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Abstract The catchment of Øvre Heimdalsvatn and

the surrounding area was established as a site for snow

remote sensing algorithm development, calibration

and validation in 1997. Information on snow cover and

snowmelt are important for understanding the timing

and scale of many lake ecosystem processes. Field

campaigns combined with data from airborne sensors

and spaceborne high-resolution sensors have been used

as reference data in experiments over many years.

Several satellite sensors have been utilised in the

development of new algorithms, including Terra

MODIS and Envisat ASAR. The experiments have

been motivated by operational prospects for snow

hydrology, meteorology and climate monitoring by

satellite-based remote sensing techniques. This has

resulted in new time-series multi-sensor approaches

for monitoring of snow cover area (SCA) and snow

surface wetness (SSW). The idea was to analyse, on a

daily basis, a time series of optical and radar satellite

data in multi-sensor models. The SCA algorithm

analyses each optical and synthetic aperture radar

(SAR) image individually and combines them into a

day product based on a set of confidence functions. The

SSW algorithm combines information about the

development of the snow surface temperature and

the snow grain size (SGS) in a time-series analysis. The

snow cover algorithm is being evaluated for applica-

tion in a global climate monitoring system for snow

variables. The successful development of these algo-

rithms has led to operational applications of snow

monitoring in Norway and Sweden, as well as enabling

the prediction of the spring snowmelt flood and thus the

initiation of many lake production processes.
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Introduction

Knowledge of the timing, progression and scale of

the spring snowmelt is crucial to an understanding of

ecosystem dynamics of mountain lakes such as the
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subalpine lake, Øvre Heimdalsvatn. This applies to

the several aspects of the lake ecosystem, including

the supply of allochthonous plant material to the lake

from the terrestrial environment (Larsson & Tangen,

1975; Brittain & Bjørnstad, 2010), zooplankton

dynamics (Larsson et al., 2010) and the inflow of

Chernobyl radionuclides from contaminated catch-

ment snows (Brittain et al., 1992; Salbu et al., 1992).

Snow depth, snowmelt progression and snow condi-

tions also affect the timing of ice breakup in Øvre

Heimdalsvatn (Kvambekk & Melvold, 2010), another

structuring factor for the lake ecosystem (Larsson

et al., 1978).

In the late 1970s, the Norwegian Water Resources

and Energy Directorate (NVE) proposed a method for

remote sensing of fractional snow cover (FSC)

(percentage of snow per pixel) (Østrem et al.,

1979). The main objective in the first instance was

to obtain an indication of the snow water equivalent

from the measured snow cover in the snowmelt

season. The data source at that time was the two-

channel version of the NOAA AVHRR sensor. The

methodology was gradually refined by NVE (e.g.

Andersen, 1982) and later by the Norwegian Com-

puting Center (NR) for Statkraft, the largest hydro-

power company in Norway (Solberg & Andersen,

1994).

In the mid-1990s, collaboration was strengthened

between various Norwegian institutions interested in

remote sensing of snow. The first collaborative effort

was in the Okstindan area, in particular at

Kongsfjellet, in Nordland County. A multi-frequency

multi-polarisation airborne radar (EMISAR) was

flown three times over the site giving valuable data

for the understanding of how a radar measures snow

(Guneriussen et al., 1997). More formal collaboration

began within the European Commission (EC) project

SnowTools in 1996. The experience with Kongsfjellet

showed that it was quite costly to carry out frequent

field campaigns in such a remote area with unpre-

dictable weather, and it was concluded that much

could be gained from finding a site with more

predictable weather conditions. After a comprehen-

sive evaluation of various sites in southern Norway,

the Heimdalen–Valdresflya region in the Jotunheimen

Mountains was selected.

The main objective for establishing such a site was

for the development and improvement of algorithms

for retrieval of snow variables from remote sensing

data, as well as calibration and validation of such

algorithms. Algorithm development, calibration and

validation require ‘ground truth data’. Ground truth is

in this case a combination of airborne measurements

and field measurements. Accurate snow coverage

over a larger area is not practically obtainable by

fieldwork, but high-resolution optical data can be the

basis for accurate delineation of snow figures on the

ground. On the other hand, reference measurements

of snow variables, like grain size, temperature and

wetness, require measurements taken in the field.

