

b : VAR BAnk

acc : VAR Account

Moreover, semantics of inheritance relationship requires that sets of objects of spe-
cialized classes are mutually disjoint in the sense that they cannot have a common sub-
class. This property does not automatically follow from the specification of subclasses
as uninterpreted subtypes declared above. Hence, we need to explicitly specify this
property as a constraint on the metamodel (see axiom disjoint_ax in the corePackage

31

3.4 Model-based V&V in Making Design Decisions

Bank

pol———
worksfor uses
" - accounfs
1. 1. i
Ferson
AT ACCount
-
updates
%)
Custarmer Employees

Figure 8: Associations in Inheritance Hierarchy

theory in the appendix A). There are two associations between the classes Person and
Account (see Fig. 8: the updates association that captures the relationship between an
account and a bank employee; and the owns association that specifies a relationship
between an account and a bank customer. Specialized classes inherit both the structure
and behavior of the base class. Note that the two associations may not be mutually
disjoint, i.e. a single person can be associated to an account both as a customer and
an employee (at least at this point) in which case additional restriction may apply to
the set of accounts such a person may update. More specifically, a person should not
be allowed to modify his own account.

According to the semantics of inheritance in UML notations, an association in-
volving a base class is inherited by all its subclasses. This means, referring to Figure
8, that the subclasses Employee and Customer inherit the two associations owns and
updates from the base class Person. A person is said to be associated with a bank as
an employee if there exists an account in the bank, which the person may updates. A
person is said to be associated with a bank as a customer if there exists an account in
the bank, which the person owns. We specify the associations and their properties as
follows.

owns : [Person -> set[Account]]
updates : [Person -> set[Account]]
uses : [Bank -> set[Person]]
worksfor : [Bank -> set[Person]]

worksfor_ax:AXIOM (FORALL p,b: worksfor(b)(p) IFF
(EXISTS acc: accounts(b) (acc) AND updates(p) (acc)))

uses_ax: AXIOM(FORALL p,b: wuses(b)(p) IFF
(EXISTS acc: accounts(b)(acc) AND owns(p) (acc)))

Based on the above axioms, let us specify and verify the property stated as business
Rule 5 in section 3.2.4.

32

3.4 Model-based V&V in Making Design Decisions

Theorem 3.2 If a person p is an employee and a customer of a bank b, then the
person must not be allowed to update an account acc which (s)he owns. Symbolically,

thm6: THEOREM (FORALL p,b,acc: (worksfor(b)(p) AND uses(b)(p)) IMPLIES
NOT (owns(p) (acc) IFF updates(p)(acc)))

An attempt to prove the above theorem by invoking the PVS theorem prover, turned
out to be unsuccessful by resulting in two unprovable subgoals: thmé.1 expressed as
unproved sequent with several antecedents and no consequents; and thmé.2 expressed
as a sequent with consequent contradicting the consequent of the original goal. The
counter examples are given as PVS debugging messages, which indicate that either the
antecedents are inconsistent, or they are insufficient to prove the sequent.

{1} (FORALL p,b,acc: (worksfor(b)(p) AND uses(b) (p)) IMPLIES
NOT (owns(p) (acc) IFF updates(p) (acc)))

Rule? (grind :theories ("inheritance"))

Trying repeated skolemization, instantiation, and if-lifting, this
yields 2 subgoals:

thm6.1 :
{-1} GeneralizableElement_pred(p!1)
{-2} Classifier_pred(p!1)
{-3} Class_pred(p!'1)
{-4} Person_pred(p!l)
{-5} owns(p!1) (acc!1)
{-6} updates(p!1) (acc!l)

{-1} GeneralizableElement_pred(p!1)
{-2} Classifier_pred(p!'1)

{-3} Class_pred(p'1)

{-4} Person_pred(p!'1)

{1} owns(p!'1) (acc!l)
{2} updates(p!1) (acc!1)

Rule? quit

33

3.4 Model-based V&V in Making Design Decisions

Run time = 1.45 secs.
Real time 50.58 secs.

A closer investigation of the axioms reveals that the antecedents are insufficient to prove
the sequent. That means, it is inconclusive from the specified axioms, whether or not
a person who can update an account is different from the one who owns it. Hence, we
need to analyze the UML class diagram since this contradicts the intended/required
property of the system.

A solution is to specify the two associations owns and updates between the special-
ized classes Customer and Employee, and the class Account, respectively. We capture
the desired property by specifying an {xor} (ezclusive or) — a predefined constraint in
UML - on the two associations (see Figure 9). The {xor} constraint specifies that for
any instance of the class Account, either it is associated with an instance of the class
Customer by the association owns or with an instance of the class Employee by the
association updates, but not both. The {xor} constraint is translated to the following
axiom in the PVS specification.

Employee

Person

Account

! *
Cugomer S

Figure 9: Associations in Inheritance Hierarchy

xor_ax: AXIOM (FORALL acc: (owns(c)(acc) XOR updates(e) (acc)))

By including axiom xor_ax in the PVS specification (see appendix E), theorem thmé
was discharged automatically by invoking the PVS prover, with the single command
(grind :theories ("inheritance”)).

