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SUMMARY

Two coupled Gibbs sampler chains, both with invariant probability density 7, arerunin paral-
lel in such away that the chains are negatively correlated. Thisallows usto define an estimator of
the expectation E( f( X)) with respect to = which achieves significant variance reduction with re-
spect to the usual Gibbs sampler at comparable computational costs. We show that the asymptotic
variance of the estimator based on the new algorithm is always smaller than the variance of asin-
gle Gibbs sampler chain, if 7 is either attractive or repulsive and f is componentwise monotone.
The new antithetic algorithm is shown to outperform the standard Gibbs sampler by one order of
magnitude when = is a multivariate normal density or the Ising model. Numerical experiments
show that the antithetically coupled Gibbs samplers reduce the finite sample variance in several
other modelsto less than one third, often one fifth, when run for the sametime.
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1 INTRODUCTION

Markov Chain Monte Carlo (MCMC) algorithms allow the approximate calculation of expectations
with respect to multivariate probability density functions = (z) defined up to a normalizing constant.
We refer the reader to Gilks, Richardson & Spiegelhalter (1996) as a starting point for avast literature
about MCMC methodology. The underlying ideaisto construct an ergodic Markov chain with invari-
ant density function 7, whosetrajectory is easy to simul ate without knowing the normalization constant
of 7. Thenin order to approximate the expectation E( f(X)) < oo of afunction f(x) with respect to
7, onejust needs to collect a sample average along the generated trajectory. Let X', ..., X7 denote
thefirst 7' steps of adiscrete time Markov chain evolving on €2 and converginginlaw to = (z), = € €.
By ergodicity we can use the empirical mean of f(x) toestimate E(f(X)) for largeT'. In practiceitis
appropriate to drop aniinitia part of the trajectory in order to avoid strong dependence from theinitial
conditions. The sample mean
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is used and we speak of a burn-in of length T,. The variance var(f), calculated with respect to the
probability measure over the trajectory space and assumed to be finite, measures the quality of a such
an approximation.

In this paper we propose a new agorithm for the estimation of E(f(X)). Theideaisto simulate two
MCMC tragjectoriesin parallel, both invariant with respect to 7, which are then coupled in such away
that variancereduction can be achieved. Our algorithmisbased onthe Gibbssampler, whichisapartic-
ular MCM C scheme where at each transition one samples from a one dimensional conditional density
computed from 7. The coupling isinspired by theidea of antithetic sampling in classical Monte Carlo
theory.

After the burn-in we split the simulation into two parallel Gibbs sampler chains, both ergodic with re-
spect to . Let us denotethetwo chains X* and Y fort = Ty + 1,75 + 2, . ... Marginally the two
processes will look like the usual Gibbs samplers, but their joint probability measure is constructed in
suchaway that X’ and Y have negative covariance. Theideaisto exploit such antithetic behaviour in
order to construct an estimator of E(f (X)) with smaller variancethan var(f) but with similar compu-
tational complexity. The coupling we propose hereisvery simple, based on using acommon sequence
of random numbers. Specifically, if X usesauniform [0, 1) random number UU* to proceed to X ‘+1,
then Y uses 1 — U? to proceed to Y**!. In classic Monte Carlo theory this type of antithetic cou-
pling iswell known to reduce the variance of sample averages of i.i.d. samples. Our contributionisto
merge this classical technique into the MCMC methodology. While the basic ideaiis very simple, the
rigorous analysisof the new algorithm needs somecare. The new antithetically coupled Gibbs sampler
algorithmis precisely defined in Section 2. A pleasant fact is that no significant extra effort is needed
to implement the algorithm. In fact, starting from the usual Gibbs sampler code, the modifications
required in order to implement the new algorithm are usually very easy.



We combine the output of the two coupled chainsinto the asymptotically unbiased estimator
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To make a fair comparison between the two coupled Gibbs samplers and the usual single trajectory
Gibbs sampler, we have to take into consideration that each iteration of the new algorithm takestwice
the computing time of a single Gibbs sampler iteration. Hence we allow the single Gibbs sampler to
run for twice as many iterations as the new algorithm. This means that the variance of f in (1) has to
be compared with the variance of

To+2T
f= f(X )
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We are able to prove a strict inequality between the asymptotic variances of f and  for component-
wise monotonefunctions f and 7 in abroad classof densitieswhich includesthosewhich are attractive

or repulsive. In particular if = is either the multivariate normal density or the Ising model, then as
T — o0

var(f) = O(T=?), while var(f)=O(T™"). ©)

Assume that instead of running a simple Gibbs sampler, a Metropolis-Hastings algorithm would be
used to estimate E(f (X)) when 7 isthelsing model. If the temperature parameter of the |sing model
is large enough, it is known that the Metropolis-Hastings algorithm is faster than the Gibbs sampler,
but still it would give rise to an estimator f for which var(f) = O(T~"). Hencein this case the new
antithetic Gibbs sampler should be preferred even to Metropolis-Hastings!

Numerical experiments seem to indicate that the new algorithm provides a benefit with respect to the
Gibbs sampler in many cases also after afinite number of iterations. The efficiency does not seem to
depend on the mixing property of the single Gibbs sampler chain; if the single Gibbs sampler chainis
slowly mixing, then the joint Gibbs sampler will also be slow, however the ratio of the variances will
not be influenced.

