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Abstract:  In this study we have looked into the problem of vehicle detection in high-
resolution satellite images. Based on the input from the local road authorities, we have 
focused not only on highways, but also on inner city roads, where more clutter is 
expected. The study site is the city of Oslo, Norway. To do vehicle detection in these 
areas, we propose an automatic approach consisting of a segmentation step followed 
by two stages of object classification. In the process we utilize the multispectral 
image, the panchromatic image and a road network. The approach has been tested on 
Quickbird images, and the results that are obtained have been compared with manual 
counts and classifications. 
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1 Introduction 

Information on vehicle locations and movements is important for transport planning, 
accessibility analyses and traffic statistics. Monitoring of traffic is therefore an 
important task for the authorities. The current technology typically collects data by 
the use of inductive loop vehicle detectors embedded in (or lying on) roadways. This 
equipment provides traffic flow information over time for a point in space. However, 
other types of information from a larger area could often be useful to better 
understand the dynamics of the traffic. Images of a large road network could for 
instance be used to acquire information from a whole region at one point in time. 
Such snapshots of entire networks could give more insight into the distribution of 
vehicles in a region and could also provide valuable information for areas uncovered 
by traditional counting equipment. Until recently acquisition of such traffic snapshots 
has not been feasible, but since the launch of civil optical high-resolution satellite 
systems like Ikonos and QuickBird, images with a resolution of around one meter are 
now available. Hence, this type of imagery has a resolution that may make it possible 
to extract road traffic information.  
 
In this study we have looked into the problem of vehicle detection in high-resolution 
satellite images. Based on the input from the local road authorities, we will not focus 
only on highways, as has been done in a few other studies (Alba-Flores, 2005; 
McCord et al., 1998; Sharma, 2002; Sharma et al., 2006), but also on inner city roads, 
where more clutter is expected. The study site is the city of Oslo, Norway, where 
three different areas have been selected. Here the roads will be narrower than typical 
highways, and more vegetation along the roads is expected. In addition, the high 
latitude of the study area affects the light conditions. To do vehicle detection in these 
areas, we propose an automatic approach consisting of a segmentation step followed 
by object classification, utilizing the multispectral image, the panchromatic image and 
road network information. 

2 Background 

The main methodological challenge is related to the problem of vehicle detection in 
high-resolution satellite images where the resolution on the ground is low compared 
to the size of the objects sought for analysis. Compared to vehicle detection in aerial 
images this poses special problems and will for instance make it more difficult to 
separate vehicles from other types of objects like trees, road markings etc. 
 
For vehicle detection in aerial images, different approaches have been investigated 
(Hinz, 2005; Schlosser et al., 2003; Stilla et al., 2004; Toth and Grejner-Brzezinska, 
2005; Zhao and Nevatia, 2001). In these images the resolution is higher than in 
satellite images and typical vehicles have a length of 13-26 pixels (Zha and Nevatia, 
2001). Hence more details of the vehicles are visible in these images, and many of the 
approaches used for detection have applied 3D models (Hinz, 2005; Schlosser et al., 
2003; Stilla et al., 2004; Zhao and Nevatia, 2001). Detection rates are generally high 
at this resolution. Less work has been done on vehicle detection in satellite images, 



but a few studies exist and a few methods are suggested for analysis of the 
panchromatic images.  
 
Sharma et al. (2006) detect vehicles on highways in 1-m resolution IKONOS images. 
Three different approaches are used: (i) attempts to maximise the separation between 
vehicles and road surface by the use of principal component analysis (PCA), and 
thresholding of one PCA band, (ii) uses a Bayesian Background Transformation 
(BBT) to classify pixels as stationary or dynamic by comparing the image to a historic 
background estimate, while (iii) uses a gradient filter followed by thresholding, 
morphological operations and clustering to detect vehicle objects. For all approaches, 
filtering on size, orientation etc. of the resulting connected components is performed. 
The approaches have all been tested on U.S. highways. Of the different approaches 
the BBT method is reported to show the best overall performance. This method does 
however require that a good quality background estimate exists, which can often be a 
problem to obtain automatically.  
 