{1} (FORALL p,b,acc: (worksfor(b) (p) AND uses(b)(p)) IMPLIES
NOT (owns(p) (acc) IFF updates(p)(acc)))

Trying repeated skolemization, instantiation, and if-lifting,
This completes the proof of thm6.

Q.E.D.
34

3.5 Discussions

This example shows how formal V&V can reveal subtle errors (omissions, inconsis-
tencies, etc) in UML models, which may not be discovered otherwise, and how log
messages can help us to reconsider our design decisions. Although the detected error
might seem trivial, it is an example of typical errors that can easily be overlooked
during design phase, until its it is too late and costly to fix them.

3.5 Discussions

Generic correctness requirements on UML models are specified and automatically ver-
ified by implementing the well-formedness rules (WFRs) defining the UML static se-
mantics in the PrUDE tool. Application-specific requirements should, however, be
specified during the development process and this requires certain amount of devel-
opers’ interaction with the PrUDE platform, thus full automation of the verification
process is not realistic. System models are expressed in UML notations, whereas ad-
ditional constraints on models are captured either by OCL or OUN expressions. The
ADAPT-FT project integrates UML, OUN and PVS into a platform for the formal
development of open distributed systems (ODS). In the PrUDE tool, however, OCL
is used instead of OUN to enhance the UML notations. The UML models, and the
constraints expressed in OUN or OCL are translated to PVS to take advantage of the
PVS theorem proving facilities in verifying correctness of the UML models [1, 3, 4].

The PrUDE platform relies on UML for modeling, and on OCL for specifying
constraints on the models, and on PVS [30] for consistency checking and verification of
the specifications. It allows developers to interactively insert assertions directly using
the PVS editor. This seems to be in contrary to the main purpose of integrating formal
methods with graphical modeling techniques, namely, hiding the processing of formal
software artifacts from practitioners. However, as stated in [6], complete automation of
the translation of semi-informal models into formal specifications is unlikely, since the
informal descriptions are inherently incomplete. Most of the generative translations
results in only skeletons of formal specifications and require the specifiers to provide
additional details to complete the semantic models.

Hence, translation of UML models into PVS results in a skeleton of formal specifica-
tion that is neither 'complete’ nor detailed enough to perform a meaningful verification
of the properties of the system in question. The level of details of the formal specifi-
cations generated from the UML models directly depends on the information available
in the UML models and the detail of semantic definitions implemented in the CASE
tool automating the translation.

The PrUDE tool is developed based on the formal semantic definitions we proposed
for a subset of the UML notations. Even if semantics for the whole UML notations
is defined and implemented in the platform, it is impossible to capture all application
specific properties although some generic properties can be implemented in the platform
and instantiated in applications. Hence, allowing users to add system properties is
essential for performing a meaningful verification and makes the PrUDE platform more
flexible. This feature seems to contradict with the very purpose of developing the
integrated platform and the supporting tool. This issue can be addressed in one or

35

4. Conclusion and Future Work

more of the following ways:
- Formalize generic domain-specific properties and implement them;

- Use more user friendly and intuitively understandable specification languages
such as the tabular notation; and [32, 19] that have semantic definitions in PVS.

- Define and implement suitable proof strategies that capture domain-specific prop-
erties.

The separation of generic semantic theory and model-specific definitions allows the
development of a meta-theory and proof strategies for UML models, which are useful
to reduce users’ interaction with verification tools.

Another issue that needs further consideration is communication of results of formal
verifications using PV'S tools to developers who may not have knowledge about the PVS
environment. In the current version of the PrUDE tool, results from PVS verification
tools are reported as plain texts. The main challenge is, to present the feedback from
the PVS tool, e.g. an error message from type-checking or the theorem-proving, in
such a way that it enables the developers to trace the cause of errors back to the UML
models they have created and identifying the model elements containing the errors.
Such a mechanism is very crucial for practical usability of the proposed development
framework and its tool.

A preliminary investigation shows that it is feasible to achieve this by recording
a sufficient amount of information that is necessary to re-engineer the UML models
from the PVS specifications. For instance, preserving the system vocabulary across the
graphical models and formal specifications significantly contributes to the improvement
of practitioners understanding of feedbacks from the verification step. Moreover, en-
coding model information in a notation that preserves the structure of UML models
can improve understanding of the developers, and at the same time represent sufficient
information about model elements.

An alternative approach is to implement an ’intelligent’ parser that can interpret
the log file generated by the PVS verification tools. Even though the error messages
might indicate the cause of errors in the UML models, they are not sufficiently detailed.
In the future we implement an ”intelligent” parser that will extract textual ” English-
only” messages from the raw PVS log messages.

4 Conclusion and Future Work

Our framework relies on PVS [30] as a formalism for verification of specifications. Ba-
sic modeling constructs and constraints on UML diagrams can be expressed formally
in the PVS specification language in terms of functions and abstract data types [2].
Our approach to consistency checking was described in [40] where software specifica-
tion is done in a development framework, which integrates UML and PVS toolkit. A
combined use of the different UML viewpoints improves integrity and completeness

36

of system models, which in turn provides a firm foundation for a better design and
implementation decisions.