In Section 2 we define the new algorithm and prove that the coupled chains are jointly ergodic and we
identify the joint stationary density. (We collect all proofsin the Appendix.) In Section 3 we compare
var(f) withvar(f) asT — co. It turns out that only the cross-autocovariances between the two cou-
pled chains matter, and we study their sign in Section 4. For component-wise monotone functions f
and = which are either attractive or repulsive, we are able to show that all cross-autocovariances are
negative, and hence our new algorithm is strictly better than the single chain Gibbs sampler. We give
some arguments (although no rigorous proof) supporting this claim for general targets =. In Section 5
we study the multivariate normal density and the Ising model in more detail; these distributions have a
certainlocal symmetry property whichyields(3). Thisisfurther discussedin Section 6, wherewe show
with an example that our new algorithm can be better even with highly unsymmetrical #’s. Section 7



is devoted to a discussion of the burn-in of the joint chains compared to the single chain. We argue
that the lengths of both burn-in’s have the same magnitude. In Section 8 we provide some experimen-
tal results applying our new algorithm to the hierarchical Poisson model (Gelfand & Smith, 1990) and
the ordered normal means example (Gelfand, Hills, Racine-Poon & Smith, 1990). The experiments
show that the performance of the antithetically coupled Gibbs sampler is significantly better than the
standard one. The efficiency, defined asvar(f)/var(f), is often larger than five. Looking beyond the
Gibbs sampler, we apply the antithetic coupling also to other MCMC methods and show that still an
improvement can be achieved, although the efficiency is often only around two. We explain why this
isthe case. We end the paper with somefinal remarks.

2 ANTITHETIC COUPLING OF TWO GIBBS SAMPLER CHAINS

LetQ=5x5x---x5=.5"bethen-fold product space of aset .5, which may be either discrete or
continuous. For simplicity wetake2 = R™ andlet = beaprobability density function that isabsolutely
continuous with respect to Lebesgue measure. Let X = (X1, Xo,..., X,). Therandom scan Gibbs
sampler for sampling from 7 isaMarkov chain X°, X!, ... constructed asfollows. Given X*~1 =
z'~1, onecomponentin {1,2,...,n} ischosen uniformly at random. Denote this component by 7 =
ir. Only X!~ will be updated by sampling the new value X! from the conditional density

Rl X =0t ). @

Theresulting Markov chainisergodic and w-invariant. Notethat whileit ispossibleto update the com-
ponents in many ways, for examplein aperiodic order (raster scan), our precise resultsin Section 4.1
apply only for random scan Gibbs sampling. However, we think that our conclusionsare valid also for
other updating schemes.

The random scan Gibbs sampler transition can be written as
X' =X VI UY), (5)

whereU!, U2, . .. isasequenceof i.i.d. random numbers, uniformly distributedin [0, 1),and V!, V2, . ..
arei.i.d. random numbersuniformin {1, 2, ..., n}. Thisspecific assumption on the distribution of V'
isnot neededin our theory, but is madefor simplicity. Therandom number V* identifiesthe component
i to be updated. The V!-th component of the vector function @ istheinverse distribution function cor-
responding to the local conditional density in (4). The other components of & are identity functions.
The random number U* is used to obtain the new value for X.

Letx_4 ={z;:i¢ A}, A CA{l,...,n}. Denoteby Y;(z_ 4, u) the inverse distribution function
for X; conditioned on X _ 41y = ®_ 4y, evaluated at w. Note that the V*-th component of & at
timet isequal to Yy (X', UY).

We now define the coupled companion chain. It is marginaly a r-stationary Gibbs sampler with the



same type of scan and evaluation rule as (5),
Yi=®(Y" L, Vi1-U". (6)

Observe that the common random numbers U* and V! make X' and Y dependent. We call the cou-
pling antithetic becausewe use 1 — U* in (6). The same component V* isupdated in both chains. After
aburn-in of length 7§, we start two dependent trajectories, one using (5) and the other (6), and we ter-
minate both chains after a further 7" transitions. This algorithm performs 27" Gibbs sampler updates
and we will compareit with asingle Gibbs sampler chain of length 27". Notice that the new algorithm
requires almost no additional programming compared to the usual simple Gibbs sampler. The two an-
tithetically coupled Gibbs sampler chains allow us to construct the estimator f in (1) which we shall
compareto f in (2) for the rest of this paper.

The coupled Gibbs sampler chains jointly form a Markov chain evolving on Q x €.

THEOREM 1 The coupled random scan Gibbs sampler chainsgivenin (5) and (6) arejointly a block-
wise random scan Gibbs sampler on © x € with stationary density

ez, y) o< w(zle_i)mw(yly_;)d(z, y, ) pu(z—i, y_;) (7)

H5 T_(jj<itr Y- (i j<itr J) (8)
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where §(z_4,y_4,1) isequal to oneif thereisau € [0,1) suchthat z; = T;(x_4,u) andy;, =
Ti(y_4,1 —u). Otherwised(x_4,y_ 4, 1) iszero. Thetransition kernel is given by

n
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The -function describesthe fact that common random numbersare used. It isinteresting that the joint
chain is also a Gibbs sampler with block updates on alarger space, 2 x €2. Each block consists of two
indexes that correspond to the same V! component in the two chains.

We shall use someresults of Liu, Wong & Kong (1995) that need the following regularity condition to
hold for =

/% m(x') dz° de' < oo, (10)
Here r(z°, z!) isthejoint stationary density of X and X'!. Condition (10) is quite common and it
guarantees that the marginal Gibbs sampler chain is geometrically ergodic in terms of Pearson’s y2-
distance, and that the covariance between f(X?) and f(X***) goesto zero geometrically fast ask —
oo. We shall assumethat (10) is satisfied. Refer to Liu, Wong & Kong (1994) and Liu et al. (1995) for
further discussion on (10).



3 COMPARING ASYMPTOTIC VARIANCES

Toevaluatethe performanqe of theantithetically coupled Gibbs sampler, wewill comparethe variance
of f with the variance of f (assumed to be finite). Let the coupled chains be started in the stationary
distribution .. We shall return to this assumption in Section 7, where we discuss the burn-in period.

