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ABSTRACT Adaptive chains are chains that are able to learn from all pre-
vious elements in the chain. It is an extension of Markov chains. It is proved
convergence of adaptive chains that satisfies a strong Doeblin condition (i.e.,
the transition density r from z; to y satisfies r(y, z1, z9, ... ,x;) > a;m(y) for
all z1,...,z;,vy in the state space.) By using the previous iterations of the
adaptive chain, it is possible to increase a; which will improve convergence
compared with Markov chains. It is also proved a decreasion rate in the
covariance between element z; and z;; as j increases.

The results may also be applied on regeneration chains where only the
history before the last regeneration is used. Particularly interesting is the
adaptive Metropolis-Hastings algorithm. Adaptive simulated annealing is
also described and convergence is proved when the temperature decreases
proportional with M/logi. The convergence is due to contraction proper-
ties of integral operators with a stationary distribution and that satisfies a
strong Doeblin condition. The algorithm is particularly useful when it is
necessary with many samples from the same distribution like in Bayesian
estimation, and in applications where it is very expensive to calculate the
limiting density like inverse problems and optimisation.
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1. INTRODUCTION

Markov chains are widely used as models and computational devices in
areas ranging from statistics to physics. The theory and applications of
Markov chains are very active fields of research: see, for example, Meyn
and Tweedie (1993), Gilks et al. (1996) and Geyer (1992). In many Markov
chains, one gains knowledge about the limiting distribution as the number
of iterations increases. This knowledge may be used to adapt the transition
densities in order to improve the convergence of the chain. Since the chain
is adaptive, it is not a Markov chain. Part of Markov chain theory may be
adapted to adaptive chains. There has been a large number of papers on
adaptive chains the last years. Some paper focus on regeneration; Roberts
and Tweedie (1998) and Gilks et al. (1998). At the regeneration time the
present state is independent of the previous states. States before the last
regeneration may then be used in the transition density. The chain is a
Markov chain between each regeneration time. In Haario et al A (1998) and
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Haario et al B (1998) the full history is used in a Metropolis algorithm. It
is made some assumptions on using Gaussian distributions. See also Gilks
et al. (1994) and Roberts and Gilks (1994) for more specialised adaptive
chains.

This paper proves convergence of regeneration chains using part of the
history and adaptive chains using the full history. The only assumptions
on the transition function are that it satisfies a strong Doeblin condition
and a stability criterion. The results may also be applied on simulated
annealing and simulated tempering. The improvements of the presented
technique compared with standard Markov chains, are most significant if
many samples from the same distribution are drawn. This is the case in
most Bayesian applications. By using all previous samples of the chain,
one may use methods from optimisation theory e.g. gradients in order to
identify the most likely part of the sate space. Methods used in optimisation
theory usually identify the likely areas much faster than traditionally MCMC
techniques. It is equal important to identity these areas independent on
whether the objective is to find the most likely state in the state space or
the objective is to sample from a distribution.

Convergence is proved in both relative supremum norm |[|p|lre =
sup,{|p(z) — n(z)|/m(x)} and the total variation norm as |p — 7|r.v. =
SUPccq Uc(p(:c) —7(x)) du(ac)‘ . These norms are used in this paper since
the total variation norm is the most used norm and the relative supremum
norm is needed in order to bound a function of the correlation between dif-
ferent states in the chain. The relative supremum norm is stronger than
most other norms.

2. A MOTIVATING EXAMPLE

Assume we want to sample from a function n(z) = cf(z) for z € [0,1]
where c is an unknown constant with the adaptive and regenerate Metropolis-
Hastings algorithm. Let §/ = (y1,...,y;) denote the first j values of y.

1. Generate an initial state z; € Q from the density p;.

2. Fore=1,...,n:
(a) Generate a state ;1 from the density q(y;;1, z;, 7).
(b) Calculate a;(yiy1,x;, 5" ) = mln{l T(yit1)a(@iyit1,5)

m(x;) (I(yz+1,$uyt(l))
(c) Set i1 = {

yiy1 with probability a;(yiy1,zs, ")
In an adaptive chain ¢(i+1) = . In a regenerate chain ¢(1) = 0 and ¢(i+1) =
1 with probability
H(y; 1,73, 5D)
maz{r/w(z;, V), K:/w(y1+1, H)Y i w(xg, §8) > &, and w(yiy 1, 7)) > &

=9 maz{w(z;, 79) /5, w(yis1, §70)/k} ifw(wz',zit(“)@ﬁ and w(yiy1, 5'0) < K
1 otherwise

x;  with probability 1 — o (yit1, =, 7*®).

and otherwise t(i + 1) = ¢(4). In the expression £ > 0 is a constant and
w(z, 79 = 7(2)/q(z, 7). The algorithm is most efficient if « is a central
value of w(z,7%"). This formula for the regenerate chain is only valid for
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proposal function independent of the present position i.e. z;. See Mykland
et al (1995).
We will use four different proposal functions:

1. Markov chain: ¢;(y) =1

2. Markov chain: ¢s(y, z;) ~ Uniform(max{0,z; — .05}, min{1, z; + .05})

3. Adaptive chain: ¢3(y,5""') = 6; max{f (Yx(y)),0-1} where 6; is a nor-
malising constant and k(y) = argmini<;<;—1{|]y — y;|}. We assume
that w(z1) > 0.

