ON THE APPROXIMATION OF THE SOLUTION OF THE
PRESSURE EQUATION BY CHANGING THE DOMAIN

BJORN FREDRIK NIELSEN* AND ASLAK TVEITO**

Abstract. The purpose of this paper is to study a well-known technique for simplifying the
pressure and velocity computations in models arising in reservoir simulation and metal casting.
In both cases the domain of the pressure equation is changed. The equations considered are self-
adjoint second order elliptic problems with coefficient functions representing the permeability of
the porous media of concern. In the domain modification procedures, low permeability areas are
either removed or inserted in order to simplify the computations. Using the theory of Sobolev
spaces, we prove that the approximations converge toward the correct solution as the permeability
tends to zero in the proper regions. Finally, we present a numerical experiment which indicates

that the estimated rate of convergence is sharp.
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1. Introduction. It is generally accepted that mathematical models of fluid
flow in porous media may be stated in terms of coupled partial differential equations,
see for instance Ewing [10], Peaceman [20] or Ni and Beckermann [19] and references
therein. Usually, a pressure equation is derived by appealing to Darcy’s law and

conservation of mass. In this paper we will concentrate on the elliptic equation
(1.1) V-[A(Vp—Q)|+f=0 in QCTR?

which may be taken as a prototype of pressure equations arising both in models
of oil recovery and metal casting. In (1.1) p represents the unknown fluid pressure
and A is a second order mobility tensor incorporating various physical parameters
such as the permeability of the medium and the viscosity of the fluid. Furthermore,
Q and f are given functions representing various physical data. A more detailed
description of our prototype model and the parameters involved will be given in the
next section.

Oil reservoirs will frequently contain low permeable zones. In these zones the
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mobility A can become arbitrary close to zero. In such cases, the stiffness matrix
obtained from a finite element approximation of (1.1) is badly conditioned. This
is a well known problem, and causes serious problems for the efficient numerical
solution of (1.1). To overcome this problem it is customary to ignore areas of very
low mobility, by putting A = 0 and solve the problem on the remaining part of 2,
i.e. the part where A is significantly greater than zero. Hence, a problem close to
degeneracy is approximated with a more well behaved problem. The basic idea of
this procedure is that very low permeability zones do not contribute significantly to
the overall flow picture and may thus be eliminated. This approximation is used in
state-of-the-art simulators, see e.g. [21] and Peaceman [20], but to our knowledge,
the errors introduced by this procedure have not been analyzed. It is the purpose
of this paper to prove that the method converges, in the sense that the error goes
to zero as the permeability in the removed region goes to zero.

A problem of the same flavour arises in the modelling of metal casting. Consider
the solidification of some metal which is initially completely in the liquid phase. As
the process goes on, a mushy region arises in the melt. In this region, Darcy’s
law applies and the velocity field can be computed from a pressure equation of the
form (1.1), cf. e.g. Haug, Mo and Thevik [14]. As the process goes further, small
areas of solid phase metal appear in the mushy region. In these areas the rate of
flow is zero and they should be removed from the domain of the pressure equation.
Obviously, removing such areas imply a tremendous grid generation task; for each
time-step in the overall simulation, an increasingly complicated domain must be
re-grided. A practical approach to this problem is simply to allow the areas of
zero permeability, i.e. the area where the metal is in solid phase, to remain in the
solution domain and set the permeability in this area equal to a very small constant.
Obviously, this procedure generate badly conditioned finite element discretizations
as discussed above, but this is considered to be less cumbersome than having to
re-grid the entire domain in each time-step.

Models of the form (1.1) arise in a series of applications. Basic mathematical
properties and numerical methods are discussed in the books of Hackbusch [13],
Marti [17], cf. also Ciarlet [6], Dautray and Lions [7] and Gilbarg and Trudinger
[11]. A method for changing the domain of the Helmholtz equation is discussed
by Keller [15]. So-called fictitious domain methods for preconditioning of elliptic
problems are discussed by several authors, see for instance Borgers and Widlund [4]
or Glowinski, Pan and Périaux [12] and references therein. Stability of (1.1) with

respect to the mobility tensor A is discussed by Bruaset and Nielsen [5].
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Our aim in this paper is to show that both the simplification procedure used in
reservoir simulation and the one used in metal casting work well. More precisely, we
will prove that the solutions of the simplified problems converge toward the correct
solutions as the permeability parameter tends to zero in the proper areas.

The rest of this paper is organized as follows: In the next section we describe a
generic model problem covering both applications of interest. Thereafter we present
our main results. Section 3 contains the necessary mathematical preliminaries and
Section 4 contains the proofs of the convergence results. In Section 5 we derive the
convergence results for the discrete case and supplement our theoretical results by

a numerical experiment. Finally, we make some concluding remarks in Section 6 .

2. The model problems. As discussed above, the problem of approximat-
ing the solution of the pressure equation by changing the domain arises in several
applications. We focus on two cases: oil recovery and metal casting, but clearly
problems of this type will appear in a lot of models. We have not been able to find
any rigorous analysis of the method in the literature, although it is commonly used
at least in reservoir simulation.