THEOREM 2 Assume (X, Y?) isdistributed accordingto . Let (X*, Y?) bethe stationary Markov
chain defined by (5) and (6). Let

v =cov(f(X%), f(X*),  k=0,1,...
be the marginal autocovariance at lag & of one of the two components, and let
By =cov(f(X°), f(YF)),  k=0,1,...

be the cross-autocovarianceat lag & of the two components. Then

R 2 2T-1 1 T-1 1 2T-1
Tar(f) —var(f)) = Y w+gm D k= gz D kn
k=T k=1 k=T
T-1 1 T-1
~fo/2= Y Bkt Y kb, (1)
k=1 k=1

where f isgivenin (2) and f in (1), and the variances and covariances are computed with respect to
the stationary measure over the appropriate trajectory space. Furthermore, when T" — oo,

T-1
T(var(f) —var(f)) = o(1) = fo/2 =Y _ Br. (12)

k=1

When passing to thelimit asT — oo in equality (11), using (10), al termsinvolving the autocorrela-
tions of the marginal chains disappear. The study of the sign of the right hand-side of (11) cannot be
done analytically for afinite’T’, so we consider the casewhenT" — oc. We want to show that the right
hand side of (12) isasymptotically positive. Thiswould betrueif 3, < 0 for al k. For thisreason we
study the sign of the cross-autocovariances ;. in the following section.

Note that if the coupled chains are not started in equilibrium, then (12) till holdsif we interpret 5y as
L3It eov(f(X1), f(Y?)) and B, similarly.

4 THE CROSS-AUTOCOVARIANCE OF THE JOINT CHAIN

We shall assume from now on and without loss of generality that the expected value of f(X ) iszeroin
order to simplify formulas. To be ableto study in general theright hand side of (12) we need to restrict
the space of functions f. Our algorithm induces an antithetic dependency structure between X* and
Y. We want that structure to transfer to f(X?) and f(Y?) aswell.

6



DEFINITION 1 Let F be the class of non-constant functions f : Q@ — R whose i-th component is
monotonically either decreasing or increasing in z; whatever values z_; takes, for each :.

Some possible choicesfor f € F are f(z) = _; gi(z;), and f(z) = [, g:(=:), where the g;(-) are
monotonic functions.

We start with the sign of the cross-autocovarianceat lag zero, 3y. Inorder to show that (12) ispositiveit
isimportant that 3, isnegative. A conseguence of Lemma2, used in the Appendix to prove Theorem 2,
isthat |8x| < O(1/k) ask — oo, sothat 3, istheleading term in (12). The following theorem does
not assume that the joint chains are in equilibrium.

THEOREM 3 Consider the coupled random scan Gibbssampler chains (X*, Y*),andassume f € F.
For everyt > litholdsthat cov(f(X"), f(Y?)) < 0. Ifthechain (X’, Y") isstationary, then 3 < 0.
Furthermore, if var(f(X)) > 0, then 5y < 0.

Noticethat f € F isnot necessary for 5y < 0tohold. Theimportant fact isthat f preserves antithetic
dependency of X* and Y. It is not possible to improve the upper bound on 3, without imposing
further assumptionson 7 (Joe, 1997, pp. 81).

4.1 ATTRACTIVE OR REPULSIVE TARGET DENSITIES

We provein the case of attractive or repulsive target distributionsthat 5, < 0, for al &, and hence the
variance of f isalways less than the variance of f asT — co. Our result are based on the technique
of iterated conditional expectationsintroduced by Liu et al. (1994) and Liu et al. (1995).

For simplicity, let usfirst consider only the X *-chain. Let 7; be the random variable describing which
siteis updated in moving from X* to X**!. Noticethat f(X*) and f(X‘*') are conditionally inde-
pendent given (X*; , #;) (which wein the following write as X* ;, for short), and that f(X™;, ) and
f(X™], ) areconditional independent given X “*'. Furthermore f(X ) and f(XL;,) havethe same
joint distribution as f (X **') and f(X" ), and this distribution does not depend on time ¢ asaresult
of the stationarity. Toillustrate the use of these facts, we write

71 =E(f(X)F(X™) = B(E(F(X)F(XTHIXL)) = B(E(/(X) X)) >0 (13)

—i¢

showing that v is positive for a random scan Gibbs sampler (Liu et a., 1995). Note that expectation
with respect to X _; is ashorthand for E;(Ex_, (:|7)). The expressions for +; get more complicated
for higher order lags, see the cited references for details. Using this technique on the joint chain, we
obtain the following formulasfor the cross-autocovariances.

THEOREM 4 The cross-autocovariances for the joint (X, Y?) chain can be expressed as

5 — { E(g™(X_1)g®(Y_,)), for k odd 14

E(9M(X)g®)(Y)),  for k even



where
g M) = E(.. E(E(F(X)|X )| X)X i)

is a sequence of £ iterated conditional expectationsalternating X _; and X.

Expression (14) makesit possibletointerpret 5 asthe cross-autocovarianceof ¢(*)(.) at lag zero. We
can then make use of Theorem 3 to provethat under certain conditions G5, < 0 for al &, and hence that
the antithetic estimate (1) is always better asymptotically than (2). The required conditions are that
f € F andthat for each

E(f(X)|z—:) (15)

is monotonically either increasingin z;, V5 # ¢, or decreasing in z;, Vj # 1.

THEOREM 5 Assumef € Fandg™)(z_;) = E(f(X)|z_;) iseither monotonicincreasinginz;, V5 #
¢, Or monotonic decreasing in z;, V5 # ¢, then 8, < 0,Vk.