4. Regenerate chain: g4(y, 7"?) = 6; max{f(yx(y)),0-1} where 6; is a nor-
malising constant and k(y) = argmin; <;<y;){|y—y;|}. We assume that
7T(.’L'1) > 0.

The proposal function g has some similarities with random walk while g3
and g4 are step functions that in each point uses the nearest evaluation of f.
The proposal functions g3 and g4 do not give Markov chains since they use
previous states/evaluations y1, ..., y;(;) - In a later section it is proved that the
adaptive chain generated by using g3 converges to a chain ¢; which again
converges to . ¢; is defined by the same algorithm as above but with p;
replaced by 7. The regenerate chain using g4 converges directly to .
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FiGURE 1. The total variance distance between the target
and the actual distribution at each of the first 20 iterations.
The convergence rate is in the following order: g3 (adaptive,
conditioned on z19p = .5 and using the first 10 evaluations of
f), g3 (adaptive), g1 = 1, q4 (regenerate) and the poorest one
g2 (Random walk). The curve starting in origo which starts
converging after 4 iterations, is the ¢; curve that the adaptive
chain approaches. The results are based on statistics from
100.000 simulated chains.

These methods are tested on the function f(z) = z® with z; = 0.5.
Simulations have been performed for each of the three methods. The total
variance distance between the target distribution and the actual distribution
is shown in figure 1, while the estimated auto correlations for lags up to 20
are shown in figure 2. The total variance distance shows how fast the chain
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converges to the limiting distribution. The auto correlation shows how fast
the dependency between z, and z,4x vanishes. In figure 1 it is also shown
the distribution for x4 assuming that element 19 = 0.5 and using the
adaptive g3. For ¢; and g the distributions for z19,; and zj are identical
assuming z19 = .5 and x1 = .5 respectively. The proposal functions g3 and
g4 learn from more samples. In all cases the convergence depends critically
on how close ¢ is m. The random walk proposal function, ¢,, is shown to be
largely inferior of the other methods. The probability for regeneration is so
small in the start of the chain that the chain using ¢4 is not better than the
chain using q;. The adaptive g3 is better and considerably better if it may
use some previous evaluations of f. The regenerate ¢4 has the same decrease
in auto correlation as the plotted adaptive g3 but needs a longer burn-in
period.
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FiGURE 2. The auto correlation of three chains having dif-
ferent proposal functions. The dotted line correspond to ¢,
while the solid line correspond to ¢ and the dashed line to
g3. The regenerate g4 chain gave almost identical curve as
the adaptive g3. The results are based on a long chain of
length 10000, with a burn-in of 100 iterations.

The two last methods are not Markov chains since they depend on all
previous elements in the chain. In other examples the history may be rep-
resented as estimates of some parameters 5. Then the chain could in some
cases be represented as a Markov chain in the state space (z, ). In the ex-
ample above this is not natural since all previous states are used. Hence,
it is not natural to consider it as a Markov chain. This proposal function
is chosen since it is easy to generalise to several dimensions. If the number
of samples is large, it is probably necessary to estimate some parameters in
the proposal function.

The convergence depends critically on how close ¢ is «. If the transition
density of a Markov chain satisfies r(y|z) > an(y) for all z,y in the state
space, then it converges geometrically with rate (1 — a)’. For adaptive and
regenerate chains the product [[;(1 — a;) where a; satisfies r;(y, z;, 7)) >
a;7(y), is important for the convergence and the decreasion of the covariance
between element x; and zj. This is proved in the following sections.
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3. DEFINITION OF ADAPTIVE AND REGENERATE CHAINS

Assume that we want to sample from a function n(z) = ¢f(z) for z €
where ¢ is an unknown constant with an iterative method. An adaptive
chain is defined as follows.

ADAPTIVE CHAIN.

1. Generate an initial state 21 € € from the density p;
2. Fori=1,...,n: .
Generate a new state z;,1 = y from the density r;(y, z;, 7 1).

Note that r; has variable number of arguments. r;(y,z;,#"!) is inter-

preted as a transition density from x; to y that depends on the history
%' = (x1,... ,;). The last element in the chain z; may also be used in the
history.

We will also define the regenerate chain. Let the function h; and the
density v; satisfy

(1) Ti(y,.l‘,.f?]) > hl(wa‘%‘j)yz(y) for all (y,.’I),i‘J) € 0tz

REGENERATE CHAIN.

1. Generate an initial state z; € €2 from the density p;
2. Set t(1) =0
3. Fori=1,...,n:
(a) Generate a new state z;;; = y from the density r;(y, z;, Z®).
(b) Set t(i+1) = i with probability H (y, z, z"®) = h;(zs, 2 v;(y) /ri(y, zi, £8D)
and else t(z + 1) = (1).

The regenerate chain only uses the first ¢(7) elements in the chain in the
transition density, not the last elements z;(;) .1, - , ;. The iterations where
t(i+1) = i is called a regeneration. The regeneration chain is a Markov chain
between each regeneration. In each regeneration we may consider x;;1 as
drawn from v; instead of r; hence it becomes independent of (). Tt may be
complicated to calculate H. See the example in section 2 and the references
Mykland et al (1995) and Gilks et al. (1998).

