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Abstract

A frequently encountered problem when predicting the depth to subsurfaces is that
alternative stochastic models for the depth to the subsurfaces exist. An approach to
resolve this ambiguity, is to combine the predictors associated with each stochastic
model. For a layered structure, the number of alternative stochastic models and as-
sociated predictors could be prohibitively large, so an alternative method is proposed
that consists of constructing a single stochastic model from the alternative stochastic
models. The result provides one consistent predictor for each subsurface which per-
forms similarly to the approach combining several predictors while drastically reducing
computational costs. The proposed method applies to layered geological structures
using a combination of universal or Bayesian kriging and co-kriging.

KEY WORDS: ambiguous models, Bayesian kriging, combining models, combining
predictors, depth conversion, Gaussian random fields, kriging.

INTRODUCTION

Consider the general problem of mapping the depth to subsurfaces separating different
zones within a petroleum reservoir. The top and base of the reservoir are often visible on
seismic lines so geophysicists can provide detailed depth maps from interpreted travel-time
maps using seismic depth conversion. The internal subsurfaces separating different zones will
only occasionally exhibit reliable seismic reflections, so geologists try to map the thickness of
each reservoir zone based on bore-hole observations and an understanding of the depositional
processes. These thickness maps are less detailed than the depth maps based on seismic data.
The total mapped thickness of the internal reservoir zones will generally not add up to the
thickness depicted in the detailed depth maps for the top and base of the reservoir. This
ambiguity must be resolved to provide the final depth maps describing the depth to the
internal subsurfaces. The specific problem considered here is to merge the detailed depth
maps provided by the geophysicists with the cruder zone thickness maps provided by the
geologists.

Two methods for resolving the ambiguity will be discussed. The first method is an
adaption of an approach used in econometrics and forecasting (Bunn 1989, Granger 1989),

*Norwegian Computing Center, P.O.Box 114, N-0314 Oslo, Norway

Submitted to Mathematical Geology. Tables and illustrations at end of the paper.



SAND/12/1995/ Ambiguous Models for Subsurface Prediction 2

and consists of predicting the depth to the subsurfaces based on different combinations of
zone thickness maps and depth maps based on seismic data. The set of depth predictions
are finally combined ‘in an optimal manner’ to come up with a single set of predicted depth
maps for each subsurface. This approach works fine, but it is computationally expensive.
An alternative new method is therefore proposed. Instead of combining the depth predictors
for each subsurface, different stochastic models for each subsurface are combined. Each
model correspond to a different combination of zone thickness maps and depth maps based
on seismic data. The result is one stochastic model and one associated predictor for each
subsurface. The predicted depth maps are very similar to the approach combining predictors,
but the computer expenses are dramatically reduced.

The next two sections outline the problem in more detail and sketches the ideas underlying
the two approaches. The subsequent three sections provide details on the stochastic models
for depth and thicknesses and the technicalities of the two methods. Finally the properties
of the proposed methods are explored by means of an example.

POSITION OF THE PROBLEM

The large scale geometry of petroleum reservoirs is defined by subsurfaces separating
mainly homogeneous geological layers. A stochastic model for the depth to the subsurfaces
is constructed by specifying stochastic models for the thickness of intervals between the
subsurfaces. The stochastic model for the thickness of interval ¢ includes a trend, m;(x), and
a fully specified zero expectation Gaussian random field, ¢;(x), for the residual:

AZ;(x) = mi(x) + €(x); x € R% (1)

The stochastic model for the depth to subsurface [ is obtained as Z!(x) = 2!, AZ;(x).

Fig. 1 illustrates a schematic cross-section of a petroleum reservoir where the subsurfaces
“Top reservoir’ and ‘Base reservoir’ are assumed to be seismic reflectors. For an interval
bounded by two seismic reflectors, the trend, m;(x), is constructed from seismic travel-
times and seismic velocities. The trend will, in general, be detailed and accurate, so the
variance of the residual error, €;(x), should be small. Travel-time-based models for the
depth to ‘Top reservoir’ and ‘Base reservoir’ would be Z™®(x) = AZg(x) and Z%%(x) =
AZrgr(x) + AZg(x) respectively. (See Fig. 1 for notation.) At the same time, zonation
within the reservoir formation is of great interest, and stochastic models of the form Eq. (1)
can be provided for each reservoir zone. The trends for the zone thicknesses are usually
contoured maps based on geological interpretation of bore-hole observations. The accuracy
of these trends is generally low compared to trends based on seismic data, so the variance of
€;(x) is large.

