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SUMMARY

Two coupled Gibbs sampler chains, both with invariant probability density � , are run in paral-
lel in such a way that the chains are negatively correlated. This allows us to define an estimator of
the expectation E

���������	�
with respect to � which achieves significant variance reduction with re-

spect to the usual Gibbs sampler at comparable computational costs. We show that the asymptotic
variance of the estimator based on the new algorithm is always smaller than the variance of a sin-
gle Gibbs sampler chain, if � is either attractive or repulsive and

�
is componentwise monotone.

The new antithetic algorithm is shown to outperform the standard Gibbs sampler by one order of
magnitude when � is a multivariate normal density or the Ising model. Numerical experiments
show that the antithetically coupled Gibbs samplers reduce the finite sample variance in several
other models to less than one third, often one fifth, when run for the same time.
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(ERB-FMRX-CT96-0096) and the ESF program on Highly Structured Stochastic Systems.

1



1 INTRODUCTION

Markov Chain Monte Carlo (MCMC) algorithms allow the approximate calculation of expectations

with respect to multivariate probability density functions 
���
�� defined up to a normalizing constant.

We refer the reader to Gilks, Richardson & Spiegelhalter (1996) as a starting point for a vast literature

about MCMC methodology. The underlying idea is to construct an ergodic Markov chain with invari-

ant density function 
 , whose trajectory is easy to simulate without knowing the normalization constant

of 
 . Then in order to approximate the expectation E ��������������� of a function ����
�� with respect to
 , one just needs to collect a sample average along the generated trajectory. Let ������ ! � "�#�%$ denote

the first & steps of a discrete time Markov chain evolving on ' and converging in law to 
���
��(�)
+*,' .

By ergodicity we can use the empirical mean of ����
�� to estimate E ����������� for large & . In practice it is

appropriate to drop an initial part of the trajectory in order to avoid strong dependence from the initial

conditions. The sample mean -�/. 0& $�1�23$4576 $!1829� ����� 5 �
is used and we speak of a burn-in of length &;: . The variance var � -�;� , calculated with respect to the

probability measure over the trajectory space and assumed to be finite, measures the quality of a such

an approximation.

In this paper we propose a new algorithm for the estimation of E ���������<� . The idea is to simulate two

MCMC trajectories in parallel, both invariant with respect to 
 , which are then coupled in such a way

that variance reduction can be achieved. Our algorithm is based on the Gibbs sampler, which is a partic-

ular MCMC scheme where at each transition one samples from a one dimensional conditional density

computed from 
 . The coupling is inspired by the idea of antithetic sampling in classical Monte Carlo

theory.

After the burn-in we split the simulation into two parallel Gibbs sampler chains, both ergodic with re-

spect to 
 . Let us denote the two chains � 5 and = 5 for >?.@&;:�A 0 �<&;:�A�B"�! � � . Marginally the two

processes will look like the usual Gibbs samplers, but their joint probability measure is constructed in

such a way that � 5 and = 5 have negative covariance. The idea is to exploit such antithetic behaviour in

order to construct an estimator of E ���������<� with smaller variance than var � -�3� but with similar compu-

tational complexity. The coupling we propose here is very simple, based on using a common sequence

of random numbers. Specifically, if � 5 uses a uniform CED"� 0 � random number F 5 to proceed to � 5 29� ,
then = 5 uses

0HG F 5 to proceed to = 5 2I� . In classic Monte Carlo theory this type of antithetic cou-

pling is well known to reduce the variance of sample averages of i.i.d. samples. Our contribution is to

merge this classical technique into the MCMC methodology. While the basic idea is very simple, the

rigorous analysis of the new algorithm needs some care. The new antithetically coupled Gibbs sampler

algorithm is precisely defined in Section 2. A pleasant fact is that no significant extra effort is needed

to implement the algorithm. In fact, starting from the usual Gibbs sampler code, the modifications

required in order to implement the new algorithm are usually very easy.
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We combine the output of the two coupled chains into the asymptotically unbiased estimator--�/. 0& $�1�23$4576 $�1�29� �����
5 �9A%���J= 5 �B  (1)

To make a fair comparison between the two coupled Gibbs samplers and the usual single trajectory

Gibbs sampler, we have to take into consideration that each iteration of the new algorithm takes twice

the computing time of a single Gibbs sampler iteration. Hence we allow the single Gibbs sampler to

run for twice as many iterations as the new algorithm. This means that the variance of
--� in (1) has to

be compared with the variance of -�/. 0BK& $�1�2;LM$4576 $!1829� ����� 5 �( (2)

We are able to prove a strict inequality between the asymptotic variances of
--� and

-� for component-

wise monotone functions � and 
 in a broad class of densities which includes those which are attractive

or repulsive. In particular if 
 is either the multivariate normal density or the Ising model, then as&ONP�
var � --�;��.@QR��&TSUL(�V� while var � -�;��.@QR��&WS;�)�( (3)

Assume that instead of running a simple Gibbs sampler, a Metropolis-Hastings algorithm would be

used to estimate E ���������<� when 
 is the Ising model. If the temperature parameter of the Ising model

is large enough, it is known that the Metropolis-Hastings algorithm is faster than the Gibbs sampler,

but still it would give rise to an estimator
-� for which var � -�;��.XQY�Z& S;� � . Hence in this case the new

antithetic Gibbs sampler should be preferred even to Metropolis-Hastings!

Numerical experiments seem to indicate that the new algorithm provides a benefit with respect to the

Gibbs sampler in many cases also after a finite number of iterations. The efficiency does not seem to

depend on the mixing property of the single Gibbs sampler chain; if the single Gibbs sampler chain is

slowly mixing, then the joint Gibbs sampler will also be slow, however the ratio of the variances will

not be influenced.

In Section 2 we define the new algorithm and prove that the coupled chains are jointly ergodic and we

identify the joint stationary density. (We collect all proofs in the Appendix.) In Section 3 we compare

var � --��� with var � -�;� as &[NP� . It turns out that only the cross-autocovariances between the two cou-

pled chains matter, and we study their sign in Section 4. For component-wise monotone functions �
and 
 which are either attractive or repulsive, we are able to show that all cross-autocovariances are

negative, and hence our new algorithm is strictly better than the single chain Gibbs sampler. We give

some arguments (although no rigorous proof) supporting this claim for general targets 
 . In Section 5

we study the multivariate normal density and the Ising model in more detail; these distributions have a

certain local symmetry property which yields (3). This is further discussed in Section 6, where we show

with an example that our new algorithm can be better even with highly unsymmetrical 
 ’s. Section 7
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is devoted to a discussion of the burn-in of the joint chains compared to the single chain. We argue

that the lengths of both burn-in’s have the same magnitude. In Section 8 we provide some experimen-

tal results applying our new algorithm to the hierarchical Poisson model (Gelfand & Smith, 1990) and

the ordered normal means example (Gelfand, Hills, Racine-Poon & Smith, 1990). The experiments

show that the performance of the antithetically coupled Gibbs sampler is significantly better than the

standard one. The efficiency, defined as var � --�;��\ var � -�;� , is often larger than five. Looking beyond the

Gibbs sampler, we apply the antithetic coupling also to other MCMC methods and show that still an

improvement can be achieved, although the efficiency is often only around two. We explain why this

is the case. We end the paper with some final remarks.