Alba-Flores (2005) detects vehicles on highways in IKONOS images using two 
different thresholding approaches (multiple thresholds and Otsu’s method (Otsu, 
1979)). The approach is limited to one-way highway segments, and it has been tested 
on highways in the U.S. The use of pattern recognition techniques is proposed to 
make the detection more robust, but has not been applied. Gerhardinger et al (2005) 
propose an inductive learning approach (i.e. a learning by example approach - where 
the system tries to induce a general rule from a set of observed instances). The 
approach uses characteristics like radiometry, size, position and pixel patterns to 
distinguish vehicles from other objects within the road segments and it has been tested 
for highways in Baghdad.   
 
Leitloff et al (2005) have looked at the specific problem of detecting queues in urban 
areas. Regions of interest derived from data fetched from a geographical information 
system (GIS) are used and vehicles are detected in Quickbird images within these 
regions of interest. The queues are extracted by detecting lines within these areas. 
Single vehicles are then detected within the extracted line (queue) by detecting points 
of minimum and maximum width along the line. 
 
Most of these approaches have been tested on highways in open areas, while we need 
an approach that will work also for inner-city roads. Here more clutter is expected, 
and we have therefore focused on finding a classification-based approach to be able to 
distinguish vehicle objects from different types of clutter. For this reason we also 
want to exploit the multispectral information, which can help in separating vegetation 
from other objects. 
 
We will perform vehicle detection and classification in Quickbird images. The 
panchromatic band of these images has a resolution of 0.6 × 0.6 meters. This means 
that an average-sized vehicle of 1.7 × 4 meters will cover 2.8 by 6.7 pixels. The 
multispectral bands have a resolution of 2.44 meter. Hence, in the multispectral 
images an average-sized vehicle will only have a size of 0.7 × 1.6 pixels. In addition, 
there is a small time delay between the acquisition of the panchromatic and the 
multispectral image. For moving vehicles there will therefore not be a correspondence 
between the position found in the panchromatic image and that found in the 
multispectral image. For the actual vehicle detection we have therefore chosen to use 



the panchromatic band only. However, the multispectral bands provide information 
which is useful for instance for distinguishing areas of vegetation from the road 
surface. 

3 Methods 

In the following we will describe the classification-based approach that has been 
developed. The approach consists of segmentation, feature extraction, pre-
classification and a final classification.  
 
3.1 Segmentation 
 
3.1.1 Segmentation of vegetation 
Trees shadowing the road can be a problem for the vehicle detection, both because 
vehicles may be hidden behind the trees and because trees may be confused with 
vehicles. The first problem cannot be solved, but the second problem can be helped by 
segmenting trees (and other vegetation) by utilizing the multispectral information. We 
have done this by computing the NDVI (normalized difference vegetation index) from 
the multispectral data. By thresholding the resulting NDVI image, the areas with 
vegetation can be identified and masked out. 
 
From a multispectral Quickbird image we have performed a resampling to the 
resolution of the panchromatic image using cubic interpolation. From the resulting 
image, NDVI was computed as: (NIR-R)/(NIR+R). Otsu’s method for threshold 
selection (Otsu, 1979) was then applied to the NDVI image to obtain a vegetation 
mask.  
 
3.1.2 Segmentation of shadowed areas 
For some parts of the road network larger areas may be very dark due to shadows 
from tall buildings. These areas need to be identified and analysed specially. In this 
study we have only focused on identifying these areas, while the problem of analysing 
the contents has been left to a later study. 
 
To find the shadowed areas, we used the resampled multispectral Quickbird image 
obtained as described in the previous section. The four bands of this resampled 
multispectral image were then clustered into three clusters using K-means clustering 
(MacQueen, 1967), where the cluster with the lowest mean value was selected as the 
shadow mask. 
 