By integrating semi-formal modeling notations with formal methods (FMs), we
have taken a step towards exploiting the mathematical foundation underlying the FMs
for rigorous analysis. This requires translation of UML models into PVS specifications
that are amenable to rigorous analysis. The translation is based on semantic defini-
tions we proposed in [1, 3, 4, 38] and provides the necessary link for reasoning about
the UML models. The PrUDE tool automates most of the translation of UML mod-
els developed by using UML tools supporting data exchange in the XMI format into
PVS specifications. The PVS toolkit allows us to perform conformance checks of the
semantic models as illustrated in section 3.

It is not feasible to implement all application-specific properties in a CASE tool as
such properties will not be available before the development process starts. Generic
properties, however, can be implemented in CASE tools. Hence, allowing users to add
domain-specific properties is essential to perform a meaningful verification possibly
guided by users. Moreover, this feature makes the PrUDE tool flexible and useful to a
wider group of users. The fact that system designers are allowed to specify system prop-
erties in PVS, seems to contradict with the very purpose of developing the integrated
framework and the supporting tools: minimizing user’s interaction with verification
tools. This issue can be addressed by using a user friendly specification language
such as the tabular notation [32] and by identifying a number of proof strategies for
application-specific properties, to minimize user’s interaction with the theorem-prover.

Another issue that needs further consideration is how to communicate feedbacks
from PVS toolkit to developers who may not be expert in the PVS environment. One
possible approach is to implement an ’intelligent’ parser that interprets the output
from the PVS verification tools, and enables the developer to navigate the model to
identify source of errors.

We presented an integrated development framework and a supporting tool and
illustrated how it can be used in the development of critical applications. We strongly
believe that integrating formal methods with a well-accepted visual modeling language
like the UML into a development process improves system reliability and clarity of the
meaning of the modeling elements.

The main contribution of our work is precise representation of UML models by
translating them into PVS specifications and performing rigorous analysis. The in-
terpretation of the feedbacks from the PVS verification tools into UML model needs
to be addressed. This transformation is crucial for communicating results of formal
analysis to software practitioners that may not be familiar with the PVS environment.
A significant limitation of our framework is that when a proof fails there is no real
explanation of the cause in the context of the UML models.

37

Acknowledgements

We would like to thank Dr. Issa Traoré for reviewing earlier versions of this report and
for his invaluable comments.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[10]

[11]

[12]

[13]

[14]

[15]

D. Aredo, I. Traoré, and K. Stglen. An Outline of PVS Semantics for UML Class Diagrams
(extended abstract). In the Proc. of The 11th Nordic Workshop on Programming Theory
NWPT’99, Uppsala, Sweden, October 6-8, 1999.

D. B Aredo. Formalization of UML class Diagrams in PVS (Extended Abstract). In the Proc.
of Workshop on Rigorous Modeling and Analysis with the UML: Challenges and Limitations, at
OOPSLAY99., Denver, Colorado, USA, November 2, 1999.

D. B. Aredo. A Framework for Semantics of UML Sequence Diagrams in PVS. Journal of Univer-
sal Computer Science (JUCS), Know-Center in cooperation with Springer Pub. Co., Joanneum
Research and the IICM, Graz University of Technology, 8(7):674-697, July 2002.

D. B. Aredo. Semantics of UML Statecharts in PVS. In the Proc. of 7th World Multiconference
on Systemics, Cybernetics and Informatics (SCI2003), Orlando, Florida, USA, July 27-30, 2003.

M. Belaid and I. Traoré. The Precise UML Development Environment (PrUDE) Reference
Guide. Technical Report ECEQ1-2, Department of Electrical and Computer Eng., University of
Victoria, April 2001.

J.-M. Bruel. Integrating Formal and Informal Specification Techniques. Why? How? In
Overview of Panel discussion on International Workshop on Industrial Strength Formal Tech-
niques, Vancouver, Canada, October 22, 1998. panalists: B. Cheng and S. Easterbrook and R.
B. France and B. Rumpe.

D. D. Clark and D. R. Wilson. Comparison of Commercial and Military Computer Security
Policies. In Proc. of the 1987 IEEE Symposium on Security and Privacy, pages 184-195,
Oakland, California, USA, April 27-29, 1987.

M. Clavel, F. Durén, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and J. F. Quesada. Maude:
Specification and Programming in Rewriting Logic. Theoretical Computer Science, 285(2):187—
243, August 2002.

0.-J. Dahl and O. Owe. Formal Methods and the RM-ODP. Research report No. 261, March
1998. Department of Informatics, University of Oslo, Norway.

W. Damm and D. Harel. LSC’s: Breathing Life into Message Sequence Charts. In Formal
Methods for Open Distributed Systems (FMOODS’99), Florence, Italy, February 15-18, 1999.