2 ANTITHETIC COUPLING OF TWO GIBBS SAMPLER CHAINS

Let '�.[]/^_]`^Ra!a�a!^b]c.[]ed be the f -fold product space of a set ] , which may be either discrete or

continuous. For simplicity we take '%.�gHd and let 
 be a probability density function that is absolutely

continuous with respect to Lebesgue measure. Let �h.i��j � ��j L �� ! � "��j d � . The random scan Gibbs

sampler for sampling from 
 is a Markov chain � : �)�k���� � ! constructed as follows. Given � 5 Sl�m.
 5 S;� , one component in n 0 �#B"�� ! ( "�)f9o is chosen uniformly at random. Denote this component by p�.p 5 . Only j 5 S;�q will be updated by sampling the new value j 5q from the conditional density
���r qJs j 5 S;�t .[r 5 S;�t �luwv.[p	�( (4)

The resulting Markov chain is ergodic and 
 -invariant. Note that while it is possible to update the com-

ponents in many ways, for example in a periodic order (raster scan), our precise results in Section 4.1

apply only for random scan Gibbs sampling. However, we think that our conclusions are valid also for

other updating schemes.

The random scan Gibbs sampler transition can be written as� 5 .@x/��� 5 S;���#y 5 �(F 5 �V� (5)

where F � �(F L �! � � is a sequence of i.i.d. random numbers, uniformly distributed in CEDU� 0 � , and y � �#y L �� ! � 
are i.i.d. random numbers uniform in n 0 �)BU�� � ( "�#f9o . This specific assumption on the distribution of y 5
is not needed in our theory, but is made for simplicity. The random number y 5 identifies the componentp to be updated. The y 5 -th component of the vector function x is the inverse distribution function cor-

responding to the local conditional density in (4). The other components of x are identity functions.

The random number F 5 is used to obtain the new value for j 5q .
Let 
 S"z .in{r q?| pWv*~}To , }��Xn 0 �! � � "�#f9o . Denote by � q ��
 S"z �)��� the inverse distribution function

for j q conditioned on � S"z;��� q�� .�
 S�z;��� q�� evaluated at � . Note that the y 5 -th component of x at

time > is equal to �W�9�)��� 5 S;���(F 5 � .
We now define the coupled companion chain. It is marginally a 
 -stationary Gibbs sampler with the
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same type of scan and evaluation rule as (5),= 5 .@xR�	= 5 S;� �#y 5 � 0�G F 5 �( (6)

Observe that the common random numbers F 5 and y 5 make � 5 and = 5 dependent. We call the cou-

pling antithetic because we use
0IG F 5 in (6). The same component y 5 is updated in both chains. After

a burn-in of length &;: , we start two dependent trajectories, one using (5) and the other (6), and we ter-

minate both chains after a further & transitions. This algorithm performs BK& Gibbs sampler updates

and we will compare it with a single Gibbs sampler chain of length BK& . Notice that the new algorithm

requires almost no additional programming compared to the usual simple Gibbs sampler. The two an-

tithetically coupled Gibbs sampler chains allow us to construct the estimator
--� in (1) which we shall

compare to
-� in (2) for the rest of this paper.

The coupled Gibbs sampler chains jointly form a Markov chain evolving on 'k^�' .

THEOREM 1 The coupled random scan Gibbs sampler chains given in (5) and (6) are jointly a block-

wise random scan Gibbs sampler on '�^,' with stationary density� ��
����I�h� 
���r q�s 
 S q ��
���� qJs � S q ���"��
������#p�� � ��
 S q �<� S q � (7)� 
���
���
����I� d�q 6 � �"��
 S�� t#��t#�"q�� ��� S�� t)�Mt#�"q�� ��u"� (8)

where �"��
 S"z �<� S"z �#p�� is equal to one if there is a �[*�CED"� 0 � such that r q .�� q ��
 S"z �)��� and � q .� q ��� S"z � 0�G �3� . Otherwise �"��
 S"z �<� S"z �#p�� is zero. The transition kernel is given by� �<��
��<����N���
����<�l������. 0f d4 q 6 � 
���rU�q s 
 S q �<
������q s � S q ������
��<���)p	� 0K�  �¡£¢ 6  ¥¤ ¡£¢Z¦ § ¡¨¢ 6 § ¤ ¡¨¢ª©  (9)

The � -function describes the fact that common random numbers are used. It is interesting that the joint

chain is also a Gibbs sampler with block updates on a larger space, '+^«' . Each block consists of two

indexes that correspond to the same y 5 component in the two chains.

We shall use some results of Liu, Wong & Kong (1995) that need the following regularity condition to

hold for 
 ¬ 
���
 : �)
 � � L
���
 : � 
���
 � ��­�
 : ­¥
 � ���� (10)

Here 
���
 : �#
 � � is the joint stationary density of � : and ��� . Condition (10) is quite common and it

guarantees that the marginal Gibbs sampler chain is geometrically ergodic in terms of Pearson’s ® L -
distance, and that the covariance between ����� 5 � and ����� 5 2;¯{� goes to zero geometrically fast as °«N� . We shall assume that (10) is satisfied. Refer to Liu, Wong & Kong (1994) and Liu et al. (1995) for

further discussion on (10).
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3 COMPARING ASYMPTOTIC VARIANCES

To evaluate the performance of the antithetically coupled Gibbs sampler, we will compare the variance

of
-� with the variance of

--� (assumed to be finite). Let the coupled chains be started in the stationary

distribution � . We shall return to this assumption in Section 7, where we discuss the burn-in period.