In recent years, various SAR (synthetic aperture

radar) algorithms have been tested and improvements

undertaken (Malnes & Guneriussen, 2002; Malnes

et al., 2004). A new generation of ‘multi-source’

algorithms have been developed: a time-series multi-

sensor retrieval algorithm for fractional snow cover,

FSC (Solberg et al., 2005), and a time-series multi-

parameter algorithm for snow surface wetness, SSW

(Solberg et al., 2004). The aim of this article is to

present and summarise data on the algorithms and

some of the experimental results in the context of

ecosystem studies of Øvre Heimdalsvatn, located in

the midst of the field area. The Heimdalen–Valdres-

flya site’s variable topography, with mountain and

valley terrain in the Heimdalen part and a flat

mountain plateau in the Valdresflya part, has also

provided an opportunity for studying local topo-

graphic effects.

Materials and methods

Study site

The area around Øvre Heimdalsvatn was established

as a site for snow remote sensing algorithm devel-

opment, calibration and validation in 1997. Field

campaigns combined with data from airborne sensors

and spaceborne high-resolution sensors have been

used as reference data in experiments. Several

satellite sensors have been applied in the develop-

ment of new algorithms, including Terra MODIS and

Envisat ASAR. The experiments have been moti-

vated by operational prospects for snow hydrology,

meteorology, climate monitoring and their relevance

to ecosystem driving processes.

The original site included only the catchments of

the lakes, Øvre and Nedre Heimdalsvatn (Fig. 1).
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The snow measurements in the area were then able

to be linked to runoff measurements from Nedre

Heimdalsvatn. The topography of the area was also

considered suitable for remote sensing: typical

mountain topography without being too steep.

However, for some of the experiments, in particular

when testing out new algorithms, it was concluded

that it would be valuable to do initial tests and

calibration/validation without having ‘topographic

noise’ in the variable-retrieval results. The test site

was then extended to the south-west by including

the Valdresflya, a rather flat mountain plateau at

altitudes of about 1,200–1,300 m a.s.l., and where

topographic effects could be discarded in our

experiments. The Heimdalen site was originally

about 100 km2 with an elevation range of 1,050–

1,840 m a.s.l. After the inclusion of Valdresflya and

the terrain south of Heimdalen in 2001, the site was

expanded to about 265 km2 (Fig. 1). When the

activities at the Heimdalen–Valdresflya site com-

menced in 1997, a high-resolution digital terrain

model based on aerial photographs was established

to be able to understand and model topographic

effects in the satellite data. A detailed vegetation

map was also developed, based on a combination of

satellite images (Landsat Thematic Mapper) and

field mapping.

Field measurements

Since the Heimdalen–Valdresflya test site has been

established, fieldwork has taken place almost annu-

ally. Most field campaigns and parallel acquisition of

airborne and high-resolution satellite data have taken

place in the snowmelt season, typically between April

and July. The SnowTools project (1996–1998) was

followed by two other EC projects, EuroClim (2001–

2005) and EnviSnow (2002–2005). The Research

Council of Norway’s project SnowMan was run in

parallel to these (2001–2004). The site and region in

the vicinity was also used in Master and Ph.D. thesis

projects during this period (Orthe, 2003; Vikhamar,

2003). After these projects, the site was used less

frequently until a new period of snow projects started,

including the European Space Agency project

GlobSnow (2008–2011), which uses the Heimda-

len–Valdresflya area for regional calibration and

validation of algorithms for global snow mapping to

quantify regional climate changes.