Since this technique appears in different applications, we will try to consider
a somewhat generic model problem. To this end, we start by observing that the
pressure equations arising in models of metal casting and oil-recovery, can be written
in a common form. The pressure equation for oil reservoir models is usually written

in the following form
(2.1) V - [Ae (Vpe — pgVD)] + % =0 in Q@ CR2,

see for instance Peaceman [20]. As mentioned above, p. represents the unknown fluid
pressure and A, is a second order mobility tensor incorporating physical parameters
such as the permeability of the medium and the viscosity of the fluid. Moreover, the
function D denotes the depth of the reservoir measured in the direction of gravity,
while g is the gravitational constant and p is the fluid density. Depending on the
exact definition of A, (2.1) may be taken as a prototype of the pressure equations
for single-phase as well as multi-phase flows. For heterogeneous reservoirs, the
mobility may have large variations and even discontinuities. Typically, A, can be
piecewise constant, thus representing the effect of different reservoir layers. The
function ¢ in (2.1) represents internal sources. Finally, the subscript € indicates the
size of the mobility in the low permeable zones of the reservoir. The precise use of

this subscript is explained below.



Similarly, the pressure equation arising in models of mush regions in metal
solidification can be written on the form (cf. Haug, Mo and Thevik [14] and Ni and
Beckerman [19]),

(2.2) V. [AG <va + (0, %))] =k inQC R?

where again p. denotes the unknown pressure, A, is a second order mobility tensor,
p is the density of the melt and g is the gravitational constant. Furthermore, H,
represents the depth of the melt in direction of gravity, while py is the atmospheric
pressure. Moreover, the function k is essentially derived from the volume fraction of
the liquid phase in the melt. Finally, the subscript ¢ denotes the order of artificial
mobility introduced in the solid zones of the mushy region. For further details on
mathematical models of metal casting we refer to Haug, Mo and Thevik [14] and
references therein.

In both models (2.1) and (2.2), we assume that the domain Q can be divided
into two connected and open domains Q; and 22 such that Q = O Uﬁz and
Q1 N Qy = (. Furthermore, 2; and Qy are chosen such that the mobility is very
low in Q5 and O(1) in Q. To clarify this point we let A = A(z) be a O(1) mobility

tensor, and we assume that (2 is constructed such that

Az) forz ey

(23) Ade) = eA(z) for z € Qa,

where 0 < € € 1 and A(z) = ()i j(2)) is a symmetric matrix with entries A; ; : @ —
IR. Thus we have gathered the areas of low mobility in Q2, whereas ; denotes the
area of O(1) mobility. A prototypical domain of a problem of this type is shown in
Figure 1. The precise assumption on A = A(z) will be stated below.

With this notation at hand, we note that both equations (2.1) and (2.2) can be

written in the form
(2.4) V-[Ae(Vpe— Q)]+ f =0 in Q C R?

where Q : @ — IR? and f : Q — IR are suitable defined functions. In the mathemat-
ical model of metal casting in (2.2), f = —k, where k is a function obtained from
derivatives of the volume fraction of the liquid phase in the melt. In this model,
Q2 represents an area of solid phase metal, and of course the volume fraction of the

liquid phase is equal to zero in this subdomain. Hence, k(z) = 0 for all z € Q.



Qs

Ac =0(e)
921
A =0(1)

FIG. 1. An ezample of a solution domain Q = Q1 U Qy.

Clearly, for equation (2.1), f = gq/p, where, as mentioned above, ¢ represents inter-
nal sources and p is the density of the fluid in question. One would not expect any
wells in Q5, since the mobility is low in this zone, i.e. ¢ = 0 in Q5. Based on these

observations, we find it natural to assume that

(2'5) lez =0

throughout this paper. Equation (2.4) is our prototype of the pressure equation.
The boundary 92, which is assumed to be sufficiently smooth, can be divided
into two disjoint segments I'pey and Tg;,. The pressure equation (2.4) is then subject

to the boundary conditions

Vel = (Gneu on 1-‘neua

(2.6)
Pe = DPdir on Ig;;.

Here n denotes the outwards directed normal vector of unit length, and g, and
Pair are given functions defined on T'ye, and T'y;;, respectively. . The Darcy velocity

v, is defined as

(2.7) ve =—A:(Vp. — Q).



The approximation of p. that we want to study is the following: Remove Q5
from the domain, and introduce a Neuman type boundary condition on 9. More

precisely, we let p be the solution of

(2.8) V-[A(Vp—Q)+f=0 inQ,

with boundary conditions similar to (2.6) on 852 and noflow on 95, i.e.!

V-n = (Gneu on Fneu’
(2.9) P = Pdir on Lqir,
v.n = 0 on 9Q,.

Clearly, in this problem the pressure p is only defined on ;. Hence, the Darcy
velocity will also be defined on Q. Furthermore, since there is no flow through

0€y, it is reasonable to extend the velocity field to the whole domain 2 by putting

—A (Vp - Q) on Qla
0 on Qz.

(2.10) v =

It should be noted that this extension of the velocity field is frequently applied
in practical computations, where the computed velocity is used as input to other
equations in the overall simulation process.

The rest of this paper is concerned with the following two problems: How well
does p approximate p.?, and how well does v approximate v.? Our main results

are stated in the following two theorems.