THEOREM 2 Assume ��� : �V= : � is distributed according to � . Let ��� 5 �V= 5 � be the stationary Markov

chain defined by (5) and (6). Let± ¯ . cov ������� : �(�)����� ¯ ���(� °Y.[D"� 0 �� � ( 
be the marginal autocovariance at lag ° of one of the two components, and let² ¯ . cov ������� : �(�)���	=/¯K���(� °«.[DU� 0 �! � ( 
be the cross-autocovariance at lag ° of the two components. Then&_� var � -�;� G var � --�l�<�³. LM$9Sl�4¯ 6 $ ± ¯ A 0B£& $IS;�4 ¯ 6 � ° ± ¯ G 0BK& L8$IS;�4¯ 6 $ ° ± ¯G ² :(\¨B G $9S;�4¯ 6 � ² ¯ A 0& $IS;�4 ¯ 6 � ° ² ¯ � (11)

where
-� is given in (2) and

--� in (1), and the variances and covariances are computed with respect to

the stationary measure over the appropriate trajectory space. Furthermore, when &�NP� ,&_� var � -�;� G var � --�l�<��.[´"� 0 � G ² :�\¨B G $IS;�4 ¯ 6 � ² ¯  (12)

When passing to the limit as &�NP� in equality (11), using (10), all terms involving the autocorrela-

tions of the marginal chains disappear. The study of the sign of the right hand-side of (11) cannot be

done analytically for a finite & , so we consider the case when &ONµ� . We want to show that the right

hand side of (12) is asymptotically positive. This would be true if
² ¯W¶ D for all ° . For this reason we

study the sign of the cross-autocovariances
² ¯ in the following section.

Note that if the coupled chains are not started in equilibrium, then (12) still holds if we interpret
² : as�$R· $9Sl�576 � cov ������� 5 �(�#���	= 5 ��� and

² ¯ similarly.

4 THE CROSS-AUTOCOVARIANCE OF THE JOINT CHAIN

We shall assume from now on and without loss of generality that the expected value of �����O� is zero in

order to simplify formulas. To be able to study in general the right hand side of (12) we need to restrict

the space of functions � . Our algorithm induces an antithetic dependency structure between � 5 and= 5 . We want that structure to transfer to ����� 5 � and ���	= 5 � as well.
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DEFINITION 1 Let ¸ be the class of non-constant functions � | '�N g whose p -th component is

monotonically either decreasing or increasing in r q whatever values 
 S q takes, for each p .
Some possible choices for �%*`¸ are ����
��m. · q!¹ q ��r q � , and ����
��m.�º q!¹ q ��r q � , where the ¹ q �MaE� are

monotonic functions.

We start with the sign of the cross-autocovariance at lag zero,
² : . In order to show that (12) is positive it

is important that
² : is negative. A consequence of Lemma 2, used in the Appendix to prove Theorem 2,

is that s ² ¯ s ¶ QR� 0 \¨°"� as °»Nh� , so that
² : is the leading term in (12). The following theorem does

not assume that the joint chains are in equilibrium.

THEOREM 3 Consider the coupled random scan Gibbs sampler chains ��� 5 �V= 5 � , and assume �`*R¸ .

For every >�¼ 0 it holds that cov ������� 5 �(�)���	= 5 ��� ¶ D . If the chain ��� 5 �(= 5 � is stationary, then
² : ¶ D .

Furthermore, if var ������������½�D , then
² :W��D .

Notice that �,*¾¸ is not necessary for
² : ¶ D to hold. The important fact is that � preserves antithetic

dependency of � 5 and = 5 . It is not possible to improve the upper bound on
² : without imposing

further assumptions on 
 (Joe, 1997, pp. 81).

4.1 ATTRACTIVE OR REPULSIVE TARGET DENSITIES

We prove in the case of attractive or repulsive target distributions that
² ¯ ¶ D , for all ° , and hence the

variance of
--� is always less than the variance of

-� as &[Nh� . Our result are based on the technique

of iterated conditional expectations introduced by Liu et al. (1994) and Liu et al. (1995).

For simplicity, let us first consider only the � 5 -chain. Let p 5 be the random variable describing which

site is updated in moving from � 5 to � 5 29� . Notice that ����� 5 � and ����� 5 29�)� are conditionally inde-

pendent given ��� 5 S q � �#p 5 � (which we in the following write as � 5 S q � for short), and that ����� 5 S q � � and����� 5 29�S q �À¿¥Á � are conditional independent given � 5 29� . Furthermore ����� 5 � and ����� 5 S q � � have the same

joint distribution as ����� 5 29�)� and ����� 5 S q � � , and this distribution does not depend on time > as a result

of the stationarity. To illustrate the use of these facts, we write± � . E ������� 5 ������� 5 29� ����. E � E ������� 5 �<����� 5 29� � s � 5 S q � ����. E �8C E ��������� s � S q �	Â L ��¼�D (13)

showing that ± � is positive for a random scan Gibbs sampler (Liu et al., 1995). Note that expectation

with respect to � S q is a shorthand for E q � E Ã ¡¨¢ �Ma s p���� . The expressions for ± ¯ get more complicated

for higher order lags, see the cited references for details. Using this technique on the joint chain, we

obtain the following formulas for the cross-autocovariances.

THEOREM 4 The cross-autocovariances for the joint ��� 5 �(= 5 � chain can be expressed as² ¯ .ÅÄ E � ¹lÆ ¯)Ç ��� S q � ¹lÆ ¯)Ç �J= S q ���V� for ° odd

E � ¹ Æ ¯)Ç ����� ¹ Æ ¯#Ç �	=,���(� for ° even
(14)
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where ¹ Æ ¯#Ç �MaE��. E �M ! � E � E ��������� s � S q � s ��� s � S q  � ! J�
is a sequence of ° iterated conditional expectations alternating � S q and � .

Expression (14) makes it possible to interpret
² ¯ as the cross-autocovariance of ¹lÆ ¯)Ç �8aE� at lag zero. We

can then make use of Theorem 3 to prove that under certain conditions
² ¯W¶ D for all ° , and hence that

the antithetic estimate (1) is always better asymptotically than (2). The required conditions are that�`*/¸ and that for each p
E ��������� s 
 S q � (15)

is monotonically either increasing in r t �MÈ�uwv.[p , or decreasing in r t �MÈ�u/v.[p .
THEOREM 5 Assume �`*/¸ and ¹ Æ �MÇ ��
 S q ��. E ��������� s 
 S q � is either monotonic increasing in r t �8È�u,v.p , or monotonic decreasing in r t �8È�u/v.[p , then

² ¯É¶ D"�MÈl° .

We can relate the condition of monotonicity of (15) to attractive and repulsive models. In the literature
 is called attractive if
���j q ¶ r q s 
 S q � ¶ 
���j q ¶ r q s 
 � S q �(� for 
 S q ¼�
 � S q ��Èl
��#
 � *w'W� (16)

assuming the partial ordering of ' given by 
 z ¼O
�Ê z if r q ¼�r �q for all p�*`} . 
 is repulsive if (16)

holds with “ ¼ ” in the first inequality. See Møller (1997) for many examples of such attractive and

repulsive models. Define ¸ 2 and ¸ S as the set of functions ��*[¸ that are monotonic increasing

in all r t or decreasing in all r t , respectively. The monotonicity condition of (15) is guaranteed when�`*/¸ 2»Ë ¸ S and 
 is either attractive or repulsive.