As an alternative to the travel-time based method for the depth to ‘Base reservoir’, the
thickness of all the internal zones could be added to ‘Top reservoir’: ZB%(x) = AZg(x) +
AZ73(x) + AZzy(x) + AZz (x). Now an ambiguity has occurred: Two stochastic models for
the depth to ‘Base reservoir’ have been proposed. The travel-time based method will usually
give more detailed and accurate depth maps so this is the preferred method in practical
applications.
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Consider the two intermediate zone boundaries, “Top zone 1’ and ‘“Top zone 2’. The depth
to each of these subsurfaces can be obtained in two different ways:

AZg(x) — AZz (x) — AZzs(x) Method (a) o

T2 — (
Z"(x) = AZrg(x) + { AZ(x) Method (b-d)

(

(

AZR(X) - AZZ1<X) Method

r
a,b) or
AZZQ (X) + AZZg (X) Method (c,d

7 )'

The methods correspond to labels in Fig. 2 and Fig. 3. Once again ambiguities are encoun-
tered, but now it is far from obvious which alternative to choose. Since the seismic reflectors,
‘Top reservoir’ and ‘Base reservoir’, are assumed accurately determined, the figures suggest
that Method (b—d) should be used for Z™2(x) and Method (a,b) should be used for Z1!(x).
This choice corresponds to graph (b) in Fig. 2 and leaves a gap between the two subsurfaces
so the trend for the thickness of ‘Zone 2’ is never considered. Also, this choice has a serious

implication on the uncertainty of the thickness of ‘Zone 2’: Assuming the residuals to be
independent implies that the variance of ‘Zone 2’ is

ZTI(X) = AZTR(X) + {

Var{ Z™(x) — 2" (x)} = Var{AZg(x)} + Var{AZz3(x)} + Var{AZz (x)} .

This variance is usually significantly greater than Var{AZz»(x)} and the potentially high
correlation between the depth to subsurface ‘Top zone 1’ and ‘Top zone 2’ is lost.

The discussion has motivated the need for an approach where several methods can be
used simultaneously, so the unpleasant need for choosing one particular method is obsolete.
Two alternative solutions are suggested.

APPROACHES TO RESOLVING THE AMBIGUITIES

Combining Predictors

This approach is an adaption of a method used in time series analysis and forecasting and
is reviewed by Bunn (1989) and Granger (1989). The idea is to make a linear combination of
predictors which are based on different assumptions and/or methods. The linear combination
is chosen such that the squared prediction error is minimized subject to a zero bias restriction.
In the present context consider the four possible predictors for the depth to ‘Top zone 1’:
ch (%), Ziy*(x), Z(*(x), and Zg)*(x). The combined predictor is a linear combination of

ese:

ZH(%) = Wa) (%) 200" (%) + W) (0) 20" (%) + Wi (%) Z()" (%) + Wiy (0) Z() (%) (2)

The space dependent weights are chosen to minimize the combined prediction error. This
requires the kriging prediction variances and covariances for all four predictors, so the draw-
back of this method is the necessity to evaluate several predictors and prediction variances
and covariances.
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Combining Stochastic Models

This new method amounts to using a linear combination of the stochastic models for the
depth to each subsurface deduced from the alternatives in Fig. 3. For the depth to “Top zone
1’, the combined stochastic model would be

71 (x) = w(l;}b) (x) [AZTr(X) + AZR(x) — AZ7 (%)]
+ w(q;’ld) (%) [AZTR(X) + AZzo(x) + AZz3(x)].

The spatially dependent weights w,})(x) and w(_4)(x) are chosen to minimize the residual

variance, Var{ZTl(x)}, subject to the condition that the weights add to one. This leaves
one stochastic model and a single associated predictor for the depth to each subsurface.

Combining predictors is based on the principle of minimizing the prediction error. Com-
bining stochastic models however, is a heuristic approach which must be justified by compar-
ing the results to the results obtained when combining predictors. An example will illustrate
that the two approaches give almost identical results.

Further Alternatives

It is possible to consider Eq. (2) as a linear regression model for Z%*(x) with Z%*(x) as
regressors and the weights as unknown parameters. An additional constant term accounting
for possible bias can be added (Granger 1989). This approach, recently called “stacked
regression” by Wolpert (1992) and Breiman (1992), either requires historical data or a large
dataset allowing cross validation. LeBlanc and Tibshirani (1993) compares cross validation
to bootstrapping, best subset regression, and regression trees.