We can rel ate the condition of monotonicity of (15) to attractive and repulsive models. Intheliterature
7 iscalled attractive if

T(X; < zilz_;) < w(X; < zglzl,), for z_;>a" ., Vz,2' €, (16)

assuming the partial ordering of Q givenby 24 > 2’4 if z; > 2! forall i € A. 7 isrepulsiveif (16)
holds with “>" in the first inequality. See Mdller (1997) for many examples of such attractive and
repulsive models. Define 7+ and F~ asthe set of functions f € F that are monotonic increasing
inall z; or decreasing inall z;, respectively. The monotonicity condition of (15) is guaranteed when
f € Ftu F~ and r iseither attractive or repulsive.

Notethat 3, will be negativefor more general densities = and functions f, but our proof requiresthese
assumptions.

4.2 APPROXIMATING THE EFFICIENCY

Although attractive or repulsive models are often encountered, we would like to extend our theory to
general target densities and quantify the gain obtained using the new agorithm. We are however not
ableto do thisrigoroudly. In this section we give some evidence that possibly in general 5. < 0, Vk,
for f € F. We shall show that approximately

Bk ~ Bovk/Y0 (17)
provided that
E(f(X"*F) | 2') ~ % (). (18)
0



In other words, if the best linear k-step ahead predictor (intermsof f(z")) isclose to the k-step ahead
conditional expectation, then 5, < 0, Vk, and |3;| decays geometrically to zero. Note that (18) (and
hence (17)) is exact for any linear f if = is multivariate normal. Thisis a significant special case.
Because a multivariate normal is often the large sample limit in inference, we might expect (18) to
hold more generally for large sample sizes. We will return to the multivariate normal distribution in
Section 5.

Equation (17) follows from

Be = E(F(X)(Y™) = EEGXD V™) | YY)
= EUOXEGY™) | YY)~ BUX) Z7(v)) = s,

using (18). Using approximation (18), we can calculate the efficiency of f compared to f asT — oo,

var(f) 1
Var(f) L+ Bo/v0

eff(f, ) =

Asjy < 0,thenew antithetic algorithmisalwaysbetter if (18) holds. Thus, if the cross-autocorrelation
at lag zero, 3y /o, isequal to, say, —2/3, then the efficiency is approximately 3. In our experimentsre-
ported in Section 8, we always obtain efficiencies |arger than three. Thismeansthat the computational
costs can be reduced to at least one third. Note further that the efficiency under approximation (18)
does not depend on v, £ > 0, which indicates that the efficiency does not depend on the specific
mixing properties of the marginal chain, which is assumed to be geometrically ergodic by (10).

5 TARGET DENSITIES WITH A CERTAIN LOCAL SYMMETRY

In this section we will present a striking result for the variance of f when the target density = satisfies
certain symmetry conditionsfulfilled by the multivariate normal, the Ising model and afew others. Let
v(z,y) beany density defined on © x 2 with the same positive support as = x .

THEOREM 6 For any linear f, let = be either the multivariate normal or the Ising model

m(x) exp(ﬁinx]’), z; € {—1,+1},

i~g

where the sumis taken over all nearest neighbourson aregular grid A C Z?. Then, var(f) = 0 if the
joint chains start in 1, whilevar (f) < O,(T~2) if thejoint chains start in v # 1, where ©, iswith
respect to the site updating distributionas T’ — co.

Thetheorem s surprising becauseit showsthat coupling two Gibbs sampler chains allowsusto reduce

variances by a full order of magnitude. Furthermore, because var(f) = 0, once the stationary distri-
bution y is reached, one joint sample is enough to estimate the expected value of f(X). When r isa

9



multivariate normal, the proof of the theorem is an immediate consequence of the following lemma,
while some more work is needed for the Ising model.

LEMMA 1 Assumen(z;|@_;) = i(z; — z;), Vi, where 1;(-) issymmetric around zero, and z; isthe
median jn 7(z;|z—;) which can be writtenas z; = A,La:_z for some matrix A;. Then for any linear
f,var(f) = 0if thejoint chain startsin u, and var (f) < O, (T~2) if thejoint chains start in v # ,
where O, iswith respect to the site updating distribution.

It is this specific symmetry of the conditional density with respect to the median that is linear in the
conditioning components that makesin someway thejoint chain deterministic, as can be seenfromthe
proof. If = isamultivariate normal, then this lemma holds because the conditional median equals the
conditional meanwhichislinear in z_;, and the conditional variance does not depend on = _;. Another
7, sometimes used for smoothing, that satisfiesthe conditionsof Lemmalis

m(x) o exp(— Zaij(mi - mj)Z),

wherea;; > 0 and z, say, isfixed.

6 LOCALLY NON-SYMMETRIC TARGET DISTRIBUTIONS

Lemma 1 may indicate that an important property for achieving variancereduction with the new method
isacertain type of symmetry of the conditional distributions. To gain moreinsight wewill now study
analytically the same coupling applied to two stationary autoregressive processes. These mimic the
behavior of the two Gibbs sampler chains.