THEOREM 2.1. Let p. and p be the weak solutions of (2.4), (2.6) and (2.8),
(2.9), respectively. Suppose [ satisfies (2.5), then there exists a constant c, inde-
pendent of €, such that

| pe — Pl (a,) < ce.

THEOREM 2.2. Let p. and p be the weak solutions of (2.4), (2.6) and (2.8),
(2.9),respectively. Furthermore, assume that [ satisfies (2.5). Then the difference

1 Obviously, in the case of models of metal casting, this is the original mathematical model and
(2.2) it’s approximation. Recall that Q2 represents an area of solid phase metal where the rate of
flow is equal to zero. From a mathematical point of view, these matters are not important, and
we will always refer to p as the approximation of pe.
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between the velocity vectors ve and v defined in (2.7) and (2.10) satisfy
|ve = vll(z2(a)2 < ce,

where ¢ is a constant independent of e.
Here ||-||g1(n,) denotes the usual H'-Sobolev norm on i, whereas ||-||(z2(a))2 is

defined by

19 1252 0y 2= ll0n By + 102 sy = / w2 da,

for w = (wy, wa)T € (L3(Q))2.

Remarks.

1. In this paper we assume that there is only one subdomain Q5 in the
domain 2 where the mobility is of order O(¢). Of course, in real-world
simulations there can be a number of such subdomains. The analysis
presented in the present paper can be extend to the case of a finite
number of subdomains with O(e) mobility.

2. In the present paper we consider two dimensional models. However,
it should be noted that similar results hold in the case of three space
dimensions.

3. Discrete versions of the results above will be given in Section 5.

Until the numerical experiment presented in Section 5 we will be concerned

with proving Theorems 2.1 and 2.2.

3. Preliminaries and weak formulations. In this paper we use L?(Y), for
Y =Q,Q4,0Q5,Tcu, to denote the classical L? spaces of real valued functions defined
on Y. For w € R?, |w| denotes the Euclidean norm of w. The Sobolev spaces

H(Q), H(Q;) and H!(Q2) are as usual defined by

HY(Y)= {¢ € LA (Y); g—i’, %’ € LZ(Y)} for Y = Q, 0, Q.

Here 8¢/dz and 8¢ /dy are the distributional partial derivatives of 1. The appro-
priate subspaces for our model problems, due to the boundary conditions (2.6) and

(2.9), are

Vo

{v € H'(Q); ¥ =0 on Ta;},

Va, { € H'(Q1); » =0 on Ty} .



In order to get well-posed variational problems, which will be presented below,

we will assume that
(31Q € L2(Q) X L2(Q)’ Ineu S L2(I‘neu)’ f S Lz(Q)y a'nd Ddir S H1/2(Fdir)-

Based on the discussion of the model problems in Section 2, the function f satisfies
fla, = 0. Furthermore, we will assume that A(z) = (\;;(z)) is a symmetric
uniformly positive definite matrix with entries in L°° (). More precisely, there are
finite constants m and M, independent of € and z, such that

T
z_ Alz)z <M forallz € R?\{0}and z € Q.

3.2 0 < —
32 STE Tp

Thus, our equations are within the class of strictly or strongly elliptic problems, see
for instance Dautray and Lions [8, Ch. IL.8]. For z € Q the operator norm |A(z)|

is, as usual, defined by

A2z
A@)| = sup A2
ZcR2\{0} |z

From (3.2) it follows that A satisfies the inequality
(3.3) 0<m<|A(z)| <M forallz e,
and then from the definition (2.3) of A., we get

0<m<|A(z)| <M forall z € Q,

(3.4) 0<em < |A(z)]<eM forall z € Qa.

Next, we will assume that the subdomains ©; and Q5 have sufficiently smooth
boundaries and that Q = Q; [JQ2, 21 N Q2 = 0 and 82N Qy = @. That is, Qs is
contained in  and dist(Q22,99) > 0. Moreover, it should be noted that 9Q C 99y,
00y C 00 and 9N |J 0N2 = 0.

Assumption (3.1) and the trace theorem implies that there exists an extension
Pair € HY(Q) of pair such that T(By;,)|ry, = Pair- Here, T : HY(Q) — HY/2(99)

denotes the trace operator with operator norm

I T() | r1r2(a0)

Tl =
vemr@\for  N¥llaie)



Let Pgir,0, = Pair|0, then we can introduce the sets

Pa. + Vo = {Par +u; u € Vp},

Pair0, T Vo, = {pdir,ﬂl +u; u€e Vo, }.

Now, the weak formulation of (2.4), (2.6) can be defined as follows: Find p. €
Pair + Va such that

(3.5) /va- [Ac(Vpe — Q)] dz = /Q f dx — /r Yneu ds

for all ¥ € Vq. It should be noted that here we have used the fact that f|q, =0,
which explains the integral over Q in (3.5). Next, the weak formulation of (2.8),
(2.9) is: Find p € Dyi, 0, + Va, such that

(3.6) /Q Vo A(Vp-Q)lde= [ fodo- A P

neu

for all ¢ € Vg,.