3.1.3 Segmentation of vehicles 
For the segmentation of vehicles we have, for reasons described above, used only the 
panchromatic image. The segmentation approach assumes that a definition of the road 
network to be analysed is available through a mask delineating this area. This can be 
derived from GIS data. The masks obtained through the analysis of the multispectral 
images are used to mask out areas within the road network corresponding to 
vegetation and dark shadows. For the area within the mask the approach then assumes 
that the road surface is the dominating region covering the largest area within the 
mask. Based on this assumption, the histogram for the pixel values within the road 
network is analysed and the mean value of the road surface is determined at the peak 



of this histogram. Then Otsu’s method for threshold selection is applied twice, once 
for the interval below this peak and once for the interval above. 
 
This approach results in a segmentation of the pixels into three categories: Dark 
objects, road surface and bright objects. From this segmentation result, the connected 
components (connected pixels that have been given the same label) corresponding to 
the dark and the bright objects can then be identified. These components will then 
correspond to vehicles and to other similar objects like smaller shadows, road 
markings etc. 
 
3.2 Feature extraction 
The segmentation will result in detection of different types of objects, where the 
objects corresponding to vehicles need to be identified. For this we will use a 
classification approach, where specific characteristics (features) of the objects are first 
extracted from each object before the objects are classified based on these features. 
Two types of features have been used; spatial features describing the shape of the 
objects and grey level features describing properties related to the pixel values of the 
objects. 
 
3.2.1 Spatial features 
The spatial features were selected to be able to distinguish vehicles from other types 
of objects based on their shape. The vehicles are expected to be compact objects with 
a rectangular shape that have a width and a length within a certain size range and an 
orientation parallel to the road. Hence, different features that were expected to reflect 
these properties were tested. To select the initial set of these features we have built on 
previous experience from other projects on object recognition (see for instance 
Solberg & Solberg, 1996). The set of features that was selected is described below. 
Some of these features were only used in the pre-classification, while others were 
only used for the final statistical classification. 
 
The following shape properties of a region were computed: 

• Area: The number of pixels of the region. 

• Compactness: (perimeter)2/area. Says how closely packed a shape is, where 
the most compact shape is a circle. 

• Angle deviation: The difference between the direction of the road and the 
orientation of the object, where the orientation is computed from the central 
moments. This deviation is set to zero for objects that are close to quadratic 
and do not have a clear direction. 

• Spatial spread: The first invariant moment measures the spatial spread of the 
pixels relative to the size of the region. 

• Hu moments (Hu, 1962): The Hu moments are a classical and commonly used 
set of features that can be derived from a shape. They are derived from the 
normalized central moments ηpq to provide a set of scale, position and rotation 
invariant features for pattern recognition. The first two Hu moments have been 
chosen as features. These are combinations of the normalized central moments 
η02, η20 and η11. 

• Height and width of the bounding box of the rotated region. Here the bounding 
box is found by first computing the orientation of the object from the central 



moments, rotating the object to be aligned with the x-axis and finding the 
circumscribing rectangle of this rotated object. The height and width of this 
box will for vehicles correspond to the width and the length of the vehicle. 

• Elongation: The ratio between the height and the width of the bounding box 
(computed as described above). 

• Rectangularity: The ratio between the area of the region and the area of its 
bounding box (computed from the rotated region as described above). This 
says how rectangular a shape is (whether it fills out its bounding box). 

 
3.2.2 Grey level features 
In addition to the spatial features, features based on the grey level information (the 
pixel values) are also extracted. The vehicles are expected to appear as small objects 
contrasted by the background, where dark vehicles appear as objects darker than the 
background and bright vehicles appear as objects brighter than the background. The 
bright vehicles will generally have a higher contrast to the background than the dark 
vehicles.  
 
Based on these consideration features have been selected that say something about the 
outline and the contrast to the background in addition to the grey levels of the object 
itself: 
 

• Region mean: The mean of the pixel values within the region. 

• Region standard deviation: The standard deviation of the pixel values within 
the region.  

• Region gradient mean: The mean of the gradients within the region. 

• Boundary gradient: The mean gradient along the boundary of the region. 