Let X bethereal valued autoregressive process
X=X 4 €, t>0, (19)

started in equilibrium at time zero. Here, |¢| < 1 to ensurestationarity, and ¢!, arei.i.d. binary variables
withP(¢l, = 1) = p > 1/2 and P(¢}, = 0) = 1 — p. Although thisis not a Gibbs sampler, it has the
same flavor. It is known that the Gibbs sampler is a multivariate autoregressive process of order one
if = is Gaussian. We chose f(z) = = so that the goal isto estimatethemean E(X') = p/(1 — ¢). The
variance of f is

2T 00
n 1 i
var(f) = var(s y  X') ~7a/(2T), where . =70+2) % (20)

is the integrated autocovariance time. We want to compare the variance in (20) with that obtained
using two realizations of (19), X* and Y, where X" is sampled (forward in time) using the uniform
variable U*’sand Y is sampled using 1 — U*. We compare (20) with the variance of f, where

T 2
t=1

o T + ¢ T
var(f) =var(= Y 2T = var(%ZZt) ~ )T

10



By noting that 7! is an autoregressive process of the same form as (19), with ¢! equal to one with
probability 2p — 1 and equals otherwise 1/2, we obtain the efficiency of f comparedto f as

2. - 1
M D)~ 5= 51y

p>1/2, (21)

wherewe make use of the exponentially decaying autocovariancesof X* and Z*. Thisresult showsthat
the antithetic estimate is always better, and that the efficiency tends to co as the symmetry increases,
i.e.p— 1/21 and to one as the symmetry decreases, i.e. p — 1. For p = 1/2 (perfect symmetry), the
variance of f isagain of O(T~?2). Notice that the length of the burn-in of the joint and marginal chain
is similar, as both are autoregressive processes of the same form (19).

We compute the cross-autocovariance 3, by comparing the asymptotic variance in (23) with the dif-
ference (12) in Theorem 2, and we obtain further

This results shows that (18) holds exactly also for this model. Furthermore 35 is minima when p =
1/2 and 3, = 0if p = 1. Also note that /3, is decreasing with increasing ¢, ¢ > 0. Because alarge
¢ in (19) makes the estimation problem harder, one might therefore believe that thereis an increasing
benefit from using the antitheticideafor strongly positively correlated Gibbs sampler chains. However,
the fact that ¢ cancelsin (21) indicates that the efficiency of the new agorithm does not depend on the
mixing properties of the marginal chain, see also Section 4.2.

7 THE BURN-IN

We have seen that for the autoregressive example in Section 6, the burn-in of the joint antithetic chain
is of the same order as the burn-in of the marginal chain. In this section we will argue that this is
agenera picture: the burn-in of the joint chain (X*, Y"*) needed to reach the stationary distribution
u is generally of the same order as the burn-in of the single chain X converging to 7. Assume for
simplicity that €2 isfinite.

We use a further coupling argument. Consider a new pair of chains (X', ¥"') that evolves with the
same transition kernel as (X7, Y) but is started in equilibrium x and shares with (X, Y?) al ran-
dom numbers. This means that X* and X both use the random number U* to evolve to X**+! and
X* andY'and Y' bothuse1 — Ut toevolveto Y+ and Y. Thisis the natural coupling of
(X', V") with (X*, ¥!). Once the two pairs of chains meet at time ¢, they coalesce, and we know
that (X', Y") ~ u. For coalescence of the two pairs of chainsto happen, both the components have
to coalesce, i.e. there are two random times ¢,., ¢, such that X% = X%, and V™ = Y. The cou-
pling time for the two pair chainsis ¢ = max{(,, ¢y}. The marginal coupling times ¢, and ¢, are
dependent but they do have the same marginal distribution. Moreover, if we repeat the whole argu-
ment for asingle Gibbs sampler targeting 7, the coupling time would have the same distribution as (.

11



(and ¢,). Therefore, coupling of thejoint chainstakes atime( thatissimilar to ¢,., i.e. ©,((/¢,) = 1.
Furthermore, it is easy to show that E(g: ) < 2E((;). Themotivation for using the coupling argument
isthat thetotal variation norm of the difference between i and the density at timet of (X, Y?) isless
or equal to Pr({ > t). However, often the coupling inequality gives a reasonably good bound of the
burn-in period. A further indication that the burn-in of the joint chain is of the samelength asthe burn-
in of the marginal one comesfrom the exponential decay of the cross-autocovariances. In practice the
length of the burn-in period is aways taken to be considerably shorter than the T iterations used for

averaging.

8 NUMERICAL EXPERIMENTS

In this section we apply our new Gibbs sampler algorithm to two well studied data sets, the hierarchical
Poisson model (Gelfand & Smith, 1990) and the ordered normal meansexample (Gelfand et al., 1990).
The main purposes are to evaluate the performance of the new algorithm for finite 7" and to quantify
the efficiency w.r.t. the usual Gibbs sampler. We will also present antithetically coupled Metropolis-
Hastings chains and discuss their performance.

8.1 HIERARCHICAL POISSON MODEL

Gelfand & Smith (1990) present counts s = (sq,...,s,) of falluresinn = 10 pump systemsat a
nuclear power plant, where the times of operationt = (t1,...,t,) for each system are known. The
hierarchical model assumes s, ~ Poisson(Axtx), and acommon Gammaprior for the failure rate Ay,
of each pump, A\ ~ ['(e, 3). The problem isto infer on o and on the inverse scale 5. We take as
prior for a the exponential distribution with mean one, and for 5 al'(0.1, 1.0) distribution. We shall
estimate the posterior means of « and 3.

The conjugate priors ensure that A, is I'-distributed conditional on the remaining variables, as are
Ag... A, and . Itistherefore easy to update each of these variables using a Gibbs sampler. The
conditional density for « is however non-standard since

m(a|A1, ..., Ao, B) x exp(aa — nlog'(e)), where a=nlogf+ Zlog Ar—1. (22
k=1
Inthiscaseit is most natural to perform a Metropolis-Hastings step when the «-parameter is updated.
Thismeansthat, using aproposal density, anew valuefor « is proposed and then accepted or rejected.
We suggest to couple the proposed values, while keeping the acceptance step independent. Here are
three different updating strategiesfor «.