PREDICTION

The best linear unbiased predictor for a random field with an unknown linear trend is the
universal kriging predictor (Matheron 1963). Moreover, for a Gaussian random field, a linear
predictor is the optimal predictor in the least squares sense. Introductions to universal kriging
is found in Journel and Huijbregts (1978), Ripley (1981), and Cressie (1991). Therefore,
assuming Eq. (1) is an appropriate stochastic model for the zone thicknesses leads to universal
kriging as the optimal predictor for the zone thicknesses and the depth to subsurfaces (Olea
1974, Delfiner and Delhomme 1975). Universal kriging allows travel-time data to be included
in the trend, and bore-hole observations are used to estimate trend parameters and tying
the subsurfaces to observed depths. Since all subsurfaces are below the upper interval, all
subsurface depths are correlated. Therefore, the universal kriging predictor for any particular
subsurface depth should be conditioned on available bore-hole observations of all subsurfaces
(Abrahamsen 1993). This requires that all covariances between depth observations from
different subsurfaces must be known. These covariances depend on how zone thicknesses are
added to obtain the depths to the entire set of subsurfaces. That is, choosing one method
in Fig. 2, it is possible to deduce the covariances between subsurfaces based on the specified
stochastic models for interval thicknesses.

The kriging predictors are linear predictors: Z*(x) = a'(x)Z, where Z is a vector of
depth observations from all subsurfaces. The kriging weights, a(x), depend on the geometry
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of the observations, the stochastic models for the zone thicknesses, and the method chosen
for adding the zone thicknesses. Alternative methods therefore give different kriging weights
for the same set of observations.

STOCHASTIC MODELS FOR SUBSURFACES

This section establish some basic notation for non-ambiguous models. The next section
generalize the notation to include ambiguous models.

The stochastic model for the thickness of interval i includes a trend, m;(x), linear in
unknown parameters, and a spatially correlated residual:

AZi(x) = gi(x) B +ei(x);  x€R?, (3)

where g;(x) is a P;-dimensional vector of known spatially dependent functions, 3, is a vector
of P; unknown coefficient parameters, and the residual, €;(x), is a zero mean Gaussian
random field specified by the spatially varying standard error, o;(x), and the correlation
function p;(x,y). Note that Eq. (3) is a linear regression model with a correlated error term,
€:(x).

A typical isochore based model for interval 7 is

AZi(x) = gi1 (x) Bir + €(x), (4a)

where g¢;1(x) is an interpreted isochore map for the interval supplied by geologists. The
correlation function and standard error for the residual can occasionally be estimated from
bore-hole data. A typical travel-time based model is

AZ;(x) = [Ba + Bioti(x) | Ati(x) + €;(x), (4b)

where ¢;(x) is the interpreted seismic travel-time to the midpoint of interval i and At;(x)
is the interpreted seismic travel-time for interval i. So gi(x) = [At;(x), t;(x)At;(x)]. The
expression in the square bracket in Eq. (4b) is the interval velocity trend for interval i. A
positive value for (3;5 gives the widely encountered velocity increase at larger depths due to
compaction (Faust 1951, Acheson 1963). The residual must account for the uncertainty in
the travel-times (Walden and White 1984, White 1984) and the uncertainty in the interval
velocity field (Al-Chalabi 1974, Al-Chalabi 1979, Abrahamsen 1993).

Consider now a geological model including L intervals and subsurfaces. The depth to the
Ith subsurface is

Z'(x) = Y AZi(x) = t(x) B+ €'(x), (5)

=1

where
f'(x) = [gi(x) -~ gi(x) O -~ 0] and B=[8 - B. (6

Here, 0 are zero vectors replacing g, (x) for m > [, and €(x) = X'_, &;(x)
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The covariance between two subsurfaces at arbitrary locations is

Cor{ 2/(x), 27(3)} = Cor{£'00. €71} = L300 os¥) pyxy). ()

1= ]:1

where p;;(x,y) = Corr{¢;(x), ¢;(y)}. Kriging predictors for correlated subsurfaces are found
in Abrahamsen (1993) and the most important equations are given in the Appendix.

AMBIGUOUS MODELS

The consecutive enumeration of the intervals used in the previous section will not do
for ambiguous models. The summation of interval thicknesses must be replaced by a sum
including the intervals needed to obtain the depth to a particular subsurface for a chosen
method. To simplify later notation some sets are introduced:

M the set of methods for all subsurfaces,
m! the set of possible methods for subsurface [.

To illustrate these sets consider Fig. 1 with the four alternative methods illustrated in Fig. 2.
Here M contains four methods, i.e., M = {(a), (b), (c), (d)}. The possible methods for
a particular subsurface is deduced from Fig. 2 are illustrated in Fig. 3. The set M' for
subsurfaces ‘Top Reservoir’ (TR) and ‘Top zone 1’ (T1) are M™ = {(a-d)} and M™ =
{(a,b), (c,d)} respectively.