It follows from the Lax-Milgram theorem (see for instance Dautray and Lions
[7] or Gilbarg and Trudinger [11]), that if Q, gneu, f and pq;r satisfy (3.1) and A
satisfies (3.3), then the problem (3.5) has a unique solution p. € Pg;, + Vo for all
€ € (0,1), and the problem (3.6) has a unique solution p € Bgy;, o, + Vo, -

In both the applications we mentioned above a velocity field is defined by dif-
ferentiating the pressure. Since p. € H*(Q2), p € H*(1), Q € (L*(R2))? and A is
assumed to satisfy (3.2), it follows that the velocity vectors, defined by

ve = —Ad(Vpe—Q) on Q,

—A(Vp—Q) on Qy,
0 on s,

belong to (L?(2))2. We are primarily interested in obtaining a bound on the dif-
ference v — v, since the velocity field is used as input to other equations both in
reservoir simulation and simulation of metal casting. Actually, in both cases, the
pressure is not an important quantity: it is the derivatives of the pressure that
is used. To measure the difference between the velocity vectors we will use the
|- |l(z2())2-norm defined at the end of the previous section.

For easy reference, we close this section by stating Poincaré’s inequality for Vo, :



There is a constant ¢;, only depending on the domain €, such that

1/2
(3.7) lellzay < @ ( / IVwIZ) Vo € Vo,
1

see for instance Dautray and Lions [7, Ch. IV.7].

Now we have made the necessary preparations to prove Theorems 2.1 and 2.2.

4. The convergence results. The purpose of this section is to prove that
the solution and the associated velocity field of (3.5) converges towards the solution
and the associated velocity field of (3.6) as € goes to zero. The results have already
been stated in Theorems 2.1 and 2.2 in Section 2.

Before we present the proofs of Theorem 2.1 and 2.2, we shall briefly discuss why
these results are obtainable. Recall that p. is the solution of (3.5). For this problem,
a straightforward application of the Lax-Milgram Theorem leads to a bound of the
form ||pe||g1(q) < O(1/€). Thus indicating that some sort of problem will arise as
€ tends to zero. However, we shall prove below that this bound is very pessimistic
when condition (2.5) is fulfilled. In this case, we will show that ||pc [|z1(q) = O(1),
thus bounded independent of ¢, and we obtain a well defined limit. The limit of
Ppe on €25 turns out to be defined by solving the problem on Q; with a Neuman
boundary condition on 9.

This procedure is very simple in 1D, and we therefore present a trivial but
illustrative example. Let pe = pe(z), = € [0, 3] be the weak solution of the following

two-point boundary value problem

(k(z)pe(2)) = f(z) for0<z <3,
(4.1) p(0) =0 and p(3)=1.

Here

(-1,1) for0<z<1
(f(z),k(z)) =4 (0,e) forl<az <2
(-1,1) for2<z <3,

where ¢ > 0 is a constant. Obviously, (4.1) is a 1D version of the 2D problem
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discussed above. The solution of this problem is given by

3e+1 1,2
211% — 3% for0 <z <1,
pe(z) = (%—g) + (-1 forl<e<?

3¢ 1 5e+2 1.2
_(2e—i1+§)+2§+1x_§$ f0r2SJ,‘S3.

For this problem, we easily observe that p. is well-behaved as ¢ tends to zero. We

note that || pc ||z1(0,3)= O(1), and that p = lim,_,¢ p. is given by

z — 12 for0<z<1,
p(z) = z—1 for 1 <z <2,
—L149x 122 for2<z<3.

Now this latter function p is also the solution of the problem defined by

(i) p'(z) =—-1for0 <z <1andp(0)=0,p'(1)=0

(4.2) (ii) p'(z)=—-1for2<z<3andp'(2)=0,p(3) =1

(iii) p"(z)=0for 1 <z < 2and p(1) =p(1-),p(2) = p(2+),

where p(1—) and p(2+) are defined by (i) and (ii), respectively. Thus we conclude
that the problem 4.1 has a well-defined limit as ¢ — 0 and that the limit is deter-
mined by 4.2. The rest of this section is concerned with the rigorous proof of a

more general but similar result in 2D.

4.1. An auxiliary result. As mentioned above, the key point in our analysis
is to derive a uniform bound of || pc || g1(q). Hence we start by proving the following
result.

PROPOSITION 4.1. Suppose f satisfies (2.5), then there exists a constant ca,

independent of € € (0,1), such that

| Pell () < ca,

where p. is the solution of (3.5).
Proof. We start by showing that the Sobolev norm of p.|o, can be bounded
independent of €. By choosing ¥ = p. — By;, € Vo in (3.5) it is easy to see that

/ (Ve = Viase) - [Ae(Ve — V)] dz =
Q

- / AV (Vpe = Vi) - [AY3(Vpg, — Q)] de
Q

11



(4.3) + [ (Pe = Pair)f dz — / (Pe = Pdir)9neu ds.