• Local contrast: The difference between the mean value of the region and the 
mean value of the local background. 

• Smoothness contrast ratio: The ratio of the mean gradient magnitude 
(calculated within an extended bounding box of the region) to the mean 
gradient magnitude within the inner region area.  

 
3.3 Classification 
 
The classification is performed on the set of objects resulting from the segmentation 
and is performed in two steps. First a hierarchical, rule-based classifier is used to rule 
out as many non-vehicle objects as possible. The resulting potential vehicles are then 
further analysed through a final step of statistical classification. More details on this 
process are given in the next sections. 
 
3.3.1 Rule-based classifier 
The purpose of this initial, rule-based classification is to distinguish potential vehicle 
objects from obvious non-vehicles. The reason for doing this is that the class of 
objects that are non-vehicles will be very heterogeneous containing objects with a 
large variation in shape and grey level signatures. The objects may represent road 
markings, shadows, reflections or parts of houses or other structures along the road. 



Hence, it is difficult to model this class of clutter objects in a meaningful way. On the 
other hand, some of these objects may be very different from the vehicle objects, and 
may therefore easily be distinguished from the vehicles only by looking at one feature 
or a small number of features.  
 
A hierarchical, rule-based classifier following a coarse-to-fine strategy is defined. In 
work on coarse-to-fine classification, the attributes are employed to recursively 
partition the set of hypotheses into ever finer and more homogeneous subsets 
(Gangaputra and Geman, 2006). In our study the hierarchy was manually designed, 
selecting one feature at a time as the basis for splitting. 
 
At the highest level we separate between large and small objects based on the length 
of the object. We do this to separate the large-sized vehicles from the average-sized 
vehicles. The objects representing large-sized vehicles will in general have a more 
prominent appearance and well-defined shape than objects representing smaller 
vehicles. Hence, the large-sized vehicles are often more easily separated from clutter 
objects. 
 
After the first partition based on object length we separate different types of clutter 
objects from potential vehicles, where the features and the order of the tests are 
different for the large and the small objects. Features that are used in these tests 
include different geometric features like width, elongation, rectangularity, 
compactness and angle deviation. The test criteria at each level are set to avoid 
discarding potential vehicle objects. However, this cannot be completely ruled out for 
cases where the segmentation has failed and resulted in fragmented or connected 
objects.  
 
As a result of the pre-classification the segmented objects will be partitioned into four 
main groups: 

• Potential large-sized vehicles 
• Large-sized clutter 
• Small-sized clutter 
• Potential normal-sized vehicles 

The partitioning into these specific groups is due to the hierarchical classification 
scheme that is used. The objects classified as potential vehicles in this process, are 
then further analysed through a last step of statistical classification while the non-
vehicle objects (large- and small-sized clutter) are discarded. 
 
3.3.2 Statistical classifier 
The purpose of the statistical classification is to classify the remaining set of 
unclassified objects resulting from the pre-classification. For this we considered 
different approaches based on linear and quadratic discriminant analysis.  
 
Linear discriminant analysis (LDA) is a classical statistical approach for classifying 
samples of unknown classes based on training samples with known classes which 
maximizes the ratio between-class variance / within-class variance. The decision 
boundaries of the LDA classification will be linear. For more details see (Venables 
and Ripley, 2002). 
 



For QDA (Quadratic Discriminant Analysis) the decision boundaries will be 
quadratic. In general QDA is based on class-dependent means and covariance 
matrices. Under the assumption that each class c is multivariate normal with mean cμ  
and covariance matrix cΣ , a sample x  with unknown class is classified to the class c 
that minimizes  

,log2||log)()( 1
cc

T
cccc xxQ πμμ −Σ+−Σ−= −  

where the cπ ’s are the prior probabilities of the classes (Venables and Ripley, 2002). 
The cΣ ’s and cμ ’s are estimated from a training set consisting of samples with 
known classes.  
 