Three sets of intervals are also introduced:

J the set of all intervals,
7t the set of intervals contributing to subsurface [,
It the set of intervals contributing to subsurface / using method a € M.

Note that J), C J* C J. For the example in Fig. 1, J contains all five intervals, i.e. J =
{TR, R, Z3, Z2, Z1}. From Fig. 2 it is seen that JTR = {TR} and JT' = {TR, R, Z3, Z2, Z1}.
Finally, here are some examples of some J sets: J = {TR}, J = {TR, R, Zl} 3TR
{TR}, and I3} = {TR, Z3, Z2}.

Using thls notatlon Eq. (5) is generalized to

Zix) = Y s AZI(x) = £/ (x) B+EL(X);  ae, (8)

i€t

where s;, is —1 if a thickness is subtracted and 1 otherwise. A negative s;, corresponds to an
arrow pointing upwards in Figs. 2 and 3. Now, 3 is a column vector including all ’s from
all intervals. Further, f!(x) is a stacked vector of the g;(x) vectors with a possible change of
sign owing to s;,. Similar to Eq. (6), g;(x) vectors for ¢ € J!, is replaced by zero vectors of
corresponding length. Finally, €}(x) = ¥cqt siq€i(X).

The covariance between the depth to two subsurfaces at arbitrary locations, Eq. (7), must
be replaced by

Cov{ZL(x), ZI'(y)} = 3 S sia 5700:(x) 05(y) i (%, ¥); aeM (9)

i€Jl jeI
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Because these covariances depend on a, the predictors for the depth to all subsurfaces depend
on which method in M has been chosen. The estimators and predictors in the Appendix
apply directly to the stochastic model Eq. (8) for any method a € M.

COMBINING PREDICTORS

Consider the set of predictors Z'*(x) for the depth to subsurface [ based on the different
methods a € M. These are organized as a vector, Z*(x). To obtain a unique predictor a
linear combination is used: Z™(x) = W' (x) Z"*(x). Assuming each individual prediction,
Z™(x); a € M, is unbiased, the combined prediction, Z™*(x), is unbiased provided w" (x) e =
1, where e is a vector of unit entries. The weights are chosen to minimize the combined predic-
tion error. Assuming the covariance matrix, Cl,(x) = Cov{Zfl*(x) — 74 (x), Zl*(x) — Zé(x)},
of the predictors is known, the minimum prediction variance is obtained using the location
dependent weights

w(x)=C" (x)e/ (e'C (x)e). (10)

This result is analogous to the weights obtained in ordinary kriging. The minimum prediction
variance of the combined predictor is

Var{2"(x) - Z'(x)} = (¢€ (x)€) (11)

which is always less than or equal to the individual prediction variances. The weighting will
favor the predictor with smallest prediction variance at every location.

To calculate the off-diagonal elements of C' consider two predictors for the depth to
subsurface | based on methods a,b € M: Z%(x) = o' (x) Z, and Z}*(x) = o' (x) Z;, where
a!(x) are the so-called kriging weights. The prediction covariance is then given by (omitting
coordinates)

Cly = Cov{zl - 2, 7} — Z}}
= al Cov{Z,,Z,} al — o'’ Cov{Za, Z,l,} - Cov{Zfl, Zb} ol + COV{ZClL, Z},} . (12)

The covariances are calculated using a generalization of Eq. (9)

Cov{ZL(x), Z'(y)} = 3 D siaspoi(x) 03(¥) pi (%, ¥); a,beM  (13)

ieJl JETT

Note that C'(x) must be computed for all subsurfaces at every location where a prediction
is required.

For the multi-layered structure of Fig. 1, M contains four methods so four predictors
must be calculated for each of the subsurfaces. Introducing an additional interval thickness
model for the interval from the reference to ‘Base reservoir’ introduces seven more methods
for constructing the depth to the subsurfaces. Then, M will contain a total of eleven methods
and the dimension of C'(x) becomes 11 x 11. For more complex multi-layered structures the
dimension could become even larger and the computational demands required to obtain all
the predictors and prediction covariances might become prohibitive.

Norwegian Computing Center, P.B. 114 Blindern, N-0314 Oslo, Norway, Tel.: (+47) 22 85 25 00



SAND/12/1995/ Ambiguous Models for Subsurface Prediction 8

COMBINING STOCHASTIC MODELS

This section gives the details of the new proposed method. Consider the set of stochastic
models, Eq. (8), for the depth to subsurface ! based on the different methods a € M!. A
unique stochastic model is obtained by forming a linear combination:

Z'(x) = > wh(x) ZL(x) = ' (x) B+ €' (). (14)
aeM!