1. (Gibbssampler update) Toimplement thefull Gibbssampler, wecomputed numerically F~! (u; a,)
and F~1(1 — u; a,), where I is the cumulative conditional distribution function (22) for «.
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2. (Hastings update) We approximated the conditional density (22) with a normal (F) where the
mean and variance match the mode and the curvature in the mode. We updated « using a Hast-
ings step, where we propose to move the current values of o to 77 (u) and £ (1 — u) re-
spectively for the two chains, and accept the proposals using independent uniform variates. We
obtain an estimated acceptance rate for a of 90%.

3. (Metropolis update) We updated o using a random walk Metropolis step and proposed a new
state from a uniform density centred at the old state. The width of the proposa density was
determined to obtain an estimated acceptancerate for « close to 50%.

To verify the robustness of our theoretical results with respect to various site visitation schedules, we
applied each of these three updating rules for « to three different visiting schedules: RS, the usual
random scan assumed above, where we look to 12 variable updates as one step; RPS, where at each
iteration we update our 12 variables in a random permutation; and DET, where at each iteration we
update Ay, ..., Ao, o, f @nd then 3, a, A1q, ..., A1. All these visitation schedules giverise to a re-
versible Markov chain.

We ran a single Markov chain using 1 000 iterations as burn-in, and then we split the chain into two
components and ran, according to (6) and (7) for Ay, ..., Ao, 8, according to one of the three above
methodsfor «, for afurther 50 000 iterations. Figure 1 showsasmall part of the sample pathsfor the 5
variablesin the two chains, denoted by 5% and /3% respectively, where we used the Gibbs sampler also
for o and RPS. The paths show aclear negative correlation. Thefirst panel of Figure 2 showsthe em-
pirical joint density of the two coupled chains o} and &%, using 5 000 subsequent samples. The second
panel of Figure 2 shows the empirical joint density of (31, 3%). Again, the negative cross-correlation
structureisclearly visible. To give aquantitative measure of the variance reduction using the antithetic
chains, we estimated the integrated autocovariance time using al 50 000 iterates and the approach of
Geyer (1992) for reversible chains. The estimated efficienciesfor « and 5 for different updating rules
and visitation schedules, arelisted in table 1.

The efficienciesin table 1 do not seem to depend on the visitation schedules. Our theory in Section 4.1
isvalid only for the RS schedule, but it seemsto bevalid in practice for other visitation schedulestoo.
The efficiencies for these Gibbs samplers are around 9 and 6 for « and 3, respectively, which gives
a significant reduction of the computational costs. However, the efficiencies drop to around 2 — 2.5
for other types of update for o (Hastings update and Metropolis update). This occurs despite the fact
that the acceptance rate was 90% for the Hastings-step. A further experiment with a random walk
Metropolis update for o with increased width and an acceptance rate of 25%, still gave efficiencies
around 2. The explanation for this effect is that the two antithetic chains get out of phase immediately
when an antithetic proposal is rejected in one chain but not in the other. The sharing of the random
numbers U is the only way we introduce antithetic dependency between the two chains. When an
antithetic proposal isrejected by one of the two chainswhile being accepted by the other, the antithetic
coupling between the two chains weakens. We do not adjust for thisin later iterations, since only the
random numbers are shared and no considerationisgiven to the states of thetwo chainsin the proposal.
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This could be generalized.

We also notice that in this case asingle 27 long chain, using Gibbs sampling for A4, ..., A0, 3 and
a Hastings update for «, as described in item 2 above, has an asymptotic variance that is larger than
that-one of asingle 27" long Gibbs sampler. Hence antithetic Gibbs sampling is better than a hybrid
Gibbs sampler-Hastings agorithm.

8.2 THE ORDERED NORMAL MEAN PROBLEM

Gelfand et al. (1990) use the Gibbs sampler to estimate the mean and precision in normal populations,
when the ordering of the meansis known in advance. We have repeated their example using our anti-
thetic Gibbs sampler to investigate its efficiency in estimating the posterior mean of the parameters of
interest.

Let Y;; bethe jth observation (j = 1,...,n;) fromtheith group (: = 1,...,n,). Assuming con-
ditional independence throughout, let Y;; ~ N(6;,1/7;), 8; ~ N(u,1/7,), 7 ~ T'(az,by), 75 ~
['(ag, bg),and pp ~ N(uo, 1/70). Here 7. denotes the precision or inverse variance. The prior ordering
congtraint of themeans#; isthat; < 6, < ... <4, . Gelfandetal. (1990) demonstratethat the Gibbs
sampler is easy to implement even with the ordering constraint. We refer to Gelfand et a. (1990) for
detail sabout the Gibbs sampler and choicesof the (flat) priorsof the hyperparametersay , aq, b1, ba, 1o
and 7g.

We simulated our data set using », = 5, and sampled from the ;th population, n; = 2:44 observations
from N(4, ¢2). Table 2 lists the empirical mean and variance within each group. Note that the empiri-
cal ordering of the meansis not in agreement with the ordering constraint. We used the deterministic
site visitation schedule DET with 1000 burn-in's. The efficiency was estimated using the following
50 000 iterates of the coupled chainsasin Section 8.1. Table 3 displaysour estimates of the efficiencies
for (6;,7;),t = 1,...,n, Thenew antithetic Gibbs sampler gives again a significant speedup with
efficiencies between 2.97 and 6.69 with an average of 4.7. Similar results were obtained for the other
visiting schedules.

9 CONCLUSIONS

We have suggested asimpleway to coupletwo Gibbs sampler chainsin order to reduce the variance of
the sampleaverageestimator of an expectation. The couplinginducesantithetic cross-autocovariances.
The reduction of the variance can be remarkable with respect to a simple Gibbs sampler run using the
same computational time.

The coding of the proposed algorithm is an easy operation given a standard Gibbs Sampler implemen-
tation.