Convergence both for the adaptive chain and the regenerate chain is
proved in this paper. The author believe that normally will the adaptive
chain approach 7 faster than both standard Markov chains and regenerate
chains since it may use all the previous elements in the chain. The adaptive
chain is also easier to use than regenerate chains since it is not necessary to
consider the regeneration.

In order to prove convergence of the adaptive chain, it is necessary to
introduce another chain ¢; which is a slight perturbation of 7. ¢; is defined
by the same transition density as p; but using ¢; = 7 instead of p;. The
convergence of p; towards ¢; may be proved similarly as convergence of
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Markov chains satisfying the strong Doeblin condition. In order to prove
that ¢; approaches 7, it is necessary with some new techniques.

If the objective is to draw n samples, then sample no. mi,ms,... ,my,
may be drawn. Let m; —m;_; decrease when ¢ increases since the increased
history will improve convergence and decrease covariance.

4. MAIN ASSUMPTIONS AND RESULTS

Let Q! = Q C R" be a Borel measurable state space or, alternatively, let
Q be a discrete state space, and Q! = Q x Q') and F* = (z1,...,7;) € Q.
Let (i) be the product measure on Q. Let further the limiting density
and the transition density r be integrable with respect to u including point
mass distributions. The results are also valid for more general state spaces
Q.

In some algorithms like simulated annealing and simulated tempering
there is defined a sequence of densities {m;}; where m; — m when i — oo.
In standard Markov chain applications we may set m; = 7 for all ¢ > 0.
This sequence is included in the theorems since it makes the theorems more

general and the proofs do not change. Define
(2) ¢ = ||Tig1 — mill7y -

The transition density in iteration i is
®) silra) = [ il a0 P, 2)u@ )

where P(z%%),z) is the conditional distribution for %) given z; = z and
the initial distribution is p;. If another initial distribution is used, P and s;
are still well defined but P has not the same interpretation. Note that when
applied on adaptive chains #(i + 1) = 4. If Metropolis-Hastings is used and
it is prefered to use the proposed history ¢/ instead for the history of the
chain #7, then P(#'®, z) should be replaced by Q(7?,z), the conditional
distribution for %) given z. This only leads to changes in the definitions.
The theorems and proofs are identical.
The density after ¢ iterations, p;, is defined by

(4) pia(y) = /Q si(y, 2)pi ) du(z)

where p; is defined by the user. In each iteration p; approaches the density
¢; defined by

(5) bii(y) = /Q si(y, 2)h (2)du(2)

and ¢; = 1. Note that s; and ¢; depend on p; but not on the chain x;.
It is possible to construct the transition function r; such that it satisfies

(6)
mi(y) = / ri(y, z, 8O mi(z)dp(z) for all () e Q) and all integers i > 0.
Q
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This assumption may be verified for the Metropolis-Hastings algorithm. The
transition kernel for the Metropolis-Hastings algorithm is

Iri(y’ Z jt(Z)) = q(ya Zz, it(z))az (ya z, jt(l))
where

Uy (y)q(ma Y, j‘t(Z))
7Ti(x)Q(ya z, j.t(z)) .

(7) i (y, =, @) = min(1,
Using the fact that
i (-’L')Q(y, Z, jt(Z) )ai (y, z, jt(z)) =T (y)q(m, Y, jt(z) )Oli (557 Y, «it(z))
which follows from (7), we obtain the detailed balance equation:
T (ZE)T‘Z (y, z, «it(z)) = Ty (y)‘r‘Z (;1}’ Y, jt(z))

Integrating both sides with respect to = gives (6).
Define the transition density 7#; by

(8) iy z) = / ri(y, z, #O) PED) du(#0)
Q)

where P(&4%) is the distribution for 2/()) conditioned on p, as initial distri-
bution. If 7; satisfies the equation (6) then it also satisfies

(9) mi(y) = / 7i(y, z)m; (z)dp(x) for all integers i > 0
Q
since

)= [ mo)PE ()

= ri(y, z, 5OV m;(2) P(EO ) dp(z, 570
Qt(i)+1

- / Fi(y, )mi()dp(z).
Q

Notice that s; = 7.

If regeneration chain is used, then at the regeneration times when ¢(i +
1) =i, ;41 is independent of the history #4%), hence P(#*®, z) = P(#'®).
Then s; = 7; for 4 > 0 implying ¢; = m; for ¢ > 0.

For adaptive chains the difference ¢; — m; depends on how close s ap-
proaches 7. Define b; and b7 by

(10) bi = II/Q(Sz'(-,:v) = fi(, 2))mi(@)dp(z) | T.v.
and

1) = sup | / (si(y, ) — #ily, 2))ms(@) du(a) | /i y).
yeQ,mi(y)>0 JQ
Note that

Qt@)



8 HOLDEN

One may argue that b; and bf are small based on r;(y, z, /") is not too
sensitive to the history e.g. due to that r; (y,x,fct(i)) approaches a function
7(y, ) when ¢ increases. Another argument is that the most of the history
is independent of the present state. Hence P(z!9, z) ~ P(#*®) in most of
0,

The difference ¢; — p; depends on the constant a; in the strong Doeblin
condition: Let a; € [0, 1], satisfy

(12) si(y,x) > a;di(y) for all z,y € Q and all i > 0.
and
(13) 7i(y, x) > a;mi(y) for all z,y € 2 and all 7 > 0.