The weights, w! (x), are the contribution to subsurface [ from method a € M'. The 3 vector
contains the 3’s from all the interval thickness trends and the corresponding f!(x) vector has
the form

) = [ W8 -], (15)

where

Saentt Sia wh(x) if i€ I
Wl(x) - {0 - else

Here s;, = 1if AZ;(x) adds to Z.(x) whereas s;, = —1 if AZ;(x) must be subtracted. If i ¢ J°
the corresponding W}(x) g;(x) term in Eq. (15) is replaced by a zero vector of corresponding
length. The weights W}(x) give the total contribution from interval i to subsurface [. The
residual in Eq. (14) is

€)= Y Y swulx)alx) = ¥ W) ). (16)
aeM! €7, 1edt
The weights, w,(x), are found by minimizing the residual variance Var{E l(x)} subjected
to the restriction w' (x) e = 1. To justify this restriction consider the expectation of Eq. (14):

E{Z'(x)} = Y wh(x) B{Z.(x)}.

aeM!

By assumption, all { Z.(x); a € M'} are possible stochastic models for the depth to subsurface
[. This means that the expected subsurface for all models should be approximately equal,
giving Yuear wl(x) & 1, or in vector notation w* (x) e &~ 1. Then, choosing to minimize the
residual error of the combined model under this restriction gives

w!(x) =C" (x) e/ (€'C (x)e), (17)

where Cl,(x) = Cov{Zfl(x),Zf,(x)} is given by Eq. (13) with a,b € M!. The obtained
weights, w!(x), will favor the most accurate models, that is, the models having smaller
specified residual variance, Var{é‘fl(x)}. The combined residual variance is

Var{Z(x)} = (¢C' 7 (x)e) (18)

which is always less than or equal to Var{Zé(x)} for any method a € M.

The dimension of C!(x) equals the number of methods in M' which depends on [. This
dimension is less than or equal to the dimension of C'(x) which is equal to the number of
models in M.
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Subsurface Prediction for Combined Stochastic Models

The parameter estimators and predictors reviewed in the Appendix still hold, but the
contents of some of the matrices and vectors must be slightly modified. The f!(x) vectors
will have the form given by Eq. (15) and the row in F corresponding to observation Z!(x;)
is—as before—given by f¥(x;). The covariances, K = Var{Z} and k!(x) = Cov{Zl (x), Z},
are now deduced from Eq. (16) giving

Cov{Zl(x),Z’"(y)} = > Y swspuwl(x) w(y) oi(x) 05(y) pij (%, ¥)

aeM! iegl
beMm jej'{)ﬂ

= Z:l W} (x) W (y) 0i(x) 0;5(y) pij(x,y). (19)

Co-linearities and Bayesian Kriging

A major problem with combining models is the large co-linearities in F. The most striking
consequence is the occurrence of extreme correlations in & = Var{B} = (F' KilF)fl. The
large co-linearities are caused by the property that alternative methods can give almost
identical predictions. One could argue that the estimates of the § parameters are of minor
interest since prediction is the primary objective, but unfortunately, the example in the next
section shows that even the predictor is vulnerable to this deficiency. In the most extreme
cases, F becomes rank deficient so that the inverse of F'K~'F is undefined and estimators
and predictors fail to exist.

A simple remedy is to impose prior distributions on the [ parameters. The § parameters
will usually have a simple physical interpretation so prior knowledge is commonly available.
The prior distribution will restrict the parameter space so that extreme correlations are
reduced, and more importantly, the associated extreme estimation variances are reduced.
If the prior distribution is assumed multinormal, the Bayesian kriging predictor (Kitanidis
1986, Omre 1987, Omre and Halvorsen 1989, Abrahamsen 1993) applies.

EXAMPLE

In this section combining models are compared to combining predictors for a synthetic
example. The estimated trend will be used rather than the kriging predictor since:
e the local fitting to data points done by kriging is almost insensitive to the choice of
method and therefore masks differences.
e kriging predictors coincide with estimated trends away from observations so results are
valid outside the local influence of observations.
e the local fitting stabilizes the predictors so using the trends focus on worst-case behav-
ior.
Using the trends will exaggerate potential problems and differences between the methods
but the conclusions reached will carry over to the less sensitive kriging predictors. The
estimated trend Eq. (A2) will be used instead of the kriging predictor Eq. (A4), and the
unconditional prediction error (trend error) Eq. (A5) will be used for the prediction error.
The corresponding estimated trend and trend error with Bayesian priors on 3 are Eq. (A6)
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and Eq. (A8) respectively.