A total of 32 snow field measurement campaigns

were carried out in the period 1997–2006. A typical

field campaign included measurements as listed in

Table 1. These point measurements were typically

taken in terrain slopes over a range of elevations to

establish the variability of various snow variables at

Fig. 1 The Heimdalen–

Valdresflya site for snow

algorithm development and

validation. The red
rectangle shows the original

(Heimdalen) site, while the

blue rectangle shows the

extended site
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the site. The spectral reflectance measurements were

taken with an Analytical Spectral Devices FieldSpec

Pro spectroradiometer. The instrument covers the

spectral range 350–2,500 nm. The Bidirectional

Reflectance Distribution Function (BRDF) has been

sampled in some of the campaigns using FieldSpec

Pro and a goniometer construction to fix the mea-

surement angles. The reflected sunlight was measured

in four azimuth planes, 0, 22.5, 45 and 90� relative to

the solar plane. In each plane, the measurements were

performed in steps of 10� from 0 to 80� measured

from zenith. In the solar plane, the measurements

were performed from -80 to ?80�. In angles of 22.5,

and 45 to the solar plane, the measurements were

performed from 0 to 80� only in the direction towards

the sun. At 90� to the solar plane, the measurements

were performed from 0 to 80� on one side, assuming

symmetry around the solar plane.

Spectrometer measurements have also been under-

taken to determine how the snow reflectance is

influenced by impurities, e.g. from vegetation and

bare ground. The spectral reflectance has been

measured at snow surfaces in different distances

from bare ground.

Remote sensing reference data

Point or transect measurements from field campaigns

were not sufficient for an accurate assessment of

algorithms’ ability to retrieve snow cover area (SCA)

or FSC. For the Heimdalen–Valdresflya site, aerial

photographs have been acquired to obtain very

accurate maps of the snow cover. The period 1997–

2005 has been well covered with aerial photographs

throughout the melting season. The photographs were

acquired with a Leica RC30 aerial camera system

applying either panchromatic or colour infrared film.

The aerial photographs have been orthorectified by

an aerial mapping company using control points and

photogrammetric methods. Most resulting orthophoto

mosaics have been processed to 1-m spatial resolu-

tion. For producing snow reference maps, similar

semi-manual classification approaches as applied for

the Landsat images (see below), have been used for

the arial photographs. However, radiometric effects

due to the high variable incidence angles of an aerial

camera have made orthophoto mosaic snow classifi-

cation particularly challenging. Significant manual

editing was necessary and was not always successful.

Landsat Thematic Mapper (TM) and Landsat

Enhanced Thematic Mapper Plus (ETM?) images

have also been used to make snow reference maps.

The period 1997–2004 is well covered with images

throughout the melting season. Several of the images

have undergone comprehensive classification com-

bining automatic methods (unsupervised clustering

and use of the Normalised Difference Snow Index,

NDSI) and manual methods (local thresholding of

band combinations and NDSI, or careful combination

of clusters from the unsupervised clustering). Areas

in the shade of mountain tops and the bottom of

valleys have been challenging to achieve correct

results. The resulting snow maps have 30- or 25-m

pixel resolution with three snow classes. For com-

parison with snow products derived from moderate

resolution images (e.g. 250-, 500- and 1000-m pixel

resolution), the Landsat snow maps have been

applied to derive FSC at the same resolution as the

snow maps from the moderate resolution sensors.

Some of the stages in the process of making Landsat

snow reference maps are illustrated in Fig. 2.

Validation approaches

It is usually a challenge to fully validate the output of

a remote sensing retrieval algorithm. The perfor-

mance of an algorithm will often vary with ground as

well as atmospheric conditions. The variable

topography of the Heimdalen–Valdresflya site, with

mountain and valley terrain in the Heimdalen part

and a flat mountain plateau in the Valdresflya part,

has provided a relatively unique opportunity for

studying local topographic effects. Having these two

terrain types so close made it possible to carry out

Table 1 Snow variables measured and instruments applied in

the Heimdalen–Valdresflya study site

Variable Instrumentation

Density Snow tube and scale

Depth Measurement stick

Water equivalent Calculated from volume and density

Liquid water contents Dielectric moisture meter

Temperature Electronic thermometer

Snow grain size mm-grid/photography

Spectral reflectance Field spectroradiometer

Snow coverage Aerial photography and/or TM/ETM?
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experiments where algorithm performance could be

studied with and without topographic influence

simultaneously for, usually, the same snow condi-

tions. This has been very valuable as the topography

often significantly affects the algorithm retrieval

performance.