The strong Doeblin condition may be described as the chain defined by s;
and 7; respectively have probability a; to move to the distribution ¢; and =;
respectively in iteration . See Doob (1953), p. 197, and Meyn and Tweedie
(1993) p. 391 for references to the Doeblin condition and Holden (1997) for
reference to the strong Doeblin condition. The strong Doeblin condition is
discussed in separate section.

Then it is possible to formulate the convergence in total variation norm.
The proof is inspired by the proof of Theorem 16.2.1 in (Meyn and Tweedie
1993). Note that the the ¢; — m; difference is independent of the initial den-

Slty P1-

THEOREM 1 Assume the adaptive/regenerate chain satisfies (9) and use
the definitions in (2), (3), (4), (5), (8), (10), (12) and (13). For adaptive
chains #(i + 1) = ¢ and for regenerate chains ¢; = m;. Then the following is
satisfied

i
(14) Ipic1 — pirillmyv. < [ - ay).
7j=1
i i

(15) |pi+1 — miv1llTy. < Z(Cj + b;) H (1 —ag).

j=1 k=j+1
and
(16)

Ipi1 — wllzy. < iy — wllmy. + [ —a) + D (¢ +b) J[ (1 —ax)
j=1 j=1 k=j+1

If a; > a >0 forall j > 0 and ¢j +b; — 0 when j — oo, then ||¢; 41 —

Tit1llT.v. = 0 when ¢ = co. If a; > a > 0 and ¢; +b; < d? <1forallj>0,
d(1—a)?

then there is the following geometric convergence ||¢; 11 —mi1|l7.v. < T==¢-

It is possible to give a similar theorem for convergence in the relative
supremum norm. Note that ||p1 ||« is not well-defined if 7 or p; has point
mass distribution. The convergence in this norm may be generalised to the
case where there is point mass in p;. This is necessary in order to apply
the theorem on the Metropolis-Hastings algorithm. Let A; C Q be the
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points where there is point mass distribution in p;. A; is countable since
[ pi(z)du(z) = 1. Define

5= [ ni@duo),
Aj
the pointwise relative error

R'(z) = (pi(z) — ¢i(2))/¢i(x) = pi(x)/¢i(z) — 1,
the maximum relative error
= sup |R'(z)],
€N\ A;
and

Di=  sup  {(si(y;2)/i(y) — ai) /(1 = ai)}.

yENN\A;j41,2€A;
If there is not point mass in p; and ¢, then ||p;||¢; 0 = RY;-

Convergence in the relative supremum norm is proved using techniques

from Holden (1997).

THEOREM 2 Assume the adaptive/regenerate chain satisfies (9) and use
the definitions in (2), (3), (4), (5), (8), (11), (12) and (13). For adaptive
chains ¢(i + 1) = ¢ and for regenerate chains ¢; = m;. If w(z) > 0 for z € Q,
and there is neither point mass distribution in p;, ¢;, m;, s; nor 7; then

i
(17) Pis1llgisr,00 < IP1llmr00 [T (1 = @)
i=1
(18)
i i
Ipirllmioo <D (Imitillmoo + 05 (ITillai00 + 1) ] (1= ar) (Imkllry 00 + 1)-
j=2 k=j+1
and
(19)

[1Pillx,00 < 1Pl gs,00(1 + N1billr;,00) (1 4 17illar,00) + [1B5llmi,00 (1 + [|7ill7,00) + 173|700
Ifaj >a>0forall j >0 and ||mjt1]r,00 + bf — 0 when j — oo, then
(20) ||¢i+1||7r¢,oo —0 when 7 — o0 .

If aj > a > 0 and ||mi41]lm00 + b5 < d/ <1 for all j > 0, then there is the
following geometric convergence

d(1 —a)
@ 410 < 2020

If there is point mass distribution in p; and s;(z;+1, ;) but only for z; €
A; and z;41 € A;;1, then (18) and (19) are still valid when ||p;jt1||. 00 is
interpreted as the part without point mass. In addition we have

Siy1 <81 H(l — a;).

i=1
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and
RN < (Ry + 51y D) [[(1 —ay).

=1 j=1

Similar results are valid for most other norms. It is well known and easy
to prove that if H = Ly, Lo, or the total variation norm, then

(22) 1fllzr < A1l oollell -

Hence, the bound on the relative supremum norm may be used to prove
convergence in other norms, see (Holden 1997).

5. ESTIMATION RESULTS

Adaptive and regenerate chains may be used for estimation similarly
as Markov chains are used. The error in expectation and the correla-
tion between different terms may be bounded by the norms used in The-
orem 1 and 2. Define p;; as the the distribution of z; given z;, and

of = [(f(&) — fi)*pi(x)du(@), fi = [ f(@)pi(z)du(z). op and fr are de-

fined correspondingly with p; replaced by =. In addition, define Uim =
supyea.. (f(y) — fiji)?-

THEOREM 3
The expected value satisfies

|fz - f7r| < f7r||pi||7r,oo-

The covariance between two terms of the chain satisfies

1/2
|Cov(f(zs), f(z5))| < 20i(07 + (fji — fn)2)1/2||pj\z' - 7T||T/.V.||pj\i”71r{go
If there is point mass distribution in p;;, then

[Cov(f (i), ()| < 20illps1s — w3, (02 + (f5 — )V Roy + 0%, Sjp) 2

Jlé

Combining Theorem 1 and 2 imply that the covariance for regenerate
chains decreases with the rate [];_;,;(1 — ax). It is easy to apply these
bounds on estimators like 1/n) ", g(zm,)-