Note that
² ¯ will be negative for more general densities 
 and functions � , but our proof requires these

assumptions.

4.2 APPROXIMATING THE EFFICIENCY

Although attractive or repulsive models are often encountered, we would like to extend our theory to

general target densities and quantify the gain obtained using the new algorithm. We are however not

able to do this rigorously. In this section we give some evidence that possibly in general
² ¯_¶ D , Èl° ,

for �`*/¸ . We shall show that approximately² ¯ÍÌ ² : ± ¯ \ ± : (17)

provided that

E ������� 5 2;¯ � s 
 5 � Ì ± ¯± : ����
 5 �( (18)
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In other words, if the best linear ° -step ahead predictor (in terms of ����
 5 � ) is close to the ° -step ahead

conditional expectation, then
² ¯ ¶ D , Èl° , and s ² ¯ s decays geometrically to zero. Note that (18) (and

hence (17)) is exact for any linear � if 
 is multivariate normal. This is a significant special case.

Because a multivariate normal is often the large sample limit in inference, we might expect (18) to

hold more generally for large sample sizes. We will return to the multivariate normal distribution in

Section 5.

Equation (17) follows from² ¯ . E ������� 5 �<���J= 5 2l¯ ����. E � E ������� 5 �����	= 5 2;¯ � s = 5 ���. E ������� 5 � E �����J= 5 2l¯K� s = 5 ��� Ì E ������� 5 � ± ¯± : ���	= 5 ����. ² : ± ¯± : �
using (18). Using approximation (18), we can calculate the efficiency of

--� compared to
-� as &�NP� ,

eff � --��� -����Î var � -�3�
var � --�3�ÉÏ 00 A ² :(\ ± :  

As
² :W��D , the new antithetic algorithm is always better if (18) holds. Thus, if the cross-autocorrelation

at lag zero,
² :�\ ± : , is equal to, say,

G B¨\¨Ð , then the efficiency is approximately Ð . In our experiments re-

ported in Section 8, we always obtain efficiencies larger than three. This means that the computational

costs can be reduced to at least one third. Note further that the efficiency under approximation (18)

does not depend on ± ¯ , °Ñ½ÒD , which indicates that the efficiency does not depend on the specific

mixing properties of the marginal chain, which is assumed to be geometrically ergodic by (10).

5 TARGET DENSITIES WITH A CERTAIN LOCAL SYMMETRY

In this section we will present a striking result for the variance of
--� when the target density 
 satisfies

certain symmetry conditions fulfilled by the multivariate normal, the Ising model and a few others. LetÓ ��
������ be any density defined on '�^�' with the same positive support as 
`^,
 .

THEOREM 6 For any linear � , let 
 be either the multivariate normal or the Ising model
���
�����Ô(Õ"Ö�� ² 4 q�×Ut r q r t �(� r q *`n GW0 �)A 0 o��
where the sum is taken over all nearest neighbours on a regular grid Ø[��Ù L . Then, var � --�;��.[D if the

joint chains start in � , while var � --��� ¶ QmÚ��Z& S�L � if the joint chains start in Ó v. � , where QÛÚ is with

respect to the site updating distribution as &�NP� .

The theorem is surprising because it shows that coupling two Gibbs sampler chains allows us to reduce

variances by a full order of magnitude. Furthermore, because var � --�;�Ü.ÑD , once the stationary distri-

bution � is reached, one joint sample is enough to estimate the expected value of ������� . When 
 is a
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multivariate normal, the proof of the theorem is an immediate consequence of the following lemma,

while some more work is needed for the Ising model.

LEMMA 1 Assume 
���r qMs 
 S q ��.[Ý q ��r q G`Þr q � , Èlp , where Ý q �MaE� is symmetric around zero, and
Þr q is the

median in 
���r q8s 
 S q � which can be written as
Þr q .àß q 
 S q for some matrix ß q . Then for any linear� , var � --�;��.áD if the joint chain starts in � , and var � --�3� ¶ QmÚ���& S�L � if the joint chains start in Ó v. � ,

where QÛÚ is with respect to the site updating distribution.

It is this specific symmetry of the conditional density with respect to the median that is linear in the

conditioning components that makes in some way the joint chain deterministic, as can be seen from the

proof. If 
 is a multivariate normal, then this lemma holds because the conditional median equals the

conditional mean which is linear in 
 S q , and the conditional variance does not depend on 
 S q . Another
 , sometimes used for smoothing, that satisfies the conditions of Lemma 1 is
���
�����Ô(Õ�ÖI� G 4 q ¦ tãâ qEt ��r q G r t � L �(�
where â qEt ¼�D and r � , say, is fixed.

6 LOCALLY NON-SYMMETRIC TARGET DISTRIBUTIONS

Lemma 1 may indicate that an important property for achieving variance reduction with the new method

is a certain type of symmetry of the conditional distributions. To gain more insight we will now study

analytically the same coupling applied to two stationary autoregressive processes. These mimic the

behavior of the two Gibbs sampler chains.

Let j 5 be the real valued autoregressive processj 5 .[ä3j 5 Sl� A�å 5æ � >?½�D"� (19)

started in equilibrium at time zero. Here, s ä s � 0 to ensure stationarity, and å 5æ are i.i.d. binary variables

with P ��å 5æ . 0 ��. � ¼ 0 \�B and P ��å 5æ .�D¨�m. 0ÍG � . Although this is not a Gibbs sampler, it has the

same flavor. It is known that the Gibbs sampler is a multivariate autoregressive process of order one

if 
 is Gaussian. We chose ����r3��.[r so that the goal is to estimate the mean E ��jc��. � \�� 0�G ä;� . The

variance of
-� is

var � -�;��. var � 0B£& LM$4 576 � j 5 � Ï[ç æ \���BK&Ü�(� where ç æ . ± : A%B�è4¯ 6 � ± ¯ (20)

is the integrated autocovariance time. We want to compare the variance in (20) with that obtained

using two realizations of (19), j 5 and é 5 , where j 5 is sampled (forward in time) using the uniform

variable F 5 ’s and é 5 is sampled using
0mG F 5 . We compare (20) with the variance of

--� , where

var � --�;��. var � 0& $4 5�6 � j
5 A+é 5B ��Î var � 0& $4 5�6 �Iê 5 � Ï[ç#ë \K&Ü 
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By noting that ê 5 is an autoregressive process of the same form as (19), with å 5ë equal to one with

probability B � G�0 and equals otherwise
0 \¨B , we obtain the efficiency of

--� compared to
-� as

eff � --�9� -�;� Ï ç æB ç#ë .
0B G%0 \ � � � ½ 0 \¨B"� (21)

where we make use of the exponentially decaying autocovariances of j 5 and ê 5 . This result shows that

the antithetic estimate is always better, and that the efficiency tends to � as the symmetry increases,

i.e. � N 0 \¨B , and to one as the symmetry decreases, i.e. � N 0
. For � . 0 \¨B (perfect symmetry), the

variance of
--� is again of QR��& S�L � . Notice that the length of the burn-in of the joint and marginal chain

is similar, as both are autoregressive processes of the same form (19).