Spatial validation data, in most cases snow cover

extent mapped from high-resolution data, were con-

verted into lower resolution FSC maps giving precise

reference values that could be directly compared with

the output of FSC retrieval algorithms. Statistics

could then be computed for algorithm performance

for various terrain types and orientation measured by

slope and aspect. Point measurements, such as snow

temperature and snow grain size (SGS), are always

more difficult to relate to remote sensing data due to

the scale differences. However, sampling along

transects or at random positions helped us to deter-

mine current spatial variability and, hence, to assist in

an assessment of how well local measurements could

be scaled up to satellite measurements.

Remote sensing data for retrieval algorithms

Algorithm development using the Heimdalen–

Valdresflya site has focused on moderate spatial

resolution satellite sensors. These sensors are designed

for frequent global monitoring, up to a few times a

day. This choice was logical from their application in

hydrology, meteorology and climatology. The optical

sensors applied were Terra MODIS, Envisat MERIS

and AATSR, and NOAA AVHRR. The SAR sensors

applied were ERS-1, ERS-2, Radarsat-1 and Envisat

ASAR. Two advanced experimental airborne sensors

Fig. 2 Developing an

accurate snow reference

map from a Landsat ETM?

image acquired on 23 May

2004. Upper left ETM?

sub-image showing

Heimdalshøe (upper right
corner) and Øvre

Heimdalsvatn (lower left).
Upper right The image after

unsupervised clustering into

10 classes. Lower left Snow

cover classification from

supervised clustering. Blue
100% snow cover; green
partly snow cover; red bare

ground. Spatial resolution

25 m. Lower right The

snow map after resampling

to FSC (%) at 250-m spatial

resolution. The resolution

corresponds to the snow

maps made by the time-

series multi-sensor

algorithm processing

MODIS and ASAR satellite

data
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have been flown as well, the DAIS 7915 and the AISA

imaging spectrometers.

Methodological foundation of new algorithms

Snow cover retrieval by SAR is based on work that

demonstrated the potential of SAR for wet snow

detection using ERS and Radarsat standard modes

(see, e.g. Koskinen et al., 1999; Nagler & Rott, 2000).

Wet snow is detected by utilising the high absorption,

and, therefore, low backscatter, of wet snow and then

comparing the backscatter with the corresponding

pixel of a reference image acquired during dry-snow

or snow-free conditions. Dry snow could then be

postulated above the mean-wet-snow elevation zone

(Malnes & Guneriussen, 2002; Malnes et al., 2004).

This methodology has been further improved by

taking into account in situ air temperature measure-

ments from meteorological station networks, which

were used to derive an interpolated temperature map

based on standard 6�C per km altitude lapse rate and

a digital elevation model.

Orthe (2003) compared several retrieval algo-

rithms suitable for classification of a time series of

Radarsat images. The classification methods were

divided into two groups, supervised and unsupervised

classification. The classification methods used spatial

and temporal contextual information. This informa-

tion was fused into the classification by using Markov

random fields and Markov chains. When utilising

temporal and contextual information, the information

was transformed into a priori information, which the

Bayesian classification rule could use. Markov

random fields and Markov chains yielded an overall

improvement in the classification accuracy. K-means

and Bayesian classification rules gave similar results.

They also responded similarly when Markov random

fields and Markov chains were applied. The use of the

Nagler algorithm (Nagler & Rott, 2000) yielded an

overall higher classification error rate than the

Bayesian classification rule and K-means.

The new multi-sensor time-series algorithm for

FSC builds on independent optical (Solberg &

Andersen, 1994) and SAR (Malnes et al., 2004)

algorithms and syntheses of the retrieval results from

these individual algorithms at the geophysical

variable level (in contrast to data fusion at the

electromagnetic level).

Furthermore, the Surface Temperature of Snow

(STS) algorithm, applied within the time-series multi-

sensor retrieval algorithm, developed for SSW, is

based on study by Key et al. (1997). A pilot study

identified it as one of the best single-view techniques

for retrieval of STS for polar atmospheres (Amlien &

Solberg, 2003). It can be applied on Terra MODIS as

well as NOAA AVHRR data. An algorithm for SGS

is also utilised in the SSW algorithm. A normalised

grain size index based on Dozier (1989) has been

used. MODIS channels 2 and 7 have been used

because the index has then been shown to be less

sensitive to snow impurities.