S. Easterbrook, J. Callahan, and V. Wiels. V&V Through Inconsistency Tracking and Analysis.
In the Proc. of International Workshop on Software Specification and Design, Ise-Shima, Japan,
April 16-18 1998.

S. Flake and W. Mueller. Expressing Property Specification Patterns with OCL. In The 2003
International Conference on Software Engineering Research and Practice (SERP’03), pages 595—
601, Las Vegas, NV, USA, June 2003. CSREA Press, Las Vegas, NV, USA.

S. Flake and W. Mueller. Formal Semantics of Static and Temporal State-Oriented OCL Con-
straints. Journal on Software and System Modeling (SoSyM), 2(3):164-186, October 2003.

A. Gargantini and E. Riccobene. Encoding Abstract State Machines in PVS. In Y. Gurevich,
P. W. Kutter, M. Odersky, and L. Thiele, editors, Proc. of Abstract State Machines, Workshop,
ASM 2000, volume 1912 of Lecture Notes in Computer Science, pages 303-322, Monte Verita,
Switzerland, March 19-24, 2000. Springer.

D. Gollmann. Computer Security. John Wiley & Sons Ltd., Baffins Lane, Chichester, West
Sussex PO19 1UD, England, 1999.

38

[16]
[17]

[18]
[19]

[20]

[21]

[22]

[23]

[24]

[31]

[32]

[33]

[34]

G. J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall, 1991.

CollabNet Inc. ArgoUML: A modelling tool for design using UML, 1999-2002. URL address,
http://argouml.tigris.org/.

ISO. A Formal Description Technique Based on the Temporal Ordering of Observational Behav-
ior, September 1988. ”ISO Standard 8807”.

R. Janicki, D. Parnas, and J. Zucker. Tabular representations in relational documents. In
Relational Methods in Computer Science, pages 184-196. Springer-Verlag, 1996.

E. B. Johnsen and O. Owe. A Compositional Formalism for Object Viewpoints. In A. Rensink
and B. Jacobs, editors, Formal Methods for Open Object-Based Distributed Systems (FMOODS),
pages 45-60. Kluwer Academic Publisher, March 2002.

E. B. Johnsen and O. Owe. Object-oriented specification and open distributed systems. In Olaf
Owe, Stein Krogdahl, and Tom Lyche, editors, From Object-Orientation to Formal Methods:
Dedicated to the Memory of Ole-Johan Dahl, volume 2635 of Lecture Notes in Computer Science.
Springer- Verlag, 2003.

F. Keienburg and A. Rausch. Using XML/XMTI for Tool Supported Evolution of UML Models. In
the Proc. of the 34th Annual Hawaii International Conference on System Sciences (HICSS-84),
Maui, Hawaii, January 3-6 2001. IEEE Computer Society.

Anneke Kleppe and Jos Warmer. Extending OCL to include Actions. In Andy Evans, Stuart
Kent, and Bran Selic, editors, UML 2000 - The Unified Modeling Language. Advancing the
Standard. Third International Conference, York, UK, October 2000, Proceedings, volume 1939
of LNCS, pages 440-450. Springer, 2000.

M. Lawford, P. Froebel, and G. Moum. Practical Application of Functional and Relational
Methods for the Specification and Verification of Safety Critical Software. In T. Rus, editor, the
Proc. of Algebraic Methodology and Software Technology, 8th International Conference, AMAST
2000, Iowa City, Iowa, USA, May 2000, volume 1816 of Lecture Notes in Computer Science,
pages 73-88. Springer, 2000.

B. Liskov and J. Wing. A Behavioral Notation of Subtyping. ACM Trans. on Programming
Languages and Systems, 16(6):1811-1841, November 1994.

Klasse Objecten. Octopus: OCL Tool for Precise Uml Specifications.
Dresden University of Technology. Dresden ocl toolset.
OMG. OMG Unified Modeling Language Specification, version 1.3, June 1999. OMG standard.

0. Owe and I. Ryl. The Oslo University Notation: A Formalism for Open, Object-Oriented,
Distributed Systems. Report No. 270, August 1999. Department of Informatics, University of
Oslo, Norway.

S. Owre, J. Rushby, N. Shankar, and F.V. Henke. Formal Verification for Fault-tolerant Ar-
chitectures: Prolegomena to the design of PVS. IEEE Transactions On Software Engineering,
21(2):107-125, February 1995.

S. Owre, N. Shankar, J. Rushby, and D. W. Stringer-Calvert. PVS System Guide, version 2.35.
Computer Science Laboratory, SRI International, Melon Park, CA, September 1999.

D. L. Parnas. Tabular Representation of Relations. Technical Report 260, Department of
Electrical and Computer Engineering, Telecommunications Research Institute of Ontario, Com-
munications Research Laboratory, 1992.

M. Richters and M. Gogolla. On Formalizing the UML Object Constraint Language (OCL) .
In Tok Wang Ling, Sudha Ram, and Mong Li Lee, editors, Proc. 17th Int. Conf. Conceptual
Modeling (ER’98), volume 1507 of LNCS, pages 449-464. Springer, 1998.