Stochastic Models

Consider the schematic cross section of a reservoir formation illustrated in Fig. 1. Simple

isochore models assuming a constant thickness of each reservoir zone have been chosen [see
Eq. (4a)]:

AZZ1<.T) = /BZi + 6Zi<-T); Z = 1, 2, 3. (20&)
Moreover, AZrg(x) and AZg(x) are given as [see Eq. (4b)]:

AZrr(z) = [Brr1 + Brr2{tTR(T) — Mean(trr(x))}] trr(x) + err () (20b)

AZn(z) = 5R1+5R251_0“"" Atn(@) + en(z) (20¢)

where x € R since only a cross-section is considered. The expressions in the square brackets

are the interval velocities. A cross-section of the travel-times appears in Fig. 4. A positive

value for [(Brro implies the usual velocity increase at the flanks causing the subsurfaces to

be more curved than the travel-times. Moreover, a positive value for (g, leads to a reduced

interval velocity for higher x values causing ‘Base reservoir’ to tilt upwards towards the right.
The standard errors of the interval residuals are specified as

orr(z) = or(z) = 0.1, oy3(x) = 0z2(x) = 071(x) = 0.2,

and are assumed independent. The correlation lengths of the residuals are assumed to be
less than the separation between observations so that spatial correlations do not interfere.

When combining models, the relevant subsurface descriptions are illustrated in Fig. 3,
so that C! has dimension one for ‘Top reservoir’ and dimension two for the three other
subsurfaces. Note that C' is independent of z since the standard error of the residuals are
assumed constant. The resulting combined residual errors from Eq. (19), and weights from
Eq. (17), are given in Table 1. The table shows that the weights favor the most accurate
method and that residual errors are systematically reduced.

Assuming all S-parameters equal to one and combining the trends according to Eq. (14),
using weights calculated by Eq. (17), give the depth trends illustrated in Fig. 5. It is seen
how the shape of the intermediate subsurfaces reveals a transition from the shape of the
upper seismic reflector to the base seismic reflector. This shows that the weights favor the
shape of the closest reflector but also takes the shape of the other reflector into account.

Simulation Experiments

To compare the different approaches the z-axis has been divided into three segments of
equal length. Within each segment, the location of a vertical well has been drawn from a
uniform distribution. Then, the actual observation has been drawn with the expectations
given by all trends in Fig. 5, and the covariances from Eq. (19). Ten sets of observations have
been drawn and the f-parameters have been estimated. The resulting ten sets of trends are
plotted in Fig. 6. Some of the trends are far off the ‘true’ trends in Fig. 5, an effect caused by
the severe co-linearities making it almost impossible to estimate some of the S-parameters.
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Imposing a prior distribution on the [-parameters with expectations 0.5 (a severe bias)
and Cov{B} = diag(2) dramatically improves the estimated 3-parameters. The correspond-
ing ten trends are plotted in Fig. 7. The prior variances—although unrealistically large—
effectively restrict the parameter space so that extreme [ estimates are prohibited. Moreover,
the prior expectations are effectively overruled by the data.

As a final comparison, estimated trends based on the four models illustrated in Fig. 2
have been combined using space dependent weights, w'(x), obtained from Eq. (10). The ten
sets of combined trends are plotted in Fig. 8. The similarity to Fig. 7 is striking.

The model combination method is approximately ten times faster to calculate on a com-
puter than the approach combining estimated trends.

Bias and Errors

An important concern is possible bias and the accuracy of the calculated prediction errors.
To investigate this, one hundred sets of observations have been drawn using the algorithm
described above. Fig. 9 displays the average bias of the resulting hundred estimated trends
for subsurface ‘Top zone 2’. It is seen that all three trend estimators behave well, in the
sense that deviations from zero are small. This is expected since the model assumptions for
the estimators agree with the model that generated the data.

Fig. 10 shows the empirical trend errors whereas Fig. 11 depicts the average theoretical
trend errors. The two figures show that the model combination approach have difficulties
caused by the co-linearities, but the two other approaches ensure good agreement between
theoretical and empirical prediction errors. In particular the approach using Bayesian esti-
mation gives an almost exact agreement.

The approach based on Bayesian estimation and model combination and the approach
combining estimated trends are very similar. There is some bias at the edges for the combined
estimated trends (see Fig. 9) making the empirical prediction error slightly larger.

The final test is to violate the model assumptions. By choosing og(z) = 0.2 rather than
0.1, the weights are modified in favor of models not including subsurface ‘Base reservoir’.
Data have been drawn from this model, but the model assumptions entering the trend esti-
mators have been kept unchanged. Fig. 12 shows that the bias has been more than doubled
for all three approaches so that the empirical errors given in Fig. 13 have increased. For the
model combination approach the increase is significant, but for the two other approaches,
the increase is less than 10%. The average theoretical prediction error in Fig. 11 now reveals
underestimation of the true error. The approach using model combination with vague priors
on the 3 parameters still has a slightly smaller empirical error. Comparing to the theoretical
errors in Fig. 11 still gives agreement within approximately 10%.