Results

The experiments at the Valdresflya–Heimdalen site

have resulted in a series of new and improved

algorithms for retrieval of snow variables. Building

on previous results for retrieval of wet snow cover by

SAR, methodology for reliable postulation of dry

snow above the mean-wet-snow elevation zone has

been developed. The present algorithm uses a -3 dB

threshold to discriminate between wet snow and dry

snow/bare ground. A finer tuned and variable thresh-

old can be applied if the vegetation cover is known.

The results are applied in the time-series multi-sensor

retrieval algorithm for snow cover described in the

following.

Time-series multi-sensor retrieval of snow cover

This algorithm combines optical data acquired over

several days and supplemented with SAR data as

frequently as practically possible. SAR data are

limited to the melting season because current satellite

sensors are only able to retrieve wet snow. Further-

more, current cost regimes for optical and SAR data

in practice limit the use of SAR data as optical data

are less expensive or free. From practical experience

to date, approximately 2–4 SAR image acquisitions

per week seem adequate.

The overall multi-sensor time-series algorithm

approach can be written as follows:

MFSCtðx; yÞ ¼ UFSCiðx; yÞ ð1Þ

for i which gives max(conftime(i) confMSCA(UFSCi(x,

y))) i = t,t - 1,…,t - n
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where MFSC is the new multi-sensor time-series FSC

product, UFSC is a ‘time-unit’ product (a single-

sensor product or a single day product, where the

latter includes all observations during day), con-

ftime(t) is a time-dependent confidence function,

confMFSC is the confidence function for the ‘time-

unit’ product, t is the current day and n is the number

of days back in the time series (‘the time horizon’). In

other words, for each pixel (x, y) select the ‘best’ time

unit i from a time series of unit products. ‘Best’

means the pixel with maximum confidence. Hence,

the selection process is controlled by a confidence

function.

This confidence function conftime(i) is a decay

function of time, i.e. the function reduces confidence

as the age of each unit product increases. The

function might be linear giving largest confidence

to today’s observations and no confidence past a

given time horizon. Single-sensor products as well as

single day products have associated per-pixel confi-

dence values. The confidence values for a day

product are the combination of confidence values

from a set of confidence functions associated with the

single-sensor products where the pixel values have

been selected. A single-sensor confidence function is

typically related to acquisition geometry, reliability

of the decision taken by the retrieval algorithm, etc.

For the sensors and retrieval algorithms applied in

the experiments, the optical products yield a snow

cover fraction for each 250-m resolution pixel, while

the radar products yield the snow cover classified as

snow/no-snow for each 100 m resolution pixel. The

radar product was resampled to 250 m, resulting in a

quasi fractional-snow-cover product for SAR.

The effect of including assumptions about dry

snow above the wet-snow zone in the radar product

was examined. Using a SAR SCA product to infer

dry snow appeared to overestimate the snow cover

compared to the optical product. Using SAR SCA

based on wet snow underestimated the snow cover

compared to the optical product. Attempts were made

to reduce the confidence of SAR pixels classified as

dry snow, but this did not significantly improve the

result.

Based on the experiences from all the runs of the

algorithm, a six day time horizon was found optimal

for the tested cases. While 3 days resulted in a large

fraction of unclassified pixels, 9 days resulted in

marginal improvements in coverage over the 6-day

product, and too many old observations occurred

during periods of rapidly changing snow cover. An

example of a snow map generated by the algorithm is

shown in Fig. 3.

Experience with the multi-sensor time-series algo-

rithm for FSC showed that the products depend very

much on how the initial single-sensor product confi-

dence was set and on the time decay function

employed. It appeared that proximity to clouds should

give reduced confidence in the optical data minimize

the risk of classifying clouds as snow. More important,

however, it was to consider how to fuse the SAR and

optical products in a better manner. The algorithm

would probably give enhanced results if wet snow and

dry snow from the SAR product had been handled

differently, in particular when the pixels consists of a

mixture of wet and dry snow or bare ground.