Other authorshavetried to introduce antithetic behaviorsintoasingleMCMC chain. Barone& Frigessi
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(1989) propose a variation of the Gibbs sampler that moves antithetically to the current state and is
shown to have areduced burn-in in many cases. Neal (1998) complicates the single update further
with the same aim of introducing negative correlations. Green & Han (1992) showed that in such a
way also the asymptotic variance could be reduced in certain cases. We show, however, that it iswith
two chains that a complete antithetic behavior can be established.

Asthe example showed, it isnot trivial to extend equally successfully thisideato Metropolis-Hastings
type algorithms. Thereason for thisisthat it is more difficult to induce antithetic correlation when an
accept-reject step may well reject a proposed antithetic move. More research is needed in order to
understand how to couple such chains antithetically.

Although our asymptotic analysis requires a random updating schedule of the variables, there is no
reason to doubt that our conclusions can be extended to other types of scans. Thisis supported by the
example in Section 8.1 and by the fact, that follows from the proof of Theorem 3, that 3, is negative
for general scans. Block updates can a so be handled.

The Gibbssampl er isoften not thefastest MCM C algorithm. Infact other Metropolis-Hastingsschemes
have smaller asymptotic variance. However, the new antithetically coupled Gibbs sampler may com-
pete with such agorithms. For example, in the case of the multivariate normal density and the Ising
model it should be preferred to any other single site updating MCMC.
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Gibbs sampler Gibbs/Hastings Gibbs/Metropolis
Efficiency | RS | RPS | DET | RS | RPS | DET | RS | RPS | DET
o 910 | 9.04 | 958 | 226 | 219 | 231 | 214 | 204 | 207
3 569 | 625 | 6.15 | 2.88 | 286 | 250 | 2.74 | 250 | 2.39

TABLE 1: The estimated efficiencies using 50 000 iterates and different choicesfor how to update the
parameter o and different types of scan (RS: random scan, RPS: random permutation scan, and DET:
deterministic scan). The antithetic coupling is highly efficient for the pure Gibbs sampler, but the ef-
ficiency decrease using a Hastings-update (with 90% acceptance) or a Metropolis-update (with 50%
acceptance) for a.

Samplevalues | 1 2 3 4 5
n; 6 8 10 12 14
Y; 0.645 | 2.212 3.576 2.401 4.195
52'2 1.473 | 2.279 3.452 | 20.186 | 11.330

TABLE 2: Thesamplevaluesinthe ordered norma meansproblem. Notethe exchangein theempirical
ordering of the means.

Efficiencies | 1 2 3 4 5
0; 5.44 | 4.02 | 2.97 | 3.09 | 4.31
T 4.20 | 5.08 | 4.71 | 6.69 | 6.53

TABLE 3: The estimated efficienciesin the ordered normal means problem using 50 000 iterates.
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FIGURE 1: The sample-path for the 5 parameter for 200 iterations, in the two antithetic chains. The
sample-paths show a clear negative correlation.
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FIGURE 2: The empirical joint density of 5000 samples from the two antithetic chains for the a-
parameter is shown in (a), and for the 3 parameter is shown in (b). The negative correlation is clearly
visible.
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A PROOFS

PROOF OF THEOREM 1 The antithetic sampler on €2 x Q updates components block-wise, where
the block correspondsto (X ;, Y;). Using the Theorem in the Appendix of Arjas & Gasbarra (1996)
we conclude that the joint chain (X, Y") is ergodic and converges for each starting configuration
(X9 Y% e QxQaslongasw (X7 (Y?) > 0. Notethat (X °, Y°) can be zero. The form of the
transition kernel (9) follows directly using (5) and (6). It is easy to see that (9) is a block-wise Gibbs
sampler step with respect to (7), which can be rewritten as (8) by iterating from the last factor. |

PROOF OF THEOREM 2 By stationarity it holds that

2T-1 2T-1

var(f) = QT’VO—I- Z’Yk QTQZ V-

For the coupled chains we get

o T-1
var(f) = ’Yo—l- ka— va ﬁo+ Zﬁk— QZkﬁk, (23)
k=1

using stationarity of the joint processes, the knowledge of the marginals and that 5, isin our case even
in k. Some simplifications give the expression for the difference of variances (11).

To obtain (12) first observethat Corrolary 1in Liu et al. (1995) and assumption (10) ensuresthat v; >
0,Yk, and vz = o(1/k) ask — oo. Henceal sumsin (11) involving v, are of order o(1/7") as
T — oo. By applying the following lemma, (12) follows.

LEMMA 2 L STV kg = o(1), 88T — oo.

PROOF OF LEMMA 2 Define Z' = (f(X') + f(Y"))/2 and writeTvar(f) in two ways, in terms
of Z' and as(23). Sofor T —

T-1 T-1 T-1 1 T-1
%+2;%=70/2+;%+ﬁ0/2+;ﬁk— T;kﬂk,

where 4, = cov(f(Z°), f(Z*)). Repeat this equality for 7+ 1 and subtract term by term. We get as
T — oo,

’ﬂ

-1

kB
1

From Liu et al. (1995) and Theorem 1, we know that 7 = o(1/7") and yr = o(1/T’), hence

1
T(T+1)

291 = yr — T

o
Il

T
287 — Y kPr/T = o(1) (24)

k=1
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Since | 5x| < 70, Wehavetoruleout that Ele kB /T = constant = c. If thiswasthe case, write (24)
for T + 1 to conclude that ¢ = o(1). Hence S>]_, kBx/T = o(1). Notethat |x| < O(1/k) as
k — oo. |