6. FURTHER DISCUSSION ON THE DOEBLIN CONDITION

The strong Doeblin condition assumption is crucial in this paper. If equa-
tion

23)  ri(y, z, 7 D) > aidily) for all (y,z,#4)) € Q! and all i > 0.

is satisfied then the strong Doeblin condition (12) is satisfied since

ir.0) = [ il 8 OVPE, 2)d(50)

> aty) [ PED)du(E") = astily)

The calculation is similar for 7; using (13).
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The adaptive Metropolis—Hastings algorithm, as described in the previous
section, is one method to make a transition function that satisfies (23). The
Metropolis—Hastings algorithm satisfies the strong Doeblin condition (12)
with the same a; if ¢(y, z, 2)) > a;n(y). Let (y,z,#@) € QUD+2 then

ri(y, 2, #9) > aily, =, #)g(y, z, #0)

— min { gy, 2, #0), "D gz 4, 5#0) | > gy
{at5.2,50), T 40,9, 39} 2 ain(y).

The strong Doeblin condition may seem restrictive. In chains like random
walk where |z; — z;_1] is small the strong Doeblin condition is not satisfied.
For these kinds of chains it is possible to define a new chain which consists
of every n’th element in the original chain i.e. z;; = z,;. This new chain may
satisfy the strong Doeblin condition. Formalise this by for every z,y €
define a sequence {D; ;y}7 where D;zy C Q. Let Doy y = {2}, Dpay =
{y}, and for every u € D; 5, and v € Dj11 54, 7i(v,u, :T:t(i)) > a;p(v). Then
the transition density r™ (mn(k+1), mnk,it(”(k_l))) for the new chain satisfies
assuming a; = g for all 1 > 0

™ (@ (1) Tk, FCE) = (@ 41y, Tk, 37F)
n—1

= /Q ) H r(wnk:-l-j-i-la Tnk+j, ‘%t(nk_m))dy‘(xnk—kla R 7l‘n(k+1)71)

n— =0

n—1 '
= / -1 1 7 @nkrits Tnksis EF D) dp(@nps - - s Tngern)-1)
H;L—l Djz,y j=0
n—2

> a¢n(k+1)($n(k+1))/ 1 abnirivi @nesis1)dn@nrsns - - - Tngeriy—1)

;L:_ll Dj,m,y ]:O
n—1
= 0" bn(or1)(@ngern) || /D bkt (Tnki)dp(Tnk )
j=1 J>T>y

The transition density 7 for z; should only depend on z; and (%), The
history 2"*~1) used by 7 above may be found from r and the z history z:*).

Hence, this chain satisfies the strong Doeblin condition with

z,yeN

n—1
(24) it =a ot (1] durss@aut@).

If it is not possible to move between any two states in a finite number
of steps, often the following weaker assumption is satisfied: Let {B;} be a
sequence of sets with U; B; = 2 where

(25) si(y,x) > a;di(y) for all i > 0 and z,y € B;.
where a; > 0. Similar theorems as in this paper may be proved using the
above sequence of Doeblin condition. This is used in (Holden 1997)

7. PRACTICAL ADVICE

It is natural to let ¢ approximate 7 with the knowledge of the previ-
ous iterations. Assume Q C R. Let ¢5(y,Z"?) denote a piecewise kth
order polynomial approximation to 7 using m(y;), ¢ = 1,--- ,¢(7). Then
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las(y, z, #0)) — 7(y)| < cx/t**' (i) for bounded and sufficient smooth 7.
This implies that 1 — a;, b;, by < cx/t**1(i) which gives convergence accord-
ing to Theorem 1 and 2. The convergence p; towards ¢; for adaptive chains
will be with the rate ci/(i!)¥*! which is considerably faster than standard
MCMC. It is possible to generalise this to 2 C R™ using Taylor expansion
in this dimension.

There is a danger of adapting too fast to the knowledge based on few
samples. In the proof of Theorem 1 it is proved that the relative error

Ri(y) = (pi(y) — ¢i(y))/di(y) satisfies

i+1 _ 5i(y, ) )b (0 T
R (y)—/Q ) R @) ).

Notice that
/Q Ri(2)i(2)dp(z) = 0,

hence the relative error decreases faster the better s;(y,z) approximates
¢i(y). This approximation may be used in evaluating how close the tran-
sition density should adapt the limiting density based on a small number
of iterations. Some more robust proposal functions are discussed in the
following paragraphs.

The simplest way to reduce the adaption on the proposal function is to
truncate it ie. g¢g(y,z,2"9) = max{gs(y,z, ), p;}. If p; = p > 0 for
all 4, then convergence is ensured. But if 7(z) < p in part of €2, then the
convergence will not be faster than geometric since a; < a < 1 for all 4. If
pi — 0, convergence may be faster than geometric. But, the easily proved
convergence [[.(1 — p;/sup,{7(z)}) is slower than geometric.

The above proposal function may not be robust when n(z) has many
modes. A more robust proposal function than g3 is the following

4r(y, 0, 30 = | min( max {as(y,2,3W),mi}) if |y — iy < ¥
1 otherwise

where 1); depends on the expected smoothness of f. 7; should be chosen
close to 1 until all modes where identified. This reduces the probability of
resampling in modes that already are identified. 7; should be close to 0
and decrease slowly in order to reduce the probability for sampling in areas
where it is known to be no modes.