QDA is more flexible than LDA but more parameters need to be estimated. If n is the 
number of features, the number of parameters to be estimated is 2/)3( +nn  for each 
class. For instance, with ten features, the number of parameters is 65. If the number of 
training samples is small, and typically less than the number of parameters involved in 
QDA, the estimates of the parameters based on the training set cannot be reliable. The 
high number of parameters to be estimated is mainly related to the covariance 
matrices. Common methods for coping with this problem are to constrain the 
covariance matrices, e.g. to use diagonal covariance matrices, or to use pooling, i.e. to 
estimate only one covariance matrix. If we for example assume that the features are 
uncorrelated, the covariance matrices are diagonal, and only n2  parameters need to 
be estimated for each class. 

4 Experiments and results 

4.1 Data set 
Our dataset consisted of two Quickbird images over Oslo. One image was acquired 
early in May 2003 and the other late in May 2006. Both images are acquired around 
11 in the morning, with a sun elevation angle of 46 degrees in early May and 51 
degrees in late May. Three areas were selected for analysis, representing different 
types of roads and traffic situations:  

• GO (Gamle Oslo): Inner-city roads, speed limit 50 km/h. 
• MV (Mosseveien): Main road to/from Oslo, speed limit 80 km/h. 
• UV (Ullevål): Inner-city roads, speed limit 50 km/h. 

 
Subimages covering these three areas were extracted from each of the two images. 
This resulted in a set of 6 images, where 3 of these sub-images, one from each area, 
were used for training while the other 3 were used for test. For each image a road 
mask was constructed manually. 
 
To train the classifier and to verify the results, ‘ground truth’ was established through 
manual analysis and classification of the objects. However, even manual classification 
is difficult at this resolution. The training was therefore only based on objects where 
the interpretation was unambiguous.  
 



 
Figure 1: Examples from smaller parts of each of the three areas. Left: GO, Middle: MV, 
Right: UV. 
 
 
For the verification of the classification results it is necessary to determine the class of 
all the objects. To be able to reflect at least some of the ambiguity in the manual 
interpretation of the satellite images, we have produced two independent manual 
classifications performed by two different persons. The results of the automatic 
analysis can then be compared with both the manual classifications.  
 
Two different types of manual counts have been produced to evaluate the detection 
and classification results:  

• A manual count containing the positions of all vehicles within the road 
network that each person has observed. This has been obtained through 
manual inspection of the panchromatic image. The purpose of these counts is 
to use them for comparison with the segmentation results. 

• A manual classification, where the set of objects sent to the classification has 
been manually labeled with the four classes: dark clutter, bright clutter, dark 
vehicle, bright vehicle. The purpose of these manual classifications is to use 
them for comparison with the results from the automatic classification.  

 
4.2 Experiments 
 
4.2.1 Segmentation 
The segmentation was performed on the sub-images from both the training set and the 
test set. First, vegetation and dark shadows were identified based on the multispectral 
images. A road mask was then created from a vector representation of the road 
network to indicate the area to be further analysed. Then the panchromatic images 
were analysed within the road mask for regions not covered by vegetation or dark 
shadows. 
 
4.2.2 Preclassification 
The preclassification was performed on all the connected components identified as 
dark or bright objects in the segmentation phase. 
 



4.2.3 Training 
For training, the objects resulting from the segmentation and pre-classification of the 
three training images were manually analysed. These objects were manually classified 
into one of four classes:  

• Dark clutter 
• Bright clutter 
• Dark vehicle 
• Bright vehicle 

Objects for which the class was difficult to determine were not included in the 
training set. For all but the class ‘Bright clutter’, between 140 and 190 training 
samples were obtained; (Dark clutter: 144, Bright clutter: 38, Dark vehicle: 158, 
Bright vehicle: 186). A feature vector of dimension 14 consisting of a selection of the 
spatial and grey level features, as described in Section 3.2, was used to represent each 
object. The selected set consisted of the following features: length, width, 
compactness, elongation, rectangularity, boundary gradient, spatial spread, contrast, 
smoothness, region mean, gradient mean, variance and Hu moments.  
 