When optical data are unavailable due to clouds,

the use of radar data improves the product by

covering larger areas. Owing to the binary character

of the radar snow map and the limitation to detecting

wet snow only, SAR was weighted lower than optical

by an inter-sensor confidence factor. We examined

and evaluated various values of this factor and found

that values of 0.5 and below clearly reduced the

Fig. 3 The day product

with and without ASAR on

7 June 2004 covering the

Jotunheimen mountains.

Left MODIS only included.

Right Both MODIS and

ASAR included. This

illustrates that the SAR

sensor has less ability to

determine the snow cover

fraction than optical sensors
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contribution from the SAR products too much. Using

a value close to 1.0 preserved much of the binary

pattern from the SAR products. This means that high

confidences for SAR had a tendency to override

subsequent optical data. Values in the range 0.75–1.0

gave the best overall results.

Using SAR imagery is not as straightforward as

optical imagery. In the original 100-m SAR product,

the wet snow threshold is binary (wet snow/non-wet

snow). Owing to the logarithmic coding of backscat-

ter in SAR imagery, a small fraction of bare soil in a

SAR pixel may cancel out a large fraction of snow.

Also, the resampling of 100-m products to 250 m

generates FSC where bare ground, wet and dry snow

and possibly masked pixels are combined into a snow

cover fraction.

Time-series multi-sensor retrieval of snow surface

wetness

An approach to infer wet snow from a combination of

measurements of STS and SGS in a time series of

observations has been developed. The temperature

observations gave a good indication of where wet

snow could be present, but were in themselves not

accurate enough to provide very strong evidence of

wet snow. However, if a rapid increase in the

effective grain size was observed simultaneously

with a snow surface temperature of approximately

0�C, then this was a strong indication of a wet snow

surface. A simplified version of the algorithm applied

is expressed below (pixel indexing has been skipped

for clarity; MSSW is time-series multi-sensor SSW):

if SGS(today)� SGS(recently) [ SGStresh AND

�2\STS(today) \ 1 then MSSW ¼ WET SNOW

else

if SGS(today) \ BareGroundSGStresh then

MSSW ¼ BARE GROUND

else

if STS(today) [ 1Þ then

MSSW ¼ BARE GROUND

else

MSSW ¼ DRY SNOW

ð2Þ

The algorithm also illustrates how bare ground is

inferred from temperature observations above 0�C

and a rapidly developing negative gradient for SGS

(both due to appearance of bare ground patches at the

sub-pixel level).

The 3 days of snow wetness maps for southern

Norway based on the algorithm (Fig. 4) illustrate a

typical situation with warmer weather entering from

the west, and the snow in the mountains becomes wet

over a period of a few days.

A combination of snow temperature and SGS was

utilised in the algorithm. The calculated SGS index

did not give the precise physical size of the snow

grains, but gave an indication of the grain size. The

value of the SGS index increases with increasing

grain size. For a pixel totally covered with snow, the

SGS index is a good indication of the grain size. Bare

ground gives a low value for the SGS index. This

Fig. 4 Snow surface wetness products of southern Norway for

3 days in April 2003. The images show how the mountain

regions of southern Norway become warmer over a few days

when warmer air masses enter from the west. There are four

temperature classes: (1) Dry, cold snow (white), (2) dry/moist

(blue/light blue), (3) moist (orange/yellow) and (4) wet (red).

For classes 2 and 3 blue and orange means constant grain size

and light blue and yellow means increasing grain size. The

figure shows from left to right: a 16 April; b 20 April; and c 22

April
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means that for a pixel only partly covered with snow,

a low SGS index was measured, even for large SGSs.

A decreasing value of SGS could mean newly fallen

snow or increasing snow-free area.

For STS there was a similar problem. With a snow

temperature of 0�C, the snow will start to melt and

the temperature will stop increasing. For a pixel only

partly covered with snow, the temperature of the

snow-free area will create an influence, resulting in

measured STS values above 0�C. This would usually

mean that the snow is wet, but if the snow-free area is

sufficiently large, one can measure an average

positive temperature for the pixel even if the snow

is cold and dry. Therefore, a good estimate of SSW is

valid only for pixels completely covered with snow.