One may or may not use the last state « in the interpolator g5. If it is used
it is more difficult to calculate the ratio @ due to an integrational constant.
Preliminary numerical tests are not conclusive whether it is best to use z or
not in gs. The difference is illustrated below. Let z be a local optima for 7(y)
which is not reflected in the initial proposal function. In a Markov chain the
density for proposing z is small, but if it is proposed then the probability for
accepting the proposal is large and the probably for leaving the state small.
An adaptive chain behaves like the Markov chain until the local optima is
identified. After it is identified, will the density for proposing z be large,
and when it is proposed both the probabilities for accepting and leaving the
proposal are large. If the present state is not included in the interpolator,
will the probability for leaving the local optima for the first time be small.
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The period where it remains in the optima partly compensate for the period
before the optima was recognised and therefore sampled with too small
probability. A regenerate chain behaves as a Markov chain until the first
regeneration after the local optima were identified. After the regeneration
it behaves as an adaptive chain. The probability for a regeneration is small
until there has been a regeneration after all local optima are identified.

In some applications it is natural to vary between different transition
functions r; = Zj Yi,jT5 where 7; ;) = 1 for an integer function 7 and
vi,; = 0 for j # 7(i). The choice parameter 7 may either be systematic or
stochastic. The chain converges as long as it satisfies (9) and 1 — a; and
b; are sufficient small. It is also sufficient that the sub chain z,,,, zm,,...
satisfies the strong Doeblin condition using (24). If 7 is stochastic and it is
possible to move to the same position for different transition functions it may
be complicated to calculate the acceptance ratio in the Metropolis Hastings
algorithm. If there are common bounds on a; and b; for all functions 7, we
may assume 7 is fixed. The convergence is then satisfied for all 7.

Adaptive chains may also be used on inverse problems i.e. find zy € Q
where g(z9) = 0 and in optimalization i.e. find 2y € Q where g(zy) > g(x)
for all z € 2 where there is some noise in the evaluations of g. Bayesian
statisticians often consider the measurement error and include prior knowl-
edge. Hence they prefer to study formulas like 7(z) = f(z)exp(—RBg%(z))
or w(x) = f(x)exp(Bg(z)) where [ is a constant and f(z) represents prior
knowledge of zy. Traditional numerical methods for the inverse and op-
timalization problem neglect f and use gradients of g calculated from the
previous evaluations of g. These methods are usually faster on the pure
inverse/optimisation problem ("¢” problem) than traditional MCMC meth-
ods are on the Bayesian problem ("#” problem). Using adaptive chains it
is possible to use some of the same numerical techniques, but in a Bayesian
framework and hopefully keep some of the efficiency of the numerical meth-
ods.

8. AN ABSTRACT MATHEMATICAL FORMULATION

The adaptive chain is described in an abstract mathematical formulation
in this section. Let K be the set of measurable densities on 2. Let further V'
be the set of integral operators, T': K — K with 7 as invariant distribution
i.e. T(m) = m. It is possible to construct elements in 7' from any one-
parametric family ¢(-,z) € K for every z € ) using the Metropolis-Hastings
construction. If ¢(y,z) > an(y) for every z,y € €2, then the corresponding
kernel of the operator satisfies r(y,z) > an(y) for every y € Q.

Let {T;} be a sequence of elements in V' with corresponding a; in the
strong Doeblin condition and densities p; after applying the operator T;.
Then the theorem in the following section states that the sequence p; con-
verges towards m with rate [[,(1 — a;). Hence, there may be convergence
even if a; = 0 for some elements in the chain as long as a sub-chain has
apm,; > 0.

For the adaptive chain we have T;(¢;) = ¢;. Then it is also necessary to
define a chain of operator U; satisfying U;(7) = 7 and bound the difference
T, —U;.
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There may be different kernel in each iteration and the kernel may change
deterministically or stochastically. The convergence is due to contraction
properties from the strong Doeblin condition in the space V. The adaptive-
ness is not critical for convergence, it is only an opportunity to use knowledge
in order to improve convergence and reduce correlation.

9. SIMULATED ANNEALING

In simulated annealing see Geman (1984), it is simulated from the density

(26) mi(x) = Bif (x) exp(—g(z) /T (i)

where it is assumed that 7'(i) — 0 when 4 — oo. Then m; — 7 pointwise
where

(27) m(z) = Bf(z) for z € Qy—0.
Assume that the chain satisfies
(28) si(y,z) > agi(y) exp(—M/T(i)) for alli >0 and z,y € Q.

This follows from (24) if for some values of z,y € Q it is necessary to pass
domains D,y C €2, where g(z) > 0 in order to move from z to y. We may
then formulate the following corollary to Theorem 1 which may be used to
bound the convergence rate for simulated annealing combined with ordinary
MCMC, regenerate chains and adaptive chains. The corollary gives an ex-
pression for the convergence rate and has the same bounds on the decrease
of T as in Geman (1984).

COROLLARY 1 The simulated annealing chain satisfies
(29) lpi — wllrv. <|lmi — wllrv. + i — mill v, + |lpi — dill v

If limy, 00 fno<g<m><1/n f(z)du(z) = 0, then ||7; — ||r.v. — 0.
If the chain satisfies (28) and T'(k) > M/ log(k) and 372, (c; +b;) < L,
then for 1 > 275
%
lpi — millz.v. < (L + 1) exp[—an/2] + Z (cj+bj) =0
k=j+1

when %, j,n — oo.