The feature selection was made based on data analysis and tests on the training set. 
This was performed by analysing the distribution of features values for the different 
classes of objects, inspecting scatter plots for these classes for different combinations 
of features and performing preliminary classifications on parts of the training set.  
 
4.2.4 Classification 
LDA, general QDA and QDA with diagonal covariance matrices were tested for the 
classification. The performance of the general QDA and the QDA with diagonal 
covariance matrices was quite similar, while the LDA did not demonstrate a 
comparable performance. The three most common classes had enough samples to 
accommodate the general QDA, and the results reported later are from the use of this 
classifier. All the three test images were classified using this approach. 
 
4.3 Results and discussion 

 
4.3.1 Segmentation and preclassification 
In the segmentation process, vegetation and dark shadows are first identified. A result 
of this process for the sub-image GO, can be seen in Figure 2. 

 

 

Figure 2: RGB image (left) and the combined mask (right) with a subset of roads (grey), vegetation 
(green) and shadows (blue). 



The further segmentation is then performed on the areas within the road network that 
are not covered by vegetation or dark shadows. This part of the road network is 
segmented into road surface, dark objects and bright objects. A following pre-
classification is then used to filter out segmented objects that are not potential 
vehicles. A result of this process for a part of the sub-image GO can be seen in Figure 
3. 

 
In Table 1 the results from the segmentation and pre-classification are summarized. 
The results are compared to counts obtained by two independent manual counts based 
on the same image. The total manual vehicle count given in the first three columns of 
Table 1, gives the results obtained by the two independent manual counts performed 
by two different persons (P1: person 1, P2: person 2). The column marked consensus 
gives the number of objects (positions) where both persons agree that there is a 
vehicle. The next columns summarize the number of vehicles that were missed by the 
segmentation and pre-classification process compared to the two manual counts.  

 
 

Table 1: Result of segmentation and preclassification. 
 

 

Total manual vehicle count 

Vehicles missed before 
classification according to 
manual counts 

Image ID and total 
number of 
segmented objects 
per image 

P 1  P 2  Consensus  P 1  P 2 

Image GO2 (528)  154  160  144  26  20 

Image MV1 (255)  96  93  91  26  21 

Image UV1 (836)  146  134  127  31  28 

Total  396  387 362 73 69 

Figure 3: Result of the segmentation on a part of the road from the GO subimage. Left: Grey 
level image, Middle: Segmented road surface (pink), dark objects (blue), bright objects 
(orange) and not within mask (black). Right: Result of pre-classification, where the regions 
that are black correspond to objects identified as potential vehicles. 



As can be seen from the counts, there are a number of vehicles that are missed in this 
process. According to the two manual counts 69-73 vehicles are lost in this process. 
Inspection of the images for these cases, revealed that this is generally due to poor 
contrast, where the vehicle object is hardly visible at all or severely fragmented. In the 
segmentation process this means that these vehicles cannot be separated from the 
background, or that only very small parts of the objects that do not have the shape of a 
vehicle are found. Examples illustrating this are given in Figure 4. As can be seen 
here, the vehicles often consist of several parts; a shadow, the vehicle and a reflection 
from the rear window. This may indicate that the sun angle has an effect on how the 
vehicles are imaged. 

 
Looking at the results for the three areas separately, the highest percentage of missed 
objects appears for the MV sub-image. This area also contains the roads with the 
highest speed limit of the three test areas. Hence, this may indicate that the high speed 
is a factor that affects the contrast conditions in this case. 
  
4.3.2 Classification 
 
Table 2 summarizes the results of the two independent manual classifications that 
were performed. This classification was performed on the objects remaining after the 
pre-classification. The column to the left gives the number of objects that were 
classified. The next three columns give the number of these objects that were 
classified as vehicles by person 1 (P1) and person 2 (P2), while the column marked 
consensus gives the number of objects where both manual classifications agreed that 
the object in question was a vehicle. The rightmost column gives the percentage of 
objects where both manual classifications agreed on the class (vehicle/no-vehicle). In 
total the two independent manual classifications agree on the classification for 83% 

Figure 4: Examples of manually identified vehicle objects that are 
not properly segmented. These objects have a low contrast to the 
background and are therefore fragmented into several very small 
parts that are not sufficiently large to be considered as a potential 
vehicle. 



percent of the objects. This indicates that the interpretation of these images is not 
straightforward. 