CLOSING REMARKS

Two solutions to the fundamental problem of combining different methods for obtaining
the depths to subsurfaces have been discussed. The first method combines alternative depth
predictions and the second method merges alternative stochastic models. The latter method
is less computer intensive but suffers from instabilities which are removed by imposing a
prior distribution on the trend parameters.
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When combining predictors a rigorous minimization criteria for the prediction error is
used. The approach combining models however, uses a heuristic minimization criteria for
the residual variance. The usefulness of this method is therefore justified by its properties.
The two methods gave almost identical results for the synthetic example, so in this case it is
possible to conclude that the model combination approach performs equally good using ten
times less computer resources.
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APPENDIX: PARAMETER ESTIMATION AND KRIGING

This appendix reviews predictors for a layered geological structure developed in Abra-
hamsen (1993).
Assume there exist observations of L subsurfaces at n distinct locations:

7 =2 x1), .., 2 (%), 2R (), 2R (k)]

Observations from each subsurface are assumed to be from identical locations for notational
reasons, corresponding to observations from vertical wells. The linear model Eq. (5) yield

Z=FB+E, (A1)
where € are the residuals corresponding to Z and the row in F corresponding to observation
ZM(x;) is £(x;,).

Eq. (A1) is a linear regression model for all the § parameters with correlated Gaussian

residual errors. The maximum likelihood estimates for 3 are the generalized least squares
estimates:

B=(FK'F) FK'Z
£ =Var{8} = (FK'F) ',

where the covariance matrix K = Var{Z} = Var{€} is calculated using Eq. (7). The
estimated trend for subsurface [ is

Z'(x) = f"(x) B, (A2)
with the corresponding estimation variance

Var{ Z'(x)} = £ (x) £f'(x). (A3)
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Universal Kriging

The best linear unbiased predictor for Gaussian random fields with a linear trend is the
universal kriging predictor. In the present context all observations should be considered
giving a universal co-kriging predictor for say subsurface [:

Z"(x) = Z2'(x) +K'(x) K ' (Z - FB) (A4)
where k'(x) = COV{EZ(X), € } The corresponding prediction variance is

Var{ 7" (x) — Z'(x)} = Var{Z'(x)} - k" (x) K 'K/ (x)
+ [f(x) - FK % ()] £[f (x) - FK K (x)].
For x far away from all observations, k!(x) — 0, so that the prediction error approach
Var{Zl(x)} + Var{Zl(x)} . (A5)
This is called the unconditional prediction variance or trend variance.
Bayesian Kriging

Assume a prior multinormal distribution on the § parameters is given: B ~ N,(pg, Xo)-
The posterior expectation and covariances become:

fi, = E{B|Z} = p + ToF K3 (Z — Fpu)
3, = Var{8|Z} = Xy — ZFTK;'FX,,

where K, = Var{Z} = FX,F’ + K. The posterior trend and trend variance is given by
replacing g with g, in Eq. (A2), and 3 with X}, in Eq. (A3), i.e.

Zy(x) = £"(x) By (A6)
Var{ Z} (x)} = ' (x) Zpf' (x). (A7)

The Bayesian kriging predictor and prediction variance is given by:
25 (x) = £(x) - fa, + k()K" (Z — Fiy)
Var{ Z}(x) — Z'(x)} = Var{e'(x)} + ' (x) Zof'(x) — k};(x) K;'K} (x),

where k), (x) = Cov{Zl (x), Z} = f'(x) £yFT+k!(x). The ‘unconditional’ prediction variance
or trend variance is:

Var{€'(x)} + Var{Z}(x)} . (AS8)
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Table. 1: Specified residual errors o', calculated weights w!, and combined residual errors

o'. The methods correspond to labels in Fig. 3. Note how the weights favor the assumed

most accurate models.

Subsurface Method Res. error Weight Comb. res. error

l a Var{Zfl}l/2 wt Var{Zl}1/2
TR (a—d) 0.1 1 0.1
T2 (a) 0.316 0.31 0.194
(b—d) 0.224 0.69
T1 (a,b) 0.245 0.62 0.202
(c,d) 0.300 0.38
BR (a—c) 0.141 0.92 0.139
(d) 0.361 0.08
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List of Figures

Fig. 1 Schematic illustration of a reservoir formation. The double arrows indicate a
stochastic model for the thickness of the corresponding interval AZ;. ‘Top reservoir’ and
‘Base reservoir’ are seismic reflectors.