An accurate FSC map should be used to restrict the

pixels classified. It was assumed that the SSW

estimates were reasonably good even if small areas

of bare ground were included.

Discussion

Snow cover area

Even though the contrast between snow and snow-

free ground is quite high in the visual part of the

electromagnetic spectrum, accurate mapping of the

snow cover is not straightforward. This is partly due

to the situation that the snow fraction at the sub-pixel

level is needed to obtain the required level of detail

for the snow maps. Combined with the fact that the

snow spectrum changes continuously and that the

regions to monitor frequently have complex terrain

reliefs, this has resulted in a failure to obtain very

accurate operational FSC monitoring for larger

regions under all snow conditions.

There are two alternative operational or close-to-

operational approaches for FSC mapping published,

one based on spectral unmixing and the other on the

NDSI. The spectral unmixing approach was origi-

nally introduced by Nolin & Dozier (1993). A

disadvantage of this method is that it is supervised,

which makes it difficult to be used in large-scale and

operational applications. Rosenthal (1996) proposed a

method for unsupervised spectral unmixing, which

was further improved with a spectral library approach

by Painter et al. (1998). A spectral library of snow,

vegetation, rock and soil endmembers was used. The

snow endmembers of varying grain size were derived

from a radiative transfer model. The other spectra

were measured in a laboratory and in the field. An

overall RMS error of 4% was obtained from analys-

ing three images acquired by the airborne imaging

spectrometer AVIRIS over a mountainous region and

comparing them with aerial images.

The spectral unmixing approach has proven to be

very accurate when the spectral properties of the

endmembers can be determined in advance by field

measurements and spectral modelling, as indicated by

the example of above of 4% RMS error. Our exper-

iments with the optical part of the time-series multi-

sensor algorithm indicate an RMS error of 10–15%

under normal conditions. Nevertheless, too much pre-

analysis information is required through measure-

ments and modelling for operational use of the spectral

unmixing approach. In contrast, the approach used in

this study determines input parameters to the retrieval

algorithm through the use of a few calibration targets

that are analysed automatically.

Salomonson & Appel (2004) tested whether there

was enough ‘signal’ in the NDSI to map fractional

snow. An overall correlation coefficient of 0.9 and a

RMS error of 10% were found for the linear regression

result between FSC and NDSI. The algorithm has been

validated and implemented as a standard NASA

MODIS FSC product, which was launched operation-

ally in December 2006 (Salomonson & Appel, 2006).

The algorithm seems to be a competitive approach to

the optical part of our FSC algorithm with regard to

accuracy and operational utility. A comparative anal-

ysis is suggested for future work.

Very few multi-source sensor studies have been

published so far, although Tait et al. (2000) provide

an example of a true combination of data from two

sensors to produce a snow map. NOAA AVHRR data

and DMSP SSM/I data were analysed together with

climate station data and a digital terrain model in a

decision tree produce a continental-scale snow map

for North America. However, these results are not

directly comparable as a passive microwave sensor

(SSM/I) was used instead of SAR, and so neither

spectral content nor spatial resolutions are compara-

ble. Nevertheless, our results show that a time-series

multi-sensor approach is able to compensate to a

large degree for cloud cover by utilising SAR when

available and the snow is wet (the multi-sensor

component of the algorithm) in addition to previous
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optical and SAR observations (the time-series com-

ponent) without compromising much on accuracy.

Snow surface wetness

The ideal approach based on optical data would have

been to apply a retrieval algorithm for liquid water

contents in the snow, like that proposed by Green &

Dozier (1995). However, this would require an

imaging spectrometer with optimally located spectral

channels for measuring a liquid–water molecular

absorption feature. Such sensors are currently not

available in satellites, only as experimental sensors in

aircrafts. Our aim has been to propose an algorithm

that could be used operationally based on satellite data.

The experiments with the snow wetness algorithm

have confirmed that the approach of combining STS

and SGS, analysed in a time series of observations,

can be used to infer wet snow, including giving an

early warning of snowmelt start. Air temperature

measurements from meteorological stations confirm

in general the maps produced. The main problems

observed are related to clouds. In some maps, dry and

cold snow was more frequently close to clouds. One

could imagine that this is because the clouds have

kept the sunlight away, hence the snow has not been

warmed. However, it might equally be that parts of

the clouds have not been detected such that the cloud

temperature is partly included. These problems are

typically associated with transparent clouds.