 
 

 
Table 3 summarizes the results of the automatic classification. The column to the left 
gives the total number of objects that were classified as vehicles. The total here is 303 
vehicles, which is very close to that of the two manual classifications that gave 296 
and 305 vehicles respectively (as reported in Table 2). The next two columns give the 
number of objects that were correctly classified as vehicles according to the two 
manual classifications. Again the numbers obtained here (256 and 252) are 
comparable to the number of vehicle-classifications where the two manual 
classifications agree (257) from Table 2.  
 
 

Table 3: Result of automatic classification. 
 
 
The two rightmost columns of Table 3 give the correct classification rates obtained as 
compared to the two manual classifications, P1 and P2. For P1 the total rate is 82.8%, 
while for P2 the total rate is 79.2%. These rates are close to the percentage of objects 
for which the two manual classifications are in agreement (83%). Hence, this 
indicates that the performance of the automatic classification is comparable to that of 
a manual classification. 
 
As can be seen from the manual counts, obtaining ground truth for these images is 
difficult. It could therefore be useful to investigate additional types of ground truth. 
One possible solution could be to acquire counts from inductive loop counters where 
such equipment is installed.  From these it is possible to obtain the number of vehicles 
around the time of image acquisition. By using additional information on vehicle 

Number of objects manually classified as 
vehicles 

  Total number 
of objects 
classified 

P 1  P 2  Consensus 

Percentage 
overlap between 
P1 and P2 

Image GO2  205  126  126  106  80.5 % 

Image MV1  83  59  68  57  84.9 % 

Image UV1  211  111  111  94  84.3 % 

Total  499  296 305 257 83 % 

Table 2: Result of manual classification. 

Correctly classified as 
vehicles 

Correct classification rates  

QDA 

Objects 
classified as 
vehicles  P1  P2  P1  P2 

Image GO2  135  112  112  82.0 %  82.0 % 

Image MV1  65  56  59  86.7 %  81.9 % 

Image UV1  103  88  81  82.0 %  75.4 % 

Total  303  256 252 82.8% 79.2% 



speed, it should then be possible to estimate the expected number of vehicles along a 
specific stretch of road at the time the satellite image was acquired. This can then be 
used as an additional and independent source for evaluation of the number of vehicles 
detected along the same stretch of road. This approach was not possible in this study 
as no such counters were installed along the roads in question. However, this will be 
considered in future studies. 
 
4.3.3 Overall performance 
The results have shown that even the manual classification is difficult at this 
resolution, as the appearance of the observed objects can be quite ambiguous. This 
indicates that the resolution is close to the limit of what makes vehicle detection 
possible. Still, the automatic classification displays the same performance as a human 
performing a classification of the objects, which is a very good result.  
 
However, in the initial segmentation process vehicle objects are lost due to low 
contrast and fragmentation. It seems that the lower sun angle at these latitudes (60 
degrees north) complicates this matter, giving rise to more and longer shadows and 
more reflections. This can make vehicles appear as several blobs of shadow, vehicle 
and reflections. At this resolution each of these blobs can be very small, only 1-3 
pixels, and therefore difficult to identify as meaningful objects. In future work, 
approaches that are able to recognize and combine even small blobs resulting from 
shadows and reflections with those resulting from vehicles may be considered to help 
the vehicle detection. This may however require quite complex models to be able to 
cover for different light angles and vehicle orientations.  In cases where shadow 
objects are larger (typically alongside a vehicle, and not behind or in front of) the 
shadows may be used to signal the existence of a vehicle or verify a detection. This 
will, however only be useful for some light angles relative to the vehicle position. 
 