Fig. 2 Four alternative methods for determining the depth to subsurfaces. The hori-
zontal lines are the subsurfaces given in Fig. 1. The depth to a particular subsurface is
found by following the arrows; an arrow pointing downwards means that the correspond-
ing thickness is added whereas an arrow pointing upwards means that the corresponding
thickness is subtracted.

Fig. 3  Alternative methods for obtaining the depth to ‘Top reservoir’ (TR), ‘Top zone
2’ (T2), ‘Top zone 1’ (T1), and ‘Base reservoir’ (BR). Labels correspond to the illustra-
tions shown in Fig. 2. The horizontal lines and the arrows have the same meaning as in
Fig. 2.

Fig. 4  Travel times to ‘Top reservoir’ and ‘Base reservoir’.

Fig. 5  Depth trends obtained when choosing all 3’s equal to one.

Fig. 6  Ten sets of trends obtained using a combined model. Each set is conditioned
on data drawn from the model.

Fig. 7 Ten sets of trends obtained using a combined model and a Bayesian prior on
the (8 parameters. Each set is conditioned on data drawn from the model.

Fig. 8  Ten sets of trends obtained by combining estimated trends based on different
models. Each set is conditioned on data drawn from the model.

Fig. 9  Empirical bias from 100 simulations. (- - -) combined model. (—) combined
model with priors on  parameters. (---) combined predictors.

Fig. 10 Empirical error from 100 simulations. (- - -) combined model. (—) combined
model with priors on  parameters. (---) combined predictors.
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Fig. 11 Average theoretical error from 100 simulations. (- - -) combined model. (—)
combined model with priors on § parameters. (---) combined predictors.

Fig. 12 Empirical bias from 100 simulations. Data drawn from model with og(z) = 0.2.
(- --) combined model. (—) combined model with priors on [ parameters. (---) combined
predictors.

Fig. 13 Empirical error from 100 simulations. Data drawn from model with og(z) = 0.2.
(- - -) combined model. (—) combined model with priors on  parameters. (---) combined
predictors.
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Reference (Z = 0)

Top reservoir, Z TR
AVAR
Top zone 2, ZT2
AZR AZzs
Top zone 1, ZT!
AZz

Base reservoir, ZBR

Fig. 1: Schematic illustration of a reservoir formation. The double arrows indicate a stochas-
tic model for the thickness of the corresponding interval AZ;. ‘Top reservoir’ and ‘Base
reservoir’ are seismic reflectors.
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Fig. 2: Four alternative methods for determining the depth to subsurfaces. The horizontal
lines are the subsurfaces given in Fig. 1. The depth to a particular subsurface is found by
following the arrows; an arrow pointing downwards means that the corresponding thickness
is added whereas an arrow pointing upwards means that the corresponding thickness is
subtracted.
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(a-d) (a) (b-d) (ab)  (cd) (<o) ()

Fig. 3: Alternative methods for obtaining the depth to ‘Top reservoir’ (TR), ‘Top zone 2’
(T2), ‘Top zone 1’ (T1), and ‘Base reservoir’ (BR). Labels correspond to the illustrations
shown in Fig. 2. The horizontal lines and the arrows have the same meaning as in Fig. 2.
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Fig. 4: Travel times to “Top reservoir’ and ‘Base reservoir’.
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Fig. 5: Depth trends obtained when choosing all 3’s equal to one.
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Fig. 6: Ten sets of trends obtained using a combined model. Each set is conditioned on data
drawn from the model.
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Fig. 7: Ten sets of trends obtained using a combined model and a Bayesian prior on the 3
parameters. Each set is conditioned on data drawn from the model.
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Fig. 8: Ten sets of trends obtained by combining estimated trends based on different models.
Each set is conditioned on data drawn from the model.
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Fig. 9: Empirical bias from 100 simulations. (- - -) combined model. (—) combined model
with priors on  parameters. (---) combined predictors.
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Fig. 10: Empirical error from 100 simulations. (- - -) combined model. (—) combined model
with priors on  parameters. (---) combined predictors.
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Fig. 11: Average theoretical error from 100 simulations. (- - -) combined model. (—)
combined model with priors on § parameters. (---) combined predictors.
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Fig. 12: Empirical bias from 100 simulations. Data drawn from model with og(z) = 0.2.
(- - -) combined model. (—) combined model with priors on  parameters. (---) combined
predictors.
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Fig. 13: Empirical error from 100 simulations. Data drawn from model with og(z) = 0.2.
(- - -) combined model. (—) combined model with priors on  parameters. (---) combined
predictors.
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