Q1 Theu

Schwarz’s inequality and the assumption (3.4) implies that

= [ V2T~ V) (A(V — Q)]
(4.4 < VI [ [ (954, - Q) as] v [ 258 = Ip 7 de

1/2

By Schwarz’s inequality, Poincaré’s inequality (3.7) and (3.3) it follows that

_ 1 lzz@nes [ [ a1 e ]
4.5 Pe — Pai)f dz| < ——F—— / A2(Vpe — VBg,)|* dz| .
(4.5) | Ql( aic) S dz| Jm Q| ( dir) |

Let Tq, : H' () — H'/?(891) be the trace map. Since Ty, is a continuous linear

operator, and I'y., C 91, it is easy to see that

4 6 |/ pdn- Ineu d5| < ||gneu||L2(Fneu) ”T91|| ”pf pdirHHl(nl)'
Consequently, applying Poincaré’s inequality (3.7) and (3.3) yields

].+C 1/2
viite) [ [ 18207(Tp. = Iy ae]

(4'7) ”pe — Pair ”H1(91) < \/—
Thus, from (4.3)-(4.7) and the triangle inequality it follows that
1/2
[ [ 82p = Tpg do] <
Q

where c3 is a constant independent of €. From (3.2) and the assumption that

Ac(z) = A(z) for all z € Q; we find that
1/2 1/2
Vi | [ pe-vmadl| < [ [ W - VR | < e
Ql Ql
and then by Poincaré’s inequality (3.7) and the triangle inequality

(4.8) l[Pe a2 (01) < €a,

where ¢4 is a constant independent of e.

Next, we compare p.|qa, with the harmonic extension of p.|sq, to Q2. To this

12



end, consider the potential equation

with the boundary condition
u = Taq, (pe)|oa, on 8Qy,

where we recall that 9Qs C 9€;. Let u be the weak solution of this problem. Then,
by a well-known a priori inequality there exist a constant cs, independent of €, such

that

(4.9) lullmi(0) < esllpellzre on,),

see for instance Hackbusch[13, Ch. 7.3]. Since u = Tq,(pc)|aq, on 902 we may

choose?

(4.10) P =

in (3.5) to obtain

Q V(pe - u) : [Ae(vpe - Q)] dz = 0.

Since Ac(z) = eA(z) for all z € Q3 we find that

A (Vpe = Q) - [A(Vpe — Q)] dz = ; (Vu—Q) - [A(Vpe — Q)] da.

Consequently, by (3.2), Schwarz’s inequality and (3.3) we get

12 ar 1/2
(/ Vp. — QP2 da:) <M </ Vu— QP da:) ,
Qg m QZ

where we recall from (3.2) that m and M are positive constants not depending on

€. The triangle inequality now implies that

12 g 1/2 1/2
2 M 2 2
(/éz [Vpe| d:v) < — </§2 |Vul da:) +(1+M/m) (Lz Q| da:) .

(4.11)
2 Every function w € H}(Q2) has a canonical extension w € H}(Q) C Vg obtained by putting
w=01in Q3 and W = w in Q3, see for instance Dautray and Lions [7, Ch. IV 4].
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Now, from (4.9), the fact that Qs C 994, the boundedness of the trace operator
Tq, and (4.8) it follows that

1/2
( [ 1wt dx) < csllpellmracons) < s Tanll 1pell o) < csliTas lea.
Q2

Combining this inequality with (4.11) we find that

1/2
([ 1P ae) " < SreliTonles + (o4 aam) ([ 1P ac)

This bound together with (4.8) implies that

1/2

where ¢ is a constant independent of €. Finally, the desired result follows from this

inequality, Poincaré’s inequality applied to p. — Py;, and the triangle inequality. O

4.2. Proof of Theorem 2.1. Subtract (3.6) from (3.5) and use definition
(2.3) of A, to obtain

(@12) [ v [A(Vp - Qdo~ [ Vo [A(Tp- Q) do=
Q1 Q1

— [ Vo [eA(Vpe - Q) d + /Q (W —o)f do — / (W — @) gheu do,

Q2 Theu
for all ¢ € Vg and ¢ € Vg,.
Since pe|ry, = Plry, = Pair We may choose ¢ = pe|a, —p € Vg, in (4.12). Next,
we want to make an appropriate choice of 9. To this end, let u be the weak solution

of the following potential equation

Ay

Il

0 in Qz,

u = To,(p. —p)log, on 90y,

where Tq, : H'(Q;) — H'/2(8Q;) is the trace operator. Then, as in the proof of

Proposition 4.1 there is a constant c5, independent of €, such that

(4.13) a0, < esllpe — Pllarr2(a0,)-

14



Now let?

Pe — D ian
P =

u in Qg,

which belongs to Vg since v = T, (pe — p)|aq, on 0. With these definitions of ¢
and 9 in (4.12) we get

(4.14) A (Vpe — Vp) - [A(Vpe — Vp)] dz = — A Vu - [eA(Vpe — Q)] de,

where we have used the fact that I'yey C 9Q C 04, ie. ¥ = ¢ on T'yey. The

assumption (3.2) implies that

(4.15) / (Vp. — Vp) - [A(Vp. — Vp)dz >m [ |Vp. — Vpf? da,
91 Ql

where we recall that m is independent of . Next, by Schwarz’s inequality for the in-
ner product on L2(Q5), (3.3), (4.13), the fact that Q, C 9Q; and the boundedness

of the trace operator T, we get

1/2
[ Vu A Vp - Q) del < esllp—plvscons) M ( [ 195 -ar dw)

1/2
(4.16) < 5| Ta | l1p. — pll @y eM ( [ 195 -ar dw) -
2

Hence, from (4.14)-(4.16), the triangle inequality and Proposition 4.1 we find that

s M|T /2
[ 190 Vo do < ST (+<A Qo) )eupe—pnm(m).
1 2
(4.17)

Combining (4.17) with Poincaré’s inequality (3.7) we finally obtain

[pe = Pl F2 (0, < ce llpe — pllE1(24)s
where ¢ = cs M||Tq, || (c2 + || Qll(z2(2))2)(1 + ¢})/m, and the proof is complete.