Synthetic aperture radar is very sensitive to snow

wetness. Using the same technique as in our snow

cover algorithm for wet snow, a binary map of wet

snow was achieved. Ideally, the amount of liquid

water could have been retrieved for the snow surface

using a SAR technique. The backscattering from

snow is a complicated function of surface parameters

(roughness, correlation length and wetness), snow

parameters (density, depth, grain size and water

content) and soil parameters (surface roughness and

moisture) in addition to sensor parameters (fre-

quency, polarisation and incidence angle). If the

snow is wet, then the dominating contribution comes

from the snow surface due to absorption. In Fily et al.

(1997), algorithms were demonstrated for the retrie-

val of snow wetness from multi-polarisation SAR.

For single polarisation SAR (such as ENVISAT

ASAR Wide Swath) there are too many parameters

involved in the equation to facilitate a full inversion

of the problem. Several authors have, however,

shown that wet snow can be detected (see Nagler &

Rott, 2000), and this approach is in practice the

microwave alternative to our optical algorithm.

No comparative study has so far been carried out for

the two alternatives of optical and SAR sensors.

However, we know from our applications of snow

cover retrieval that the SAR algorithm is sensitive to

small fractions of bare ground, in particular for rough

surfaces like rocks. In practice, wet snow mapping

would be limited to full snow cover when using SAR,

just as for optical as the emissivity of the snow-free

ground is not known when using the STS algorithm and

would then most likely give too high temperature

estimates.

While the SAR signal is dominated by the

dielectric properties of the medium measured and

its geometrical properties at the scale of the micro-

wave wavelength, optical sensors are sensitive to

reflection, absorption and scattering properties of the

snow grains in the top layer of the snow pack. Hence,

the sensors are measuring entirely different physical

phenomena. In spite of this situation, the results of

experiments of combining snow cover retrieved by

SAR and optical sensors generally give reasonably

consistent results. The SAR-based maps were valu-

able for updating the multi-sensor time-series prod-

ucts in periods of missing optical observations due to

cloud cover. The SAR observations were to a large

degree confirmed by subsequent optical observations.

Conclusions

The multi-sensor time-series SCA algorithm has after

its introduction been applied in several large-scale

experiments and is currently used operationally in the

snowmelt season by Kongsberg Satellite Services in

Norway, providing snow maps to hydrological users

in Norway and Sweden. The snow cover algorithm is

evaluated for application in a global climate moni-

toring system for snow variables. The early warning

of the start of snowmelt and the extent of snow cover

have the potential to be useful tools in detecting the

timing of major hydrological processes in remote

areas, such as ice break and the spring flood

(Kvambekk & Melvold, 2010), which again are

crucial to the seasonal development of lake biological
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production and food chains (Larsson et al., 1978,

2010; Borgstrøm et al., 2010).

The Heimdalen–Valdresflya site’s variable topog-

raphy provided a relatively unique opportunity for

studying algorithm performance with and without

topographic influence simultaneously for similar

snow conditions. This has been valuable as the

topography often significantly affects algorithm

retrieval performance. The accessibility of the site

has also been important as it could be reached on

short notice within a few hours, which made it

possible to successfully carry out most field

campaigns under cloud-free conditions.

The experiments with the snow wetness algorithm

have confirmed that the approach of combining snow

surface temperature and SGS, analysed in a time

series of observations, can be used to infer wet snow,

including giving an early warning of snowmelt start.

Air temperature measurements from meteorological

stations confirm in general the maps produced. The

main problems observed are related to clouds. In

some maps, it was observed that dry and cold snow

was more frequently close to clouds. These problems

are typically associated with transparent clouds. The

knowledge of snowmelt processes in the catchment of

Øvre Heimdalsvatn and the developed algorithms

will be valuable in future research and monitoring

lake ecosystems such as Øvre Heimdalsvatn.
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