We compute the cross-autocovariance
² : by comparing the asymptotic variance in (23) with the dif-

ference (12) in Theorem 2, and we obtain further² ¯ . G � 0mG � � L0mG ä L ä�ì ¯ ìÀ 
This results shows that (18) holds exactly also for this model. Furthermore

² ¯ is minimal when � .0 \¨B and
² ¯ .ÑD if � . 0

. Also note that
² ¯ is decreasing with increasing ä , ä%½[D . Because a largeä in (19) makes the estimation problem harder, one might therefore believe that there is an increasing

benefit from using the antithetic idea for strongly positively correlated Gibbs sampler chains. However,

the fact that ä cancels in (21) indicates that the efficiency of the new algorithm does not depend on the

mixing properties of the marginal chain, see also Section 4.2.

7 THE BURN-IN

We have seen that for the autoregressive example in Section 6, the burn-in of the joint antithetic chain

is of the same order as the burn-in of the marginal chain. In this section we will argue that this is

a general picture: the burn-in of the joint chain ��� 5 �V= 5 � needed to reach the stationary distribution� is generally of the same order as the burn-in of the single chain � 5 converging to 
 . Assume for

simplicity that ' is finite.

We use a further coupling argument. Consider a new pair of chains ��í� 5 ��í= 5 � that evolves with the

same transition kernel as ��� 5 �V= 5 � but is started in equilibrium � and shares with ��� 5 �(= 5 � all ran-

dom numbers. This means that � 5 and í� 5 both use the random number F 5 to evolve to � 5 2I� andí� 5 29� , and = 5 and í= 5 both use
0ÍG F 5 to evolve to = 5 29� and í= 5 29� . This is the natural coupling of��í� 5 ��í= 5 � with ��� 5 �(= 5 � . Once the two pairs of chains meet at time > , they coalesce, and we know

that ��� 5 �(= 5 � Ï � . For coalescence of the two pairs of chains to happen, both the components have

to coalesce, i.e. there are two random times î æ ��î(ï , such that í��ð�ñW.á� ð�ñ , and í=`ð�òm.X= ð�ò . The cou-

pling time for the two pair chains is íî�.ôó«õ£Õ�n�î æ ��î(ïKo . The marginal coupling times î æ and î(ï are

dependent but they do have the same marginal distribution. Moreover, if we repeat the whole argu-

ment for a single Gibbs sampler targeting 
 , the coupling time would have the same distribution as î æ
11



(and î(ï ). Therefore, coupling of the joint chains takes a time íî that is similar to î æ , i.e. Q Ú �!íî�\Kî æ ��. 0 .
Furthermore, it is easy to show that E �!íî�� ¶ B E ��î æ � . The motivation for using the coupling argument

is that the total variation norm of the difference between � and the density at time > of ��� 5 �(= 5 � is less

or equal to Pr �!íî`½á>M� . However, often the coupling inequality gives a reasonably good bound of the

burn-in period. A further indication that the burn-in of the joint chain is of the same length as the burn-

in of the marginal one comes from the exponential decay of the cross-autocovariances. In practice the

length of the burn-in period is always taken to be considerably shorter than the & iterations used for

averaging.

8 NUMERICAL EXPERIMENTS

In this section we apply our new Gibbs sampler algorithm to two well studied data sets, the hierarchical

Poisson model (Gelfand & Smith, 1990) and the ordered normal means example (Gelfand et al., 1990).

The main purposes are to evaluate the performance of the new algorithm for finite & and to quantify

the efficiency w.r.t. the usual Gibbs sampler. We will also present antithetically coupled Metropolis-

Hastings chains and discuss their performance.

8.1 HIERARCHICAL POISSON MODEL

Gelfand & Smith (1990) present counts ö+.P��÷ � �! � � "�#÷ d � of failures in f�. 0 D pump systems at a

nuclear power plant, where the times of operation øÉ.���> � �� � ! "��> d � for each system are known. The

hierarchical model assumes ÷ ¯ Ï Poisson �	ù ¯ > ¯ � , and a common Gamma prior for the failure rate ù ¯
of each pump, ù ¯ Ï�ú ��û�� ² � . The problem is to infer on û and on the inverse scale

²
. We take as

prior for û the exponential distribution with mean one, and for
²

a ú ��D" 0 � 0  ªD¨� distribution. We shall

estimate the posterior means of û and
²

.

The conjugate priors ensure that ù � is ú -distributed conditional on the remaining variables, as areù L  ! � <ù d and
²

. It is therefore easy to update each of these variables using a Gibbs sampler. The

conditional density for û is however non-standard since
���û s ù � �� ! � "�(ù � :!� ² ����Ô(Õ"ÖI��û â G fÍüÀý¨þ ú ��û����V� where â .[fÍüÀý¨þ ² A d4 ¯ 6 � üÀý¨þÍù ¯ G%0  (22)

In this case it is most natural to perform a Metropolis-Hastings step when the û -parameter is updated.

This means that, using a proposal density, a new value for û is proposed and then accepted or rejected.

We suggest to couple the proposed values, while keeping the acceptance step independent. Here are

three different updating strategies for û .

1. (Gibbs sampler update) To implement the full Gibbs sampler, we computed numerically ÿ Sl� ����� â æ �
and ÿ S;� � 0?G ��� â ï�� , where ÿ is the cumulative conditional distribution function (22) for û .

12



2. (Hastings update) We approximated the conditional density (22) with a normal ( íÿ ) where the

mean and variance match the mode and the curvature in the mode. We updated û using a Hast-

ings step, where we propose to move the current values of û to íÿ S;�æ ���3� and íÿ S;�ï � 0_G ��� re-

spectively for the two chains, and accept the proposals using independent uniform variates. We

obtain an estimated acceptance rate for û of �¨D�� .

3. (Metropolis update) We updated û using a random walk Metropolis step and proposed a new

state from a uniform density centred at the old state. The width of the proposal density was

determined to obtain an estimated acceptance rate for û close to �¨D�� .