3 Another way to extend Pe|@, — P to the entire domain € is to appeal to Calderén’s extension
theorem, see for instance Adams [1, Ch.IV] or Marti [17, Ch.5]. Indeed, by this theorem there exists
a bounded linear operator E : H}(Q1) — H(Q) such that ¢ = E(¢)|q, forall ¢ € H(Q1). These
properties are sufficient to prove our result. However, we find it more satisfactory to introduce an
auxiliary problem since this technique is easy to generalize to the discrete case, cf. Section 5.
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4.3. Proof of Theorem 2.2. Since v=0o0n 25, A, = A on Q;, A = €A on
Q2 and |A(z)| < M for all z € Q we find that

/\ve—v|2dx - / |—Ae(Vpe—Q)+A(Vp—Q)|2dw+/ 1AL (V. — Q)2 da
Q Q1 Q2

= / |A(Vpe — Vp)|? dz + / leA(Vpe — Q|? dz
Ql QZ

IN

M2/ |Vpe — Vp|? dz + 62M2/ |Vpe — Q|? dz.
Ql QZ
Hence, from Theorem 2.1, the triangle inequality and Proposition 4.1 it follows that
/ Ve —v[? do < M2€® + M?(ca + || Qll(z2(0))2 )€,
Q

which finishes the proof.

5. The convergence results for discrete problems. We proved above that
the approximation described in Section 2 converges in the sense that the error is of
order € measured in the proper norms. Obviously, equations of the form (1.1) are
solved numerically for all practical purposes. Therefore, it is important to verify
that similar results hold in the discrete case. In this section we will consider finite
element discretizations of (2.4), (2.6) and (2.8), (2.9) and prove that exactly the
same convergence properties hold for the finite element solutions, i.e. the error
is again O(e) in proper norms. This result will be complemented by a numerical
experiment which shows that O(¢) is an optimal result.

Before we start deriving the convergence result in the discrete case, let us re-
mark that a rough result can easily be derived by using the triangle inequality, the
convergence properties of the finite element method, and the result obtained above.
The problem with this straight forward approach is that it leads to an error of the
form O(h®) + O(e) rather than just O(e). Obviously, for a convergent finite element
method the term O(h®), a > 0, stems from the discretization error of the finite
element method, see for instance Hackbusch [13] or Marti [17]. This rough result
indicates an error of order O(h*) as ¢ tends to zero. However, by following closely
the steps in the proofs above, we can prove that the error, also in the discrete case,
is of order e.

We start by introducing some notation and by formulating finite element meth-

ods for the problems (3.5) and (3.6) above. Let {Ny,..., N,} be a set of functions
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such that N;|r,,, =0fori=1,...,q, and define

Vo, = span{Ny,...,Ng},
VQl,h - Spa'n{N1|917'- -7Nq|91 }7
VQz’h = Span{N1|QZ,...,Nq|Q2}.

Here, the subscript h € I, where I is some subset of IR, is used to distinguish the
finite dimensional entities from the corresponding symbols used in Section 2-Section
4. Typically, h is the global mesh parameter for a grid defined on Q. Details on
how to construct appropriate finite dimensional spaces Vo n, Va,,» and Vg, , can
be found in Ciarlet [6] and Marti [17, Ch.8§]

In order to formulate the convergence results for the finite dimensional problems
we must introduce some assumptions on the sets Vo, », Vo, ., Vo,n. To this end, let
Tq, : HY(4) — HY2(894) and Tq, : H*(Q2) — H'/?(8Qs) be the trace operators

and introduce the sets

Ga,,n = {Ta,(¥)|s0,; ¥ € Va, 1},
Gﬂz,h = {T92(¢)7 d) € VQ2,h}'

We will prove the convergence results in the discrete case under the following as-
sumptions:
For every h € I;
1. N; € Vg for i = 1,...,q (which implies that Vg, C Vaq, Va,,n C Vo,
and Vg, C H'(Q2)).
2. Ga,,n =Ga,,h-
3. If w € Vo, n and u € Vy, , satisfies Tq, (w)|aq, = Ta,(uw) then the

function

w on Q)

u on Qs

belongs to Vg 5.
4. For every w € Gq,,» the following discrete form of the potential equa-
tion has a unique solution: Find un € Vg, » such that uplon, = w

and

Vup-Vode =0 forallveVg,nN H&(Q2).
Q2
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Furthermore, there exists a constant cg independent of ¢ and h such

that

lun |z (q) < csllwllgrr2a0,)-

As mentioned above, we want to derive discrete versions of the results discussed in
Section 4 by following the same steps as in the continuous case. In order to do this,
the conditions stated above have to be satisfied. In particular, Condition 1 assures
that the finite dimensional spaces are subspaces of the appropriate Sobolev spaces,
thus making the inequalities of Poincaré and Schwarz applicable for the analysis of
the discrete problems. Next, the conditions 2, 3 and 4 allow us to extend functions
defined on Q; to functions defined on the entire domain 2. Furthermore, Condition
4 assures that we have a discrete harmonic extension of functions defined on 9
to a function defined on Q5. The properties of the extended function is completely
analogous to the continuous extension used in the proofs of Proposition 4.1 and
Theorem 2.1 above.