In the experiments reported here images from a region surrounding Oslo, acquired 
during spring time, have been used. The general approach should however be able to 
work also for other regions and for other seasons, provided that weather and light 
conditions allow for imagery to be acquired. Preliminary experiments (not included in 
this study) performed on images covering regions further north in Norway (latitudes 
varying from ca 63○ to 70○ north) also indicate this. However, future studies should 
investigate this in more detail. 
 
In total the number of detected vehicles (303) is approximately 20% percent less than 
that obtained through the manual counts (consensus: 362), and the underestimation is 
due to the objects lost during segmentation. It is difficult to compare our results with 
those obtained in other studies of vehicle detection from satellite images. The few 
studies that exist have concentrated on large highways, mainly in the U.S., where 
conditions are quite different.  
 
For highway areas, Sharma et al (2006) report quite good results for their method 
based on Bayesian background transformation. Here the vehicle count is close to the 
ground truth (for a total of 160 vehicles) and the number of false positives and false 
negatives is small. This method does however require a background estimate, and 
such an estimate will seldom be available and is difficult to obtain this automatically. 
Their next best method also obtains a good estimate of the number of the total 
vehicles. However, the false negative rate and the false positive rate are both in the 



proximity of 25%. These results are obtained for wide and open highways with very 
little clutter. They are obtained by comparison with manual counts, and no problems 
or ambiguities in the manual counts have been reported. This indicates that the 
vehicles in this study are quite easily distinguished from the road surface. 

5 Summary and conclusion 

In this paper we have demonstrated a classification-based approach for vehicle 
detection in satellite images. The approach utilizes the panchromatic information for 
vehicle classification and multispectral information for masking of vegetation and 
shadows. Classification of segmented objects is then performed in two steps, using a 
rule-based pre-classification and a final statistical classification. Tests have been 
performed on Quickbird images from two different years, taken over Oslo, Norway. 
The roads for which the vehicle detection has been tested consist of a mixture of 
inner-city roads and main roads. 
 
The results of the segmentation and classification have been compared to manual 
counts and classifications. These manual classifications have been performed by two 
persons independently, and have shown that even the manual classification is difficult 
at this resolution as the appearance of the observed objects can be quite ambiguous. 
This indicates that for these roads with this resolution and under these conditions it is 
difficult to distinguish vehicles from other objects. However, comparisons with the 
manual classifications have shown that the automatic classification is good and that 
the results are very similar to those obtained through manual classification of the 
objects. The segmentation process is however more of a problem. Approximately 
20% of the vehicles are lost in this process due to low contrast and fragmented 
objects. 
 
In conclusion, the classification results that have been obtained are very promising. 
Hence, this seems to be a good approach for inner-city roads with different types of 
clutter. However, in future studies we want to look more into the problems of the 
segmentation process and investigate the possibility of improving the performance of 
this process. At the same time, we think it is necessary to compare the vehicle 
detection results with other types of traffic information, resulting for instance from 
inductive loops.  
 
There are also some additional challenges for a satellite-based system. For instance, 
high buildings and their shadows as well as vegetation can occlude parts of the road 
network. Satellite-based traffic data can then not be derived for these parts. Since 
traffic load often varies relatively smoothly, statistics from nearby areas that are 
observable may still provide useful insight into the situation for these occluded areas.  
Another challenge is the availability of satellite images. For the geographical regions 
used in this study we would, due to weather conditions, expect to acquire 1-2 images 
of sufficient quality per month, and further north no images would be available during 
winter time due to light conditions. However, an approach like this is not intended to 
replace the current systems for continuous traffic surveillance, but as an additional 
and complementing source of information. Useful links may also be established 
between counts from traditional equipment, existing traffic estimates (annual average 
daily traffic - AADT) and the satellite-based information. 



 
In future studies we want to investigate more closely the consistency of the results and 
the level of performance that is needed for this type of satellite-based traffic counts to 
be useful and how this information can be linked to other types of information. For 
areas where no information is available today, the satellite-based counts may 
contribute with useful information even with an underestimation and it can also give 
valuable insight into vehicle distribution patterns over the road network. 
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