J. Rumbaugh, I. Jacobson, and G. Booch. The Umified Modeling Language, Reference Manual.
Addison Wesley Longman Inc., 1999.

39

[35]
[36]
[37]
[38]
[39]
[40]

[41]

[42]

[43]
[44]
[45]

[46]

J. Rushby. Specification, proof checking, and model checking for protocols and distributed
systems with PVS. In FORTE X/PSTV XVII ’97: Formal Description Techniques and Protocol
Specification, Testing and Verification, November 1997.

I. Sommerville. Software Engineering. Addison-Wesley, 5th edition, 1996.

J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall International, 2nd edition,
1992.

I. Traoré. An Outline of PVS Semantics for UML Statecharts. Jounal of Universal Computer
Science, 6(11):1088-1108, 2000.

I. Traoré and D. B. Aredo. Enhancing Structured Review with Model-based Verification. IEEE
Transaction on Software Engineering (to appear), April 2004.

I. Traoré, D. B. Aredo, and K. Stglen. Tracking Inconsistencies in an Integrated Platform.
Research report No. 274, August 1999. Department of Informatics, University of Oslo, Norway.

I. Traoré, D. B. Aredo, and H. Ye. An Integrated Framework for Formal Development of Dis-
tributed Systems. Journal of Information and Software Technology, Elsevier Science, 46(5):281—
286, April 2004.

I. Traoré, A. Jeffroy, M. Romdhani, and A.E.K. Sahraoui. An Experience with a Multiformalism
Specification of an Avionics System. In the Proc. INCOSE 98, Vancouver, Canada, July 25-31,
1998.

J. B. Warmer and et al. Response to the UML2.0 OCL RfP, ver. 1.6, OMG Document ad/2003-
01-07, January 2003.

J. B. Warmer and A. G. Kleppe. The Object Constraint Language: Precise Modeling with UML.
Addison Wesley Longman Inc., 1999.

J. Whittle. Formal Approach to Systems Analysis Using UML: An Overview. Journal of
Database Management, 11(4):4-13, 2000.

J. M. Wing. A Specifier’s Introduction to Formal Methods. IEEE Computer, 23:8-24, September
1990.

40

A Representation of UML Core Package

Totootofoto o To o Toto To o ToTo Fo o o To o To o Yoo Foto Fo o Yoo Voo Fo o Fo o Yo to Fo o Yoo o o Yoo o T Fo o o o oo o o o o o o o o o o o
%h Representation of UML Core Package-(Backbone and Relationships)
%% UML v1.3 standard pp. 2-14 and 2-15
FotoToTototo oo ToTo oo To o To To o To Fo o To Fo o To o Fo o Fo Fo o To o o o Fo o to Fo oo Fo Fo o To o o T Fo o to o oo To Fo o o o oo Fo o to o o
corePackage : THEORY
BEGIN

%h%% TYPE DECLARATIONS %%%%hh%%h%NAY

ModelElement: TYPE+

Feature, GeneralizableElement, Parameter: TYPE+ FROM ModelElement

Classifier: TYPE+ FROM GeneralizableElement

Class: TYPE+ FROM Classifier

StructFeature, BehavoralFeature: TYPE+ FROM Feature

Attribute: TYPE+ FROM StructFeature

Operation: TYPE+ FROM BehavoralFeature

name: [Feature -> string]

hhht% TYPE DECLARATIONS Core Package - Relationships
Relationship, AssociationEnd: TYPE+ FROM ModelElement

Association, Aggregation: TYPE+ FROM Relationship

Generalization: TYPE+ FROM Relationship

source, target: [Relationship -> Classifier]

acyclic_ax: AXIOM (FORALL (r: Relationship): source(r) /= target(r))
parameters: [BehavoralFeature -> finite_sequence[Parameter]]

typeof: [StructFeature -> Classifier]

precondition, postcondition: [Operation -> bool]

connection: [Association -> finite_sequence[AssociationEnd]]

41

connection_ax: AXIOM
(FORALL (assoc: Association): length(connection(assoc)) >= 2)

class_attributes: [Class -> set[Attribute]]
class_features: [Class -> set[Operation]]
children: [Classifier -> set[Classifier]]
parents: [Classifier -> set[Classifier]]

%%%% TYPE DECLARATIONS: Common Behaviour - Instances and Links
Object: TYPE+ FROM ModelElement

null: ModelElement

classifier: [Object —> Class]

instance_ax: AXIOM (FORALL (o: Object): classifier(o) /= null)
class_objects: [Classifier -> set[Object]]

%%%% VARIABLE DECLARATIONS
c, c¢l, c2: VAR Class
f1, £2: VAR Operation

isActive: [Class -> bool]

isRoot?(c): bool = (parents(c) = emptyset)
isLeaf?(c): bool = (children(c) = emptyset)
isAbstract(c): bool = (class_objects(c) = emptyset)