The conditions 1-4 are typically satisfied for simple geometries as e.g. in our
prototype problem depicted in Figure 1. Generally, conditions 1-3 are easily checked
for a given geometry, whereas Condition 4 is harder to verify. This issue is carefully
discussed in the paper by Bramble, Pasciak and Schatz [2], [3].

The Ritz-Galerkin discretization of (3.5) is defined as follows: Find p.n €
Pair T Va,n such that

(5.1) A VY - [A(Vper — Q)] da = /Q f da — /F Dnen ds

neu

for all ¢ € Vq,. Similarly, the discrete approximation of (3.6) is: Find p, €
Ddair,0; t+ Va,,n such that

(5.2) /Q Vo [A(Vpr — Q)] dz = A fodz —/ ©Gneu ds

for all ¢ € Vo, ».

Now we have made the necessary preparations to formulate our convergence
results for the discrete problems (5.1) and (5.2). Since the proofs in the discrete
case are similar to those in the continuous case, we leave some details of the proofs
out, and try to focus on where the assumptions 1-4 are used.

PROPOSITION 5.1. Assume that Vo 1, Vo, n and Vo, ) satisfies conditions 1-4

and that f satisfies (2.5). Furthermore, suppose that the problem (5.1) has a unique
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solution pep for every e € (0,1) and every h € I, then there exists a constant cz,

independent of € € (0,1) and h € I, such that

| pe,n | 2 () < cr-

Proof. Choose ¥ = pe,p, — Pgir € Va,n in (5.1). Then, from condition 1 and the
fact that (pe,n, — Dgir)|l0: € Vau,n, it follows exactly as in the proof of Proposition

4.1 that

(53) ||pe,h||H1(Ql) S C4,

where ¢4 is a constant independent of € and h, cf. equations (4.3)-(4.8).
Now, consider the following problem: Find 75, € Vg, such that 7,|aq, =

T, (Pe,n — Pair)| o0, and

Vrh-Vvdz =0 forall v € Vg, » N Hy ().
Q2

From condition 2 it is evident that Tq,(pe,n — Dair)|o0, € Ga,,n and then from

condition 4 we find that

Il 7h ||H1(92) < C6||Pe,h — Pdir ”H1/2(692)7

where ¢g is a constant independent of € and h.

Let up = 7h + Pair|0,, and observe that

A

lunllmr@y)y < N7nllar(@s) + | Paie |21 (022)

< csllPe,n = Pair |l 512 (00,) + | Paic (| 71.(022)

(5.4)

IN

col T, ll | Pen Lt (ay) + (1 + collTanll) | Paie [l 22 (92)

where we have used the triangle inequality and the boundedness of the trace oper-
ator Tq, (recall that 9Qs C 894).
Next, by assumption 3 we may choose
0 in Ql
Y= ;

De,n — Up  in Qo
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in (5.1) to obtain

2 gy 1/2 1/2
(/ |V e n|? d:v) <— (/ |Vaun|? dx) +(1+M/m) (/ Q| dx) ,
5) Qs m \Jaq, Qa

cf. equations (4.10) to (4.11).
The desired result now follows from (5.3)-(5.5), cf. the proof of Proposition 4.1.

THEOREM 5.2. Assume that conditions 1-4 on the spaces Vo n, Va,,n and Vo,
hold. Suppose f satisfy (2.5) and that the problems (5.1) and (5.2) have unique
solutions pe.r, and pp, respectively. Then there exists a constant c, independent of €

and h, such that

| Pe,n — Pr || r1(0,) < ce

Proof. From the definition of Vy, 5 and Vi, we may choose ¢ = pe n|o, —pn €
Va, » in (5.2). Next, consider the following problem: Find u, € Vg, » such that

un|ag, = Ta,(Pe,n — Pr)|oa, and

Vaup-Vudz =0 for all v € Vo, 1 N Hi (Q2).
Q2

Due to conditions 2 and 4 this problem has a unique solution satisfying

(5.6) lun |z (0. < csllPe,n — Prlla1/2(80,)-
Now, by condition 3 we can put

De,p —Pr in £
b
Up in Qg

<
Il

in (5.1). With these choices of ¢ and ¥ in (5.2) and (5.1), respectively, we obtain
by subtracting (5.2) from (5.1)

/ (Vpe,n — Von) - [M(Vpe,n — Vo) de = — [ Vup - [eA(Vpen — Q)] dx,
91 Q2

cf. equation (4.14). Now, the result follows exactly as in the proof of Theorem
2.1 by applying condition 1, inequality (5.6) and Proposition 5.1, cf. inequalities
(4.15)-(4.17). D
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As in the continuous case, the associated velocity fields are defined by

Voh =  —Ad(Vper—Q) onQ,

—A(Vpr,—Q) on Oy

(5.7) v, =
h 0 on 92,

where p. 5, and pj, are the solutions of (5.1) and (5.2), respectively.