PROOF The inequality in (29) follows from the triangle inequality. The
second part of the corollary follows from

i — iy, = B / £(5) exp(—g(z) /T () dp(z)

Qg>o0
< A( /Q £(z) exp(—g(x)/T (i) du(x)
g>1/n
+ [ @ exp(-1 @ T@)du(z) 0
1/n>g>0

when n — oo.
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Set ¢g = 1 and by = 0. Then (28) implies
' i—1
lpi —mill <D (ej +b) [[ (1—aexp(—M/T(k)))

S
|
—

§=0 k=j+1
i—1 i—1

= (cj+bj)exp[ Y log(l — aexp(~M/T(k)))]
§j=0 k=j+1
i—1 i—1

<Y (e +by)expl-a Y exp(=M/T(k))].
Jj=0 k=j+1

If T(k) > M/ log(k)
S exp(~M/T(K) > 3 exp(~log(k) = Sk > /2
k=j k=j k

for ¢ > 2"4. Then

i—1
I — mill < (L + 1) exp[—an/2] + Y (c; +b;) = 0
k=j
when 4, j,n — oo. O

10. SOME EXAMPLES

This section gives two small examples. In the first example, it is not pos-
sible to use the Metropolis-Hastings algorithm and the second example use
simulated annealing.

EXAMPLE 1 Let Q = (0,1), and let f be an unknown continuous mono-
tone increasing function which satisfies f(y) = 0 for one value of y €
(0.1,0.9). The function f may be evaluated in a point z at a high cost.
We want to simulate from the distribution n(z) = Uniform(y — .1,y + .1).
Hence it is not possible to evaluate the limiting function = and 7(z) = 0 in
the largest part of €. It is simulated from the adaptive chain algorithm by
defining:

yL = max{0.1, all points = where f is evaluated and f(z) < 0}

y® = min{.9, all points = where f is evaluated and f(z) > 0}.

ri(y, z, &) = Uniform(y? — .1,9% + .1)

We may apply Theorem 1. With probability 1, a; —,1 and b;, ¢; — 0, when
i — oo hence also ||p; — 7||7.y. = 0 with probability 1 when i — oo .

ExXAMPLE 2 Let Q = [-2,2], f = 1, and g = max{1l — |z|,0}. Let
m; be defined by (26) and 7 be defined by (27) i.e. w(z) = 1/2 for 1 <
|z| < 2. Simulate by Metropolis Hastings simulated annealing i.e. oordinary
Metropolis Hastings with m; instead of 7 in iteration 7. If ¢ approximate
7 in €, simulated annealing is not needed. If ¢ only approximate cr for a
constant ¢ in an interval (z — 1,z 4+ 1) close to the present value z, then
simulated annealing is a reasonable algorithm. But the chain z; does not
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satisfy the strong Doeblin condition since it is not possible to jump between
any to states in one step. However, the chain z; = zg; satisfies (28). Hence,
z; and then also z; converge with T'(k) = M/logk for M sufficient small.

11. PROOF OF THEOREMS

PROOF OF THEOREM 1
The strong Doeblin condition (12) implies that s; may be written as
si(y, ) = a;pi(y) + (1 — a;)v;(y, ) for a transition density v;. Then

Ipist — distllry. = | / 510 2) (pi(2) — Gi(@)du(@) |y,
oy / aidi() + (1 — a)ui(,2)) (i (&) — di(2))du(@)rv.
—(1-a)l /Q (o 2) (s(2) — i) dp(@)ry.
< (1 —ay)llpi — dillT.v.

Equation (14) is then proved using induction and ||p1 — ¢1]|7.v. < 1. In order
to prove (15) it is necessary with the intermediate result

i1 — mirrllTv. < [lmiv1 — millrv. + g1 — millTv.
—cit | / (o 2)bi(2) — Fa( ) mi(@)dp() v
— / (54> 2)($i(2) — mi(2)) + (50 2) — F4(s 2))ma(@)) s (&) v,
<t /Q 10, 2) (91(2) — mi(2))dp(@)|Ir.y.
1 / (5i(s ) — Fi( 2)mi (@) dpa() v,
Q
<ci+bi+ (1 —a)|di —millTv.

Then (15) follows by induction using that ¢ = 7. Equation (16) is proved
by combining the results above and the triangle inequality

Ipiv1 — wllrv. < llmig1 — wllrv. + [|miv1 — a1 llrv. + | div1 — piallrv.

Ifa; > a>0and cj +b; - 0 when 57 — oo, then for any € > 0 there
exists k such that c; +b; < e for j > k. This gives for i > k

i

i1 — mit1llry. < Z(Cj + b;) H (1—ag)

7=1 k=j+1
k i—k—1
z:cj—l—b)(l—aZ Ite Z (1—a)’
J=1 J=
k 1
<(1-a)*k b)) +e
( a) jz_:l(cj+ ) + a

which may be made arbitrary small by choosing € small and ¢ large.
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Ifa; >a>0and ¢;+b; <d <1forall j >0, then

%

Ipivs = miallr. <Y (ei+b) [[ 1—a) <D (1 —a)™

Jj=1 - k=j+1 j=1
=(1—a)' ) (d/(1-a))
S
R ()
d i
T 1-a- d(l —9)

O
PROOF OF THEOREM 2 Convergence in the relative supremum norm is
proved by combining (4) and (5). This gives

pia () — disa(y) = /Q 5:(0,2) (s (z) — ¢4(z))dp()

which implies

() / WD) (0 (2) — i) dule).