%% Sets of instances of subclasses are mutually disjoint
disjoint_ax: AXIOM (FORALL c, cl, c2:
(children(c) (c1) AND children(c)(c2)) IMPLIES
empty?(intersection(class_objects(cl), class_objects(c2))))

unique_names_ax: AXIOM (FORALL c, f1, f2:
class_features(c) (f1) AND class_features(c) (f2) IMPLIES
(name (f1) = name(f2) IMPLIES f1 = f2))

no_mult_parent_ax: AXIOM (FORALL c¢: singleton?(parents(c)) OR
empty? (parents(c)))
END corePackage

42

B UML Sequence Diagrams in PVS

The following PVS specification is automatically generated from the UML sequence
diagram shown in Figure 6 by using the PrUDE tool. The transformation is based on
semantic definitions of UML notations provided in the PVS specification language and
implemented in the PrUDE tool. In the current version of the PrUDE tool, application-
specific properties are added interactively using the PVS property editor. In the future,
we implement several domain specific properties, and proof strategies.

TototoToTo o To o JoTo o ToTo o To o Jo To Fo o To o Fo T o To o o Fo o Jo 1o Jo T o Jo o o Fo o Jo o o o o o o o o o o 1o Jo o o

% Semantic definition for a partial UML sequence disgram,

%% generated from ArgoUML model using the PrUDE tool
Dol Toloto o foToTo o oo ToTo o o o ToJo o Jo o foToTo o o o ToJo o o ToTo o o To ToFo o o ToToJo o o ToFo o o o To 1o o o

sequenceDiagram[T:TYPE+] : THEORY
BEGIN

s: VAR set[T];
tl,y: VAR T

optional?(s):bool = empty?(s) OR singleton?(s)

optional: TYPE+ = (optional?)
Event : TYPE+

AccessEvent : TYPE+ FROM
Event e,x : VAR Event

Attribute, Operation, Object: TYPE+
Trace: TYPE+ = list[Event]

readCard,openSession,enterPin,readPin,verifyPin,pin0Ok,
enterChoice,readChoice,enterAmount,readAmount,checkBalance,
balanceOK,provideCash,cashOk,collectCash,updateWithdraw,
ejectCard,collectCard,closeSession,auth: Event

Class:TYPE = [# classID: string,
attributes:setof [Attribute],
operations:setof [Operation] #]

t1,t2, t: VAR Trace
n: VAR nat
ae: VAR AccessEvent

prefix_upto(n,t): RECURSIVE Trace =
CASES t OF

43

null: null,
cons(e, t2) : IF n=0 THEN null
ELSE cons(e,prefix_upto(n-1,t2))
ENDIF
ENDCASES
MEASURE length(t)

rank(e,t): RECURSIVE nat = IF NOT member(e,t) THEN O
ELSE CASES t OF
null:O0,
cons(x,t2): IF x=e THEN 1
ELSE 1+rank(e,t2)
ENDIF
ENDCASES
ENDIF
MEASURE 1length(t)
ax: AXIOM FORALL t,e: member(e,t) IMPLIES
member (auth, prefix_upto(rank(e,t), t))

SeqDiag : TYPE = [# seqDiagramID : string,
objects: setof[Object],
traces: setof[Trace] #]

tr: VAR Trace

y: Event

sq: VAR SeqDiag

Message : TYPE = [# name : string,
source : Object,
target : Object #]

pin_cash_0K(t) : bool = FORALL e : (e = updateWithdraw AND member(e,t))
IMPLIES (LET prefix = prefix_upto(rank(e,t),t) IN
member (pinOk,prefix) AND member (cashOk,prefix))

b, a : VAR nat %% balance and amount, respectively
cl : nat = 1000 %% a constant Credit Limit
balance_0K(b,a) : bool = b-a >= 0 OR (b-a < 0 AND b-a >= -cl)

thmi: THEOREM FORALL (e:Event, t:Trace):
(e=collectCash OR e=updateWithdraw) IMPLIES
((member (t,traces (withdrawSq)) AND member(e,t)) IMPLIES
subset ({pinOk,balance0k,cashOk}, prefix_upto(rank(e,t),t)))

END sequenceDiagram

44

C Partial Specification of the Banking System

T ToToTo 1o o o 1o o oo fo o ToToTo 1o 1o o o o oo ToFo o 1o o o oo To T o 1o o o o o To T oo o o o o T Fo o o o o o
% PVS specification for the Banking system
%h generated from ArgoUML model using the PrUDE tool

Dol Toloto o ToToTo o oo ToTo o o o ToTo o o o JoToTo o o o ToJo oo To T o o Jo ToFo o o To T Jo o o To 1o o o o To 1o o o

bank: THEORY
BEGIN

IMPORTING sequenceDiagram

WhhhhAh% DECLARATIONS OF TYPES %%hh%%h%h%

ValueType: TYPE+

ClassID : TYPE+ = string

Event : TYPE+

Trace : TYPE = list[Event]