To verify the robustness of our theoretical results with respect to various site visitation schedules, we

applied each of these three updating rules for û to three different visiting schedules: RS, the usual

random scan assumed above, where we look to 12 variable updates as one step; RPS, where at each

iteration we update our 12 variables in a random permutation; and DET, where at each iteration we

update ù � �! � � 3�(ù � :��#û�� ² and then
² �)û��(ù � :!�� � ! "�(ù � . All these visitation schedules give rise to a re-

versible Markov chain.

We ran a single Markov chain using
0 D�D¨D iterations as burn-in, and then we split the chain into two

components and ran, according to (6) and (7) for ù � �! � ! "�(ù � :�� ² , according to one of the three above

methods for û , for a further �¨D�D¨D¨D iterations. Figure 1 shows a small part of the sample paths for the
²

variables in the two chains, denoted by
² 5 � and

² 5L respectively, where we used the Gibbs sampler also

for û and RPS. The paths show a clear negative correlation. The first panel of Figure 2 shows the em-

pirical joint density of the two coupled chains û 5 � and û 5 L , using ��D¨D�D subsequent samples. The second

panel of Figure 2 shows the empirical joint density of � ² 5� � ² 5L � . Again, the negative cross-correlation

structure is clearly visible. To give a quantitative measure of the variance reduction using the antithetic

chains, we estimated the integrated autocovariance time using all �¨D�D�D¨D iterates and the approach of

Geyer (1992) for reversible chains. The estimated efficiencies for û and
²

for different updating rules

and visitation schedules, are listed in table 1.

The efficiencies in table 1 do not seem to depend on the visitation schedules. Our theory in Section 4.1

is valid only for the RS schedule, but it seems to be valid in practice for other visitation schedules too.

The efficiencies for these Gibbs samplers are around � and � for û and
²

, respectively, which gives

a significant reduction of the computational costs. However, the efficiencies drop to around B G B" ��
for other types of update for û (Hastings update and Metropolis update). This occurs despite the fact

that the acceptance rate was �¨D�� for the Hastings-step. A further experiment with a random walk

Metropolis update for û with increased width and an acceptance rate of B���� , still gave efficiencies

around B . The explanation for this effect is that the two antithetic chains get out of phase immediately

when an antithetic proposal is rejected in one chain but not in the other. The sharing of the random

numbers F 5 is the only way we introduce antithetic dependency between the two chains. When an

antithetic proposal is rejected by one of the two chains while being accepted by the other, the antithetic

coupling between the two chains weakens. We do not adjust for this in later iterations, since only the

random numbers are shared and no consideration is given to the states of the two chains in the proposal.

13



This could be generalized.

We also notice that in this case a single BK& long chain, using Gibbs sampling for ù � �! � ! ��(ù � : � ² and

a Hastings update for û , as described in item B above, has an asymptotic variance that is larger than

that-one of a single BK& long Gibbs sampler. Hence antithetic Gibbs sampling is better than a hybrid

Gibbs sampler-Hastings algorithm.

8.2 THE ORDERED NORMAL MEAN PROBLEM

Gelfand et al. (1990) use the Gibbs sampler to estimate the mean and precision in normal populations,

when the ordering of the means is known in advance. We have repeated their example using our anti-

thetic Gibbs sampler to investigate its efficiency in estimating the posterior mean of the parameters of

interest.

Let é qªt be the u th observation (uc. 0 �! � � "�#f q ) from the p th group ( pÍ. 0 �! � ! ��)f
	�� . Assuming con-

ditional independence throughout, let é qEt Ï N ��� q � 0 \ ç q � , � q Ï N � � � 0 \ ç 	 � , ç q Ïhú � â � ��
 � � , ç 	 Ïú � â L ��
 L � , and � Ï N � � : � 0 \ ç : � . Here ç � denotes the precision or inverse variance. The prior ordering

constraint of the means � q is that � � ¶ � L ¶  � � ¶ � d�� . Gelfand et al. (1990) demonstrate that the Gibbs

sampler is easy to implement even with the ordering constraint. We refer to Gelfand et al. (1990) for

details about the Gibbs sampler and choices of the (flat) priors of the hyperparameters â � � â L ��
 � ��
 L � � :
and ç : .
We simulated our data set using f
	 .�� , and sampled from the p th population, f q . B¨p)A�� observations

from N ��p<�)p L � . Table 2 lists the empirical mean and variance within each group. Note that the empiri-

cal ordering of the means is not in agreement with the ordering constraint. We used the deterministic

site visitation schedule DET with
0 D¨D¨D burn-in’s. The efficiency was estimated using the following

�¨D�D�D¨D iterates of the coupled chains as in Section 8.1. Table 3 displays our estimates of the efficiencies

for ��� q � ç q � , pm. 0 �� ! � 3�)f
	 . The new antithetic Gibbs sampler gives again a significant speedup with

efficiencies between B" ���� and �U ���� with an average of �� �� . Similar results were obtained for the other

visiting schedules.

9 CONCLUSIONS

We have suggested a simple way to couple two Gibbs sampler chains in order to reduce the variance of

the sample average estimator of an expectation. The coupling induces antithetic cross-autocovariances.

The reduction of the variance can be remarkable with respect to a simple Gibbs sampler run using the

same computational time.

The coding of the proposed algorithm is an easy operation given a standard Gibbs Sampler implemen-

tation.

Other authors have tried to introduce antithetic behaviors into a single MCMC chain. Barone & Frigessi
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(1989) propose a variation of the Gibbs sampler that moves antithetically to the current state and is

shown to have a reduced burn-in in many cases. Neal (1998) complicates the single update further

with the same aim of introducing negative correlations. Green & Han (1992) showed that in such a

way also the asymptotic variance could be reduced in certain cases. We show, however, that it is with

two chains that a complete antithetic behavior can be established.

As the example showed, it is not trivial to extend equally successfully this idea to Metropolis-Hastings

type algorithms. The reason for this is that it is more difficult to induce antithetic correlation when an

accept-reject step may well reject a proposed antithetic move. More research is needed in order to

understand how to couple such chains antithetically.

Although our asymptotic analysis requires a random updating schedule of the variables, there is no

reason to doubt that our conclusions can be extended to other types of scans. This is supported by the

example in Section 8.1 and by the fact, that follows from the proof of Theorem 3, that
² : is negative

for general scans. Block updates can also be handled.