Bi+1(y) o iv1(y)

This is only well-defined for ¢;1(y) > 0. Further calculation gives

itl, si(y, ®) ()b (1 z
R () = [ SR @) 0)d(o)

_ D si(y,w) (1 T
— iy [ 2080t

Si(y,l‘) i iiL' T T
— [ SUE R~ R@)d(e)dnto)

<Rl - /Q (Riy — Ri(2))m(x)du(x)

— Ryl =0+ ai [ R()i(2)du(a)
, Q
= Rjy (1 — ai).
The strong Doeblin condition (12) is used in the inequality. Define p such
that the corresponding R* = —R’. Note that $ may be negative and thus

not a density. Perform the same calculation as above with R replacing R.
This gives

—R™(y) < Riy(1 - ay)

which combined with the inequality above gives RiF" < R% /(1 — a;). Induc-
tion gives (17).
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In order to prove (18) it is necessary with the intermediate result

|ir1(v) — Ti1 ()| < |mig1(y) — mi(y)| + i1 (y) — mi(y)|
< gl omi(9) + | /Q iy, 2)i (2) — #:4(y, @) (2) dp(a)
= it llmoomi(9) +

| / 5100, 2) (1 (&) — () + (50 ) — £y, 7)) () ()
< il omi(w) + | / iy, ) (¢i(2) — mi(2))du(@)

+ / 5i(y, @) — #:(y, 2))mi (2) du(a)|

7rz+1||7r@,oo7rz(y) + (1 - az)||¢z( ) - 7Tz( )”m,ooﬂi(y) + bz‘S"ri(y)
||7rz+1||7r¢,oo +(1- az)”‘ﬁl”m,oo + b )mi(y)

|
( (
(i1l 00 + (1 = @5) | illm o0 + bl.s)w(y)(w )
= (

A

g 7Ti+1(?/)
17541 |l ,00 + (1 = @i) | B4l 7,00 + 07 )it 1 () (|73l [ 41,00 + 1)

where the bound on R’ from the previous calculation is used Hence

it 1llmisr,oo < (1= ai)lldillaso0 + b5 + l1misallas 00) (Il 00 + 1)-

Then (18) follows by induction using ¢; = m1. Equation (19) follows from
the calculation below

cun | Pi®)
||pz||7roo—yep 7T(?z)) 1 ( ) ( )
~aup (P 8ilY) | ily)
ks (@éyi 1%(@,)) +(7r)(y) 1( ) ml) | m)
~aup |(PW) 2w mily) | dily mi(y) | mi(y)
=50 V) 7 mty)  Va) T
< Mpillonoo(1 + [ dillmso0) (1 + 1illmo0) + [91llms00(L + [13llm00) + sl

Equation (20) and (21) are proved similarly as in the proof for Theorem 1.

It is left to prove the theorem when there is point mass distribution in
pi- The bound on S; follows directly from f pi(x)du(z) = 1 and the strong
Doeblin condition (12). The bound on R’ is found similarly as the first
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calculation in the proof.

z—l—l ] Si y, i _ Pt .
R™*(y) = Rl — /Q e ) (R, — R (2))di(a)du(x)

Sz(ya ) (o .
4 /A @)

< Riy—a; / (Riy — Ri(2))¢(z)dp(z)
O\ A;
+ /A | sf(j)pi(w)du(w)

= Riy(1—a;) +a; R'(z)$(x)du(z)
0\A;

Si(yaw) (1 z
+ [ @)

= Riy(1—a;) —a; / pi(2)m(z)du(z)
o [
=R, (1-a) +/ (Si(y’:v) — ai)pi(z)dp(z)

' 4, i(y)

Induction gives
Ryt <Ry +51)_Dy) [[(1 —ay)
j=1 j=1

O

PROOF OF THEOREM 3 The bound on the expected value is found from

i fal = /Q 1 (@) pi(e) — 7(2))ds(z)
< [ 1@)n(@)| (i) — (@) () | dulz)

Q
< fallpillr,co-
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The bound on the covariance follows from
|Cov(f(zi),f(z5))] = |/Qz(f(37i) — fi)(f (z5) = f)pi(@a)pjjs(j]ms)dp(zs, z5)|
=1 [ (F(a) = £ @) = £)p1(00) 0y ) — ()i )
< ([ (7@) = 5P p@lpgi(asle) - nlolduai,2,)
([ (76a3) = 57 pi@lpsiaslon) = w(ay)ldu(as, o)
QZ
< 20;||pjii — |1/, @) — n(o)
N £ (Vi (o) | AT ) T T
(Ut~ Ppteyma) PR
< 203llpy1s — 7IH2 ol / () — £3)?m(a;)dp(;) 2

1/2
= 20;|lpji — mll v ol Y2

(/Q((f(:vj) — fa)? + (fr = fi)P)m(ay)dpa(z;))

= 20i(02 + (fr — [1)2) 2 Ipj1i — il |Ipsall %

When there is point mass in p; the calculation is similar. O
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