THEOREM 5.3. Assume that conditions 1-4 on the spaces Vo, Vo, n and
Va,,n hold, and that f satisfy (2.5). Suppose that the problems (5.1) and (5.2) have
unique solutions pe.n, and py, respectively, and let the velocity vectors Veh and vy,

be defined by (5.7). Then the following inequality hold

Ve = Vhllzz@)? < ce

where ¢ is a constant independent of € and h.
The proof of this Theorem is analogous to the proof of Theorem 2.2 and there-

fore omitted, cf. Section 4.

A numerical experiment. Now we turn our attention to a simple test prob-
lem. Let the domain specifications be 2 = (0,3) x (0,3) and Q> = (1,2) x (1,2).

Moreover, the boundary segments are defined by

Tair = {(z,y) € R’ z=3and 2.75 <y <3},

lew = o0 \ ]-‘dira

see Section 2. Hence, the geometry in our test problem is similar to the domain

shown in Figure 1. Furthermore, we put f =0, Q = 0, pai;r = 0, and

1 forz=0and 0 <y <0.25
neu(T,y) =

0 elsewhere.
The physical interpretation of these functions for our prototype of the pressure
equation (2.4) can be found in Section 2. Finally, the mobility tensor A is chosen
to be the identity matrix, and A, is given by (2.3).

The experiment described in this section has been carried out for bilinear shape

functions on quadrilateral elements, where the values of p. ; or p; corresponding to
the four vertices of each element represent the degrees of freedom. That is, for a

mesh parameter h such that 1/h and 3/h are integers a uniform grid consisting of
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quadratic elements with sides of length & is defined on Q. The resulting linear system
of equations has been solved by the preconditioned conjugate gradient (CG) method,
cf. e.g. Meijerink and van der Vorst [18]. All computations have been carried out
in double precision on HP 9000/735 workstations. The implementations are based
on the C++ class library Diffpack, which is under development at SINTEF and the
University of Oslo, see Langtangen [16] and [9].

In this case, conditions 1-4 on Vg, », Va,,» and Vo i stated above, hold. Hence,
Theorems 5.2 and 5.3 apply to our test problem. The problem (5.1) has been solved
fore=2"",n=0,...,16. For every value of ¢ the solution p.  of (5.1) has been
compared with the solution pj of (5.2). The rate of convergence is computed by
comparing the results of two successive values of € and assume that the difference
| Pe,n — Pr || 51 (0,) has the form ce® where c is a constant and « is the rate. Table
1 shows the numerical results computed with mesh-size h = 1/60. The estimated
rate of convergence, with respect to €, clearly tends towards 1.0 as € goes to zero.

This is in agreement with Theorem 5.2.

€ | Pe,n — Pn || 21 (024) Rate

1.0000000 0.2058372 -

0.5000000 0.1481394 0.4745478
0.2500000 0.0963269 0.6209443
0.1250000 0.0571385 0.7534755
0.0625000 0.0316098 0.8540916
0.0312500 0.0167119 0.9194984
0.0156250 0.0086056 0.9575259
0.0078125 0.0043684 0.9781557
0.0039062 0.0022011 0.9889189
0.0019531 0.0011048 0.9944188
0.0009766 0.0005535 0.9971991
0.0004883 0.0002770 0.9985970
0.0002441 0.0001386 0.9992978
0.0001221 0.0000693 0.9996488
0.0000610 0.0000347 0.9998243
0.0000305 0.0000173 0.9999122
0.0000153 0.0000087 0.9999561

TABLE 1

The table shows the numerical results computed with mesh-size h = 1/60 for our test problem.

Finally, in Figure 2 we have plotted the velocity fields v_y, fore =1/2, 1/4, 1/16
and v, where v_j, and vy, are defined in (5.7). We observe from the figure, that

the velocity field v_j, converges towards v, as € goes to zero.

6. Concluding remarks. A well-known technique for simplifying the pres-
sure and velocity computations in models arising in reservoir simulation and metal

casting has been analyzed. In the simplification procedures, the domain is changed
22



in order to obtain faster solution methods. In the case of o0il recovery, areas of low
mobility are ignored, by removing these parts from the solution domain, and the
problem is solved on the remaining part. Contrary, in models of metal casting,
solid areas in the mushy zone, where the rate of flow is equal to zero, are replaced
by low mobility areas. In this paper, these techniques have been analyzed for a
prototype of an elliptic pressure equation. Analytical estimates have been derived
that bound the errors in the pressure and velocity, due to changing the domain, in
terms of the order of mobility in the problem areas. Finally, the theoretical work
was complemented by a numerical experiment which showed that the estimates are

sharp.
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FIG. 2. The wvelocity fields v_y, for e = 1/2, 1/4, 1/16 and v}, marked with € = 0 for our test
problem. Here, the mesh size is h = 1/60.
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