The Gibbs sampler is often not the fastest MCMC algorithm. In fact other Metropolis-Hastings schemes

have smaller asymptotic variance. However, the new antithetically coupled Gibbs sampler may com-

pete with such algorithms. For example, in the case of the multivariate normal density and the Ising

model it should be preferred to any other single site updating MCMC.
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Gibbs sampler Gibbs/Hastings Gibbs/Metropolis

Efficiency RS RPS DET RS RPS DET RS RPS DETû 9.10 9.04 9.58 2.26 2.19 2.31 2.14 2.04 2.07²
5.69 6.25 6.15 2.88 2.86 2.50 2.74 2.50 2.39

TABLE 1: The estimated efficiencies using �¨D�D¨D¨D iterates and different choices for how to update the

parameter û and different types of scan (RS: random scan, RPS: random permutation scan, and DET:

deterministic scan). The antithetic coupling is highly efficient for the pure Gibbs sampler, but the ef-

ficiency decrease using a Hastings-update (with ��D�� acceptance) or a Metropolis-update (with �¨D��
acceptance) for û .

Sample values
0 B Ð � �f q � � 0 D 0 B 0 ��é q D" ������ B" ªB 0 B ÐU ������ B� ���D 0 �3 0 ���] Lq 0  ����¨Ð B" ªB���� ÐU ����¨B B�D� 0 ��� 0¨0  EÐ¨Ð¨D

TABLE 2: The sample values in the ordered normal means problem. Note the exchange in the empirical

ordering of the means.

Efficiencies
0 B Ð � �

� q �" ���� �3 ED¨B B" ���� Ð¥ ED�� �� ªÐ 0ç q �� EB¨D �U ED�� �� �� 0 �¥ ���� �" ��¨Ð
TABLE 3: The estimated efficiencies in the ordered normal means problem using �¨D�D¨D¨D iterates.
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FIGURE 1: The sample-path for the
²

parameter for 200 iterations, in the two antithetic chains. The

sample-paths show a clear negative correlation.
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FIGURE 2: The empirical joint density of ��D¨D�D samples from the two antithetic chains for the û -

parameter is shown in (a), and for the
²

parameter is shown in (b). The negative correlation is clearly

visible.
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A PROOFS

PROOF OF THEOREM 1 The antithetic sampler on 'X^~' updates components block-wise, where

the block corresponds to ��� q �V= q � . Using the Theorem in the Appendix of Arjas & Gasbarra (1996)

we conclude that the joint chain ��� 5 �(= 5 � is ergodic and converges for each starting configuration��� : �V= : ��*,'%^/' as long as 
���� : �<
��	= : ��½�D . Note that � ��� : �V= : � can be zero. The form of the

transition kernel (9) follows directly using (5) and (6). It is easy to see that (9) is a block-wise Gibbs

sampler step with respect to (7), which can be rewritten as (8) by iterating from the last factor. �

PROOF OF THEOREM 2 By stationarity it holds that

var � -�3��. 0B£& ± :�A 0& L8$IS;�4¯ 6 � ± ¯ G 0BK& L LM$9Sl�4¯ 6 � ° ± ¯  
For the coupled chains we get

var � --�l��. 0BK& ± :�A 0& $IS;�4 ¯ 6 � ± ¯ G 0& L $9Sl�4 ¯ 6 � ° ± ¯ A 0B£& ² :�A 0& $9Sl�4¯ 6 � ² ¯ G 0& L $IS;�4 ¯ 6 � ° ² ¯ � (23)

using stationarity of the joint processes, the knowledge of the marginals and that
² ¯ is in our case even

in ° . Some simplifications give the expression for the difference of variances (11).

To obtain (12) first observe that Corrolary 1 in Liu et al. (1995) and assumption (10) ensures that ± ¯ ¼D"�MÈl° , and ± ¯ . ´"� 0 \¨°"� as °�N � . Hence all sums in (11) involving ± ¯ are of order ´"� 0 \K&Ü� as&ONP� . By applying the following lemma, (12) follows.

LEMMA 2 �$ · $IS;�¯ 6 � ° ² ¯ .[´"� 0 � , as &ONP� .

PROOF OF LEMMA 2 Define � 5 . ������� 5 ��AO���	= 5 ���<\¨B and write & var � --��� in two ways, in terms

of � 5 and as (23). So for &�NP�
í± :�A%B $9Sl�4 ¯ 6 � í± ¯ . ± :(\¨BmA $IS;�4¯ 6 � ± ¯ A ² :(\¨BmA $IS;�4¯ 6 � ² ¯ G 0& $9S;�4¯ 6 � ° ² ¯ �

where í± ¯ . cov ����� � : �V�)���!�É¯���� . Repeat this equality for &�A 0 and subtract term by term. We get as&ONP� , B í± $ . ± $ G 0&b��&cA 0 � $IS;�4 ¯ 6 � ° ² ¯ A 0&~A 0 ² $  
From Liu et al. (1995) and Theorem 1, we know that í± $ .[´"� 0 \K&Í� and ± $ .[´"� 0 \K&Ü� , henceB ² $ G $4 ¯ 6 � ° ² ¯ \K&�.[´"� 0 � (24)
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Since s ² ¯ s ¶ ± : , we have to rule out that · $ ¯ 6 � ° ² ¯ \K&�. constant .#" . If this was the case, write (24)

for &[A 0
to conclude that "�.µ´�� 0 � . Hence · $ ¯ 6 � ° ² ¯ \K&Ò.P´"� 0 � . Note that s ² ¯ s ¶ QY� 0 \¨°"� as°«NP� . �

PROOF OF THEOREM 3 We will show that

cov ������� 5 �V�)���	= 5 � s p 5 S;� �)� 5 S;� . 
 5 S;� �(= 5 Sl� .�� 5 S;� � ¶ D (25)

for every > , where conditioning on p 5 S;� indicate that we update site p 5 Sl� in � 5 . This is then sufficient,

integrating (25) with respect to the density of ��� 5 Sl���V= 5 S;�)� , which does not need to be in equilibrium,

and the uniformly density for p 5 S;� over the f sites. We simplify the notation. Let }�.i����� 5 �(��$i.���	= 5 � and interpret } and $ as functions of j 5q � ¡ Á and é 5q � ¡ Á only. Further let all probabilities be

conditioned on ��p 5 Sl� �)� 5 S;�Ü.�
 5 S;� �(= 5 S;�Ü.@� 5 S;� � . If } does not depend on j 5q � ¡ Á (or similar with

$ ) then the conditional covariance is zero. Assume now that } and $ depend on j 5q � ¡ Á and é 5q � ¡ Á ,
respectively, and let } ( $ ) have cumulative probability distribution ÿ«� â � ( %/��
(� ). Denote by &�� â ��
(�
the joint cumulative probability distribution of ��}H��$H� . Now we use that }³.hÿ S;� �JF � and $ .
% S;� � 0mG FW� , which is valid as �`*/¸ . Then