PrROOF oF THEOREM 3 Wewill show that

cov(f(XY), f(Y) |4y, X =27 YT =97 1) <0 (25)

for every t, where conditioning on #;_; indicatethat we update site;_; in X*. Thisisthen sufficient,
integrating (25) with respect to the density of (X*~', Y*~!), which does not need to bein equilibrium,
and the uniformly density for i;_; over the n sites. We simplify the notation. Let A = f(X*), B =
f(Y") and interpret A and B as functions of X/ and Y;’_ only. Further let al probabilities be
conditioned on (i;_1, X'~' = &*=1, Y'=! = 4*=1). If A does not depend on X! _ (or similar with
B) then the conditional covariance is zero. Assume now that A and B depend on X _and Y},
respectively, and let A (B) have cumulative probability distribution F'(a) (G(b)). Denote by H(a,b)
the joint cumulative probability distribution of (A, B). Now weusethat A = F~1(U) and B =
G~'(1 - U),whichisvdidas f € F. Then

H(a,b)= P(U < F(a), U > 1~ G(b)) = [F(a) + G(b) — 1],

where[-]* indicatesthe positive part. Weinsert (A) into the following general result of Hoeffding (see
Joe (1997), pp. 55)

+oo +oo
cov(A, B) = / / (H(a,b) — F(a)G(b)) da db,
and split the integral into two parts according to the value of [F'(a) 4+ G/(b) — 1]*. We obtain

cov(A,B) = /+OO/+OO (a)G(b) — F(a) — G(b) + 1) da db
1-G(b))

_/_:O/_OO " ) deas.

Thefirst integral is positive since F'(a)G/(b) — F(a) — G(b) + 1 = (F(a) — 1)(G(b) — 1) > 0. The
second integral is of course always positive. |

PROOF OF THEOREM 4 The proof for 3; issimilar to (13). Using that (X*, Y*) is conditional in-
dependent of (X!, Y'*!) given (X, Y", ), and that X and Y have the same marginal density,
we obtain
pio= E(F(XHFY™)) =EEF(X)F(YHX L))
= E(E(f(X)XL)E(f(YHYL,) =E(g" ( ) Wy -),
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where ¢()(X _;) = E(f(X)|X _;). The expression for 3, is similar to the one for 3;, and makes
repeated use of the iterated structure of ¢()(-). For k > 0 it holds that

g (X) = E(¢CHD(X_)|X),  g®FI(X ) = E(¢®P(X)|X ) (26)

where ¢(°(X) = f(X). Since the marginal distributionsfor X and Y are the same, we obtain for
the Y chain the same g-functionsasin (26) using Y as the argument. A formal induction procedure,
which we omit, will now give the proof. |

PROOF OF THEOREM 5 First, 5y < 0 from Theorem 3. To prove that §; < 0 we assume that
g (x_;) = E(f(X)|z_;) ismonotonicincreasinginz;,Vj # i, and hencebelongof F. If () (z_;)
is monotonic decreasing then repeat this argument using — f(x). We then apply Theorem 3 to show
that 3, < 1. To provethat 3, < 0 we need to assure that ¢(?)(z) is monotonic increasing in z;, V5.
Using (26) we abtain

n

1
90(@) = BV (X-)[2) = 3" gV(e-y),
7=1
which is monotonic increasing in all ;. Hence and then our claim follows again from Theorem 3. In
general, the fact that 3, < 0 for al & follows by repeating the above argument: for 33 use the new
function f'(z) = ¢ () and the iterated structure for ¢(")(-) in (26), to show that 43 < 0 and so
on. |

PROOF OF LEMMA 1 Theassumptionon r(z;|x_;) doesasoapply tor(y;|y_;) sincethemarginals
arethesame. Assumex_; + y_; = 0. Thenupdating (z;, y;) to (z%, y/) with the transition kernel in
Theorem 1 will ensurethat 2 + y! = 0 because ¢;(-) is symmetric around zero and both medians z;
and y; arelinearinz_; and y_,. Thejoint chain will therefore be absorbed by the event {z + y = 0}
assoonasz!; +y', = 0. From Theorem 1 we know that the joint chain is ergodic, so it follows
that in this case p(z,y) o< m(2)7(y)1[z4y=0]- If thejoint chain startsin u then for any linear f,
F(XH+f(Y") = 0=Ef(X),Vt, sothat thevarianceiszero. Ontheother hand, assumethat thejoint
chain startsin v # p and that site 7 isto be updated. The new valueswill satisfy 2! + y; = A;(z_; +
y_;), due to the assumptions on ¥;. This defines a purely deterministic transition rule (conditional
on the site updating sequence) for X* + Y and then aso for f(X*) + f(Y"). First notice that the
simple Gibbs sampler cannot be ergodic if max; [|A,]| > 1. Next assumethat ¢ = max; [[Ai]| <
1. Then|f(X?) + f(Y")| tends to zero not Slower than ¢*. Hence var(f) < O(T~2)/(1 — ¢)%.
Assume now that there exists anon empty set J C {1,2,...,n} suchthat || A;|| = 1fori € J.
Then | f(X") + f(Y")| will stay constant whenever i € J isupdated. Notethat |./| < n otherwise
no joint equilibrium distribution can exist. Hence the decay to zero is slowed down by waiting times
corresponding to updates of sitesi in.J. However the length of such waiting periods is geometrically
distributed with rate |.7| /n < 1. Hence, our claim var(f) < O, (T~?) follows. u
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PROOF OF THEOREM 6 FOR THE ISING MODEL  Consider the Ising model, whose conditional prob-
abilities are

Pr(e; = 1]z_i) = 1/(1+exp(=28Y ;) =pd_ =1-p;_,.

i~g

Let pi_. and p,_. denotes the same conditional probabilitiesfor y. Assumez_; + y_; = 0. Then
ps_, = py_.- Hencez! + y! = 0, sothat p(e, y) o 7(2)7(y)1[z4y—0]- The proof now proceeds as
inLemmal. |
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