TransactionKind: TYPE+ = {deposit, withdraw}

LedgerKind : TYPE+ = {drawerLedger, creditLedger, debitLedger}

Whhshhhhh% DECLARATIONS OF CLASSES as TYPES %%%khh%hkh
Transaction: TYPE+ = [# transId: int,
transKind: TransactionKind,
amount: int #]

Account: TYPE+ = [# accountNum : string,
balance : nat,
pin : int,
trans: list[Transaction],
trace : list[Event] #]

Ledger: TYPE+ = [# kind : LedgerKind,
trans : list[Transaction],
amount : int #]

Bank: TYPE+ = [# accounts: setof[Account],
drawer : Ledger,
credit : Ledger,
debit : Ledger #]

%h%Hk% DECLARATIONS OF VARIABLES %%%%iil

acc, accl: VAR Account
tr : VAR Trace
t, t2: VAR Transaction

45

b, bl, b2: VAR Bank
1, 11, 12: VAR Ledger
1t : VAR list[Transaction]

Y%%%%% CONSTRUCTIVE DEFINITIONS OF OPERATIONS %%%%%
acc_bank_ax: AXIOM (FORALL acc,bl,b2:
accounts (bl) (acc) AND accounts(b2) (acc) IMPLIES bi=b2)

trans_ledger_ax: AXIOM (FORALL 11,12:
member (t,trans(11)) AND member(t,trans(12)) IMPLIES 11=12)

neg(t): Transaction = t WITH [amount:= -amount(t)]

sum_ledger(1t): recursive int = CASES 1t OF
null: O,
cons(t,1t1): amount(t)+sum_ledger(1tl)
ENDCASES
MEASURE length(1t)

balanced?(b): bool = sum_ledger (trans(drawer(b)))
+ sum_ledger (trans(credit(b)))
+ sum_ledger (trans(debit(b)))= 0

processTrans(t,b): Bank =
IF transKind(t) = withdraw THEN
b WITH [drawer:=drawer(b) WITH [trans:=cons(neg(t),trans(drawer(b)))],
credit:=credit(b) WITH [trans:=cons(t,trans(credit(b)))]]

ELSE IF transKind(t)=deposit THEN

b WITH [drawer:=drawer(b) WITH [trans:=cons(t,trans(drawer(b)))],
debit:=debit(b) WITH [trans:=cons(neg(t),trans(debit(b)))]]

ELSE b
ENDIF

ENDIF

thml: THEOREM (FORALL t,1: (member(t,trans(l)) AND
(transKind(t)=deposit OR transKind(t)=withdraw)) IMPLIES
(EXISTS t2, 12: member(t2,trans(12)) AND
(t2=t WITH [amount:= -amount(t)])))
thm2: THEOREM (FORALL t,b: balanced?(b)=> balanced?(processTrans(t,b)))

END bank

46

D Proof of Theorem thm2

thm2 :

{1} FORALL (t, b): balanced?(b) => balanced?(processTrans(t, b))

Trying repeated skolemization, instantiation, and if-lifting, then
Expanding the definition of sum_ledger, and then Expanding the
definition of processTrans(), this simplifies to: thm2 :

{-1} CASES trans(credit(b!1))

OF null: O, cons(t, 1tl): amount(t) + sum_ledger(1ltl)

ENDCASES

+

CASES trans(debit(b!1))
OF null: O, cons(t, 1tl): amount(t) + sum ledger(1ltl)
ENDCASES

+

CASES trans(drawer(b!1))
OF null: O, cons(t, 1t1): amount(t) + sum ledger(1ltl)
ENDCASES

=0

|
{1} CASES IF transKind(t!1) = withdraw THEN cons(t!1, trans(credit(b!1)))

ELSE b!1‘credit‘trans
ENDIF
OF null: O, cons(t, 1t1): amount(t) + sum ledger(1tl)
ENDCASES
+
CASES IF transKind(t!1) = withdraw THEN b!1‘debit‘trans
ELSE cons(neg(t!1), trans(debit(b!1)))
ENDIF
OF null: 0, cons(t, 1tl): amount(t) + sum ledger(1ltl)
ENDCASES
+
CASES IF transKind(t!'l) = withdraw
THEN cons(neg(t!1), trans(drawer(b!1)))
ELSE cons(t!1l, trans(drawer(b!'1l)))
ENDIF
OF null: O, cons(t, 1tl): amount(t) + sum ledger(ltl)
ENDCASES
=0

Lifting IF-conditions to the top level,
thm2 :

47

{-1} IF null?(trans(credit(b!1)) THEN
(0 + (CASES trans(debit(b!1))
OF null: 0, cons(t, 1tl): amount(t) + sum_ledger(1ltl)
ENDCASES)
+
(CASES trans(drawer(b!1))
OF null: O, cons(t, 1tl1): amount(t) + sum ledger(1ltl)
ENDCASES))
=0
ELSE amount (car (trans(credit(b!1)))) +
sum ledger(cdr (trans(credit(b!1))))
+
CASES trans(debit(b!1))
OF null: O, cons(t, 1tl): amount(t) + sum ledger(ltl)
ENDCASES
+
CASES trans(drawer(b!1))
OF null: O, cons(t, 1t1): amount(t) + sum_ledger(1ltl)
ENDCASES