&%� â ��
(�I.#'«�	F ¶ ÿ«� â �(��F�¼ 0mG %ã�(
(����.XCEÿ«� â �IA)%ã��
(� G%0 Â 2 �
where C�a Â 2 indicates the positive part. We insert (A) into the following general result of Hoeffding (see

Joe (1997), pp. 55)

cov ��}É��$É��. ¬ 2 èS è
¬ 2 èS è ��&%� â ��
(� G ÿ«� â �*%/��
(����­ â ­�
K�

and split the integral into two parts according to the value of Cªÿ«� â �9A)%ã��
(� G%0 Â 2 . We obtain

cov ��}É��$É� . G ¬ 2 èS è
¬ 2 è+ ¡ Á Æ ��S-, Æ/. Ç�Ç ��ÿ«� â �*%/��
(� G ÿ«� â � G %ã��
(�;A 0 ��­ â ­�
G ¬ 2 èS è
¬

+ ¡ Á Æ ��S-, Æ/. Ç�ÇS è ÿ«� â �*%ã�(
(��­ â ­0
K 
The first integral is positive since ÿ«� â �*%ã�(
(� G ÿ«� â � G %ã��
(�;A 0 .i��ÿ«� â � G%0 ���1%/��
(� G�0 �m¼�D . The

second integral is of course always positive. �

PROOF OF THEOREM 4 The proof for
² � is similar to (13). Using that ��� 5 �V= 5 � is conditional in-

dependent of ��� 5 29���(= 5 2I�)� given ��� 5 S q � �(= 5 S q � � , and that � and = have the same marginal density,

we obtain ² � . E ������� 5 �����	= 5 29� ����. E � E ������� 5 �<���J= 5 2I� � s � 5 S q � �V= 5 S q � �<�. E � E ������� 5 � s � 5 S q � � E �����	= 5 2I� � s = 5 S q � ����. E � ¹ Æ �JÇ ��� S q � ¹ Æ �JÇ �	= S q ���(�
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where ¹ Æ �JÇ ��� S q �«. E ��������� s � S q � . The expression for
² ¯ is similar to the one for

² � , and makes

repeated use of the iterated structure of ¹ Æ � Ç �8aE� . For °/¼�D it holds that¹ Æ L�¯#2lL<Ç ������. E � ¹ Æ L<¯)29�JÇ ��� S q � s ���(� ¹ Æ L�¯#2I�MÇ ��� S q ��. E � ¹ Æ L<¯)Ç ����� s � S q � (26)

where ¹ Æ : Ç �����W.i������� . Since the marginal distributions for � and = are the same, we obtain for

the = chain the same ¹ -functions as in (26) using = as the argument. A formal induction procedure,

which we omit, will now give the proof. �

PROOF OF THEOREM 5 First,
² : ¶ D from Theorem 3. To prove that

² ��¶ D we assume that¹ Æ �JÇ ��
 S q ��. E ��������� s 
 S q � is monotonic increasing in r t �MÈ�uwv.[p , and hence belong of ¸ . If ¹ Æ �MÇ ��
 S q �
is monotonic decreasing then repeat this argument using

G ����
�� . We then apply Theorem 3 to show

that
² �b¶ 0

. To prove that
² L_¶ D we need to assure that ¹ Æ L<Ç ��
�� is monotonic increasing in r t �MÈ�u .

Using (26) we obtain ¹ Æ L�Ç ��
���. E � ¹ Æ �JÇ ��� S q � s 
���. 0f d4 t 6 � ¹ Æ �JÇ ��
 S t �(�
which is monotonic increasing in all r t . Hence and then our claim follows again from Theorem 3. In

general, the fact that
² ¯`¶ D for all ° follows by repeating the above argument: for

²32
use the new

function � � ��
��». ¹;Æ L�Ç ��
�� and the iterated structure for ¹;Æ � Ç �MaE� in (26), to show that
²-2 ¶ D and so

on. �

PROOF OF LEMMA 1 The assumption on 
���r q�s 
 S q � does also apply to 
���� q�s � S q � since the marginals

are the same. Assume 
 S q A+� S q .�4 . Then updating ��r q �#� q � to ��r �q �#� �q � with the transition kernel in

Theorem 1 will ensure that r �q A�� �q .[D because Ý q �MaE� is symmetric around zero and both medians
Þr q

and
Þ� q are linear in 
 S q and � S q . The joint chain will therefore be absorbed by the event n{
_Aw��.#4 o

as soon as 
 5 S q A�� 5 S q .54 . From Theorem 1 we know that the joint chain is ergodic, so it follows

that in this case � ��
��<���/�³
���
��<
����I� 0 �   2 § 636 © . If the joint chain starts in � then for any linear � ,����� 5 �)AH���J= 5 ��Î DÉ. E ������� , È�> , so that the variance is zero. On the other hand, assume that the joint

chain starts in Ó v. � and that site p is to be updated. The new values will satisfy r �q A~� �q .@ß q ��
 S q A� S q � , due to the assumptions on 7 q . This defines a purely deterministic transition rule (conditional

on the site updating sequence) for � 5 A = 5 and then also for ����� 5 ��A����	= 5 � . First notice that the

simple Gibbs sampler cannot be ergodic if ó«õKÕ q-8 ß q98 ½ 0
. Next assume that :c.Pó«õ£Õ q-8 ß q98 �0

. Then s ����� 5 �mA����	= 5 � s tends to zero not slower than : 5 . Hence var � --��� ¶ QR��& S�L ��\3� 0_G :{� L .
Assume now that there exists a non empty set ;à�ôn 0 �#B"�� ! ( "�)f9o such that 8 ß q98 . 0

for p/*<; .

Then s ����� 5 ��A[���	= 5 � s will stay constant whenever pW*=; is updated. Note that s ; s ��f otherwise

no joint equilibrium distribution can exist. Hence the decay to zero is slowed down by waiting times

corresponding to updates of sites p in ; . However the length of such waiting periods is geometrically

distributed with rate s ; s \¨fw� 0 . Hence, our claim var � --�l� ¶ QmÚ���& S�L � follows. �
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PROOF OF THEOREM 6 FOR THE ISING MODEL Consider the Ising model, whose conditional prob-

abilities are

Pr ��r q . 0 s 
 S q ��. 0 \�� 0 A%Ô(Õ"ÖI� G B ² 4 q�×"t r t ����. � 2 ¥¡¨¢ . 0ÛG � S ¥¡¨¢  
Let � 2§ ¡¨¢ and � S§ ¡£¢ denotes the same conditional probabilities for � . Assume 
 S q Ak� S q .>4 . Then� 2 U¡£¢ . � S§ ¡¨¢ . Hence r �q A�� �q .@D , so that � ��
��������@
���
���
������ 0 �   2 § 6-6 © . The proof now proceeds as

in Lemma 1. �
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