{1} IF transKind(t!1) = withdraw
THEN CASES cons(t!1l, trans(credit(b!1)))
OF null: O, cons(t, 1tl): amount(t) + sum ledger(1ltl)
ENDCASES
+
CASES b!1‘debit‘trans
OF null: O, cons(t, 1t1): amount(t) + sum_ledger(1ltl)
ENDCASES
+
CASES cons(neg(t!1l), trans(drawer(b!1)))
OF null: O, cons(t, 1tl1): amount(t) + sum ledger(1ltl)
ENDCASES
=0
ELSE CASES b!1‘credit‘trans
OF null: O, cons(t, 1tl): amount(t) + sum_ledger(1ltl)
ENDCASES
+
CASES cons(neg(t!1), trans(debit(b!1)))
OF null: O, cons(t, 1tl): amount(t) + sum ledger(1ltl)
ENDCASES
+
CASES cons(t!1l, trans(drawer(b!1l)))
OF null: O, cons(t, 1tl): amount(t) + sum ledger(ltl)
ENDCASES
=0

48

ENDIF
Trying repeated skolemization, instantiation, and if-lifting,
This completes the proof of thm2.

Q.E.D.

49

E Association and Inheritance in UML

inheritance : THEORY

BEGIN

%% IMPORTING
IMPORTING bank
IMPORTING corepackage

%% TYPE DECLARATIONS - Inheritance
Inheritance : TYPE+ FROM Relationship

cl, ¢c2 : VAR Class
i: VAR Inheritance

inh_ax: AXIOM (source(i)= cl AND target(i)= c2 IFF
children(c2) (c1) AND parents(cl)(c2))

%%% DECLARATION CLASS Person AND ITS SUBCLASSES
Person: TYPE+ FROM Class
Customer : TYPE+ FROM Person

Employee : TYPE+ FROM Person

%%%4% SOME VARIABLE DECLARATIONS %%%%%%%%

b : VAR Bank
acc, accl, acc2 : VAR Account
p, pl, p2 : VAR Person

c : VAR Customer
e: VAR Employee

%%%%%% DECLARATION OF ASSOCIATIONS %hhhhhhhhhhhth
owns : [Person -> set[Account]]
updates : [Person -> set[Account]]

uses : [Bank -> set[Person]]
worksfor : [Bank -> set[Person]]

hhtohlete AXIOMS %% bt htetohts
uses_ax: AXIOM (FORALL p,b: uses(b)(p) IFF
(EXISTS acc: accounts(b)(acc) AND (owns(p) (acc) IMPLIES
NOT updates(p) (acc))))

worksfor_ax: AXIOM (FORALL p,b: worksfor(b) (p) IFF

(EXISTS acc: accounts(b)(acc) AND (updates(p) (acc) IMPLIES

NOT owns(p) (acc))))

a0

%h’% An employee is not allowed to update his owns account
emp_cust_ax: AXIOM (FORALL e,b,acc: (uses(b)(e) AND worksfor(b) (e))
IMPLIES intersection(owns(e), updates(e)) = emptyset)

%%% Declaration of {xor} constraint as an axiom
xor_ax: AXIOM (FORALL p,acc: NOT (owns(p) (acc) IFF updates(p) (acc)))

thm6: THEOREM (FORALL p,b,acc: (worksfor(b) (p) AND uses(b) (p))
IMPLIES NOT (owns(p) (acc) IFF updates(p) (acc)))

END inheritance

o1

F Proofs of Theorem thmo6

{1} (FORALL p,b,acc: (worksfor(b)(p) AND uses(b) (p)) IMPLIES
NOT (owns(p) (acc) IFF updates(p)(acc)))

Rule? (grind :theories ("inheritance"))

Trying repeated skolemization, instantiation, and if-lifting, this
yields 2 subgoals:
thm6.1 :

{-1} GeneralizableElement_pred(p!'l)

{-2} Classifier_pred(p!'l)

{-3} Class_pred(p!1)

{-4} Person_pred(p!1)

{-5} owns(p!1) (acc!1)

{-6} updates(p!1) (acc!1)

Rule? (postpone) Postponing thm6.1

thm6.2 :
{-1} GeneralizableElement_pred(p!'1l)
{-2} Classifier_pred(p!'l)
{-3} Class_pred(p!1)
{-4} Person_pred(p!1)

{1} owns(p'1) (acc!1)
{2} updates(p!'1) (acc!1)

Rule? quit
Run time = 1.45 secs.
Real time = 50.58 secs.

The two subgoals thm6.1 and thm6.2 generated are not provable. Hence, to prove the
theorem we need to add an axiom (see section 3.4 for details). The following is a successful

proof of theorem thm6.
thm6é :

(workers(b) (p) AND workers(b) (p)) IMPLIES
NOT (owns(p) (acc) IFF updates(p) (acc)))

Trying repeated skolemization, instantiation, and if-lifting, this
completes the proof of thm6.

Q.E.D.

92

