
Numerical Valuation of American Options Under

the CGMY Process

Ariel Almendral∗

Abstract

American put options written on an underlying stock following a
Carr-Madan-Geman-Yor (CGMY) process are considered. It is known
that American option prices satisfy a Partial Integro-Differential Equa-
tion (PIDE) on a moving domain. These equations are reformulated
as a Linear Complementarity Problem, and solved iteratively by an
implicit-explicit type of iteration based on a convenient splitting of
the Integro-Differential operator. The solution to the discrete com-
plementarity problems is found by the Brennan-Schwartz algorithm
and computations are accelerated by the Fast Fourier Transform. The
method is illustrated throughout a series of numerical experiments.

1 Introduction

In this paper we propose a numerical method to compute American put op-
tions, when the underlying asset is modeled by the Carr-Madan-Geman-Yor
(CGMY) process considered in [8]. Our contribution is to show experimen-
tally that the implicit-explicit method proposed in [12] for European options
may be successfully applied to the computation of American options under
Lévy models. A similar splitting was already proposed in [13] for the com-
putation of the American price under the Variance Gamma (VG) process;
see also [2].

Matache et al. [17] have previously studied the American pricing prob-
lem under the CGMY process. They considered a variational inequality
formulation combined with a convenient wavelet basis to compress the stiff-
ness matrix. The approach here is different: we essentially work with a
formulation as a Linear Complementarity Problem (LCP), and use stan-
dard finite differences. To deal with the singularity of the jump measure
at the origin, we first approximate the problem by another problem, where
small jumps are substituted by a small Brownian component. Next, we solve
the approximated problem iteratively, where for each time step one needs to
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solve tridiagonal linear complementarity problems. The Fast Fourier Trans-
form (FFT) plays also an important role when computing the convolution
integrals fast. The sequence of linear complementarity problems are solved
with the help of a simple algorithm proposed by Brennan and Schwartz [6],
that works well for the particular case of a put option. We have also verified
numerically the recent results in [1] on the smooth-fit principle for general
Lévy processes.

A statistical study of financial time series in [8] shows that the diffusion
component could in most cases be neglected, provided that the remaining
part of the process is of infinite activity and finite variation. We concentrate
precisely on the finite variation case, but also allow for a diffusion compo-
nent, that may be safely omitted without affecting the pricing algorithm.

In Section 2 we briefly introduce the CGMY process, the European and
American put option problem, and the related PIDEs. For further infor-
mation on Lévy processes in finance we refer to the books [11, 20]. An
approximation to the equation with a discretization by finite differences is
exposed in Section 3 and numerical results are presented in Section 4.

2 The CGMY process as a Lévy process

A Lévy process is a stochastic process with stationary, independent incre-
ments. The Lévy-Khintchine theorem (see [19]) provides a characteriza-
tion of Lévy processes in terms of the characteristic function of the pro-
cess, namely, there exists a measure ν such that, for all z ∈ IR and t ≥ 0,
E(eizLt) = exp(tφ(z)), where

φ(z) = iγz −
σ2z2

2
+

∫

IR
(eizx − 1− izx1{|x|≤1})dν(x). (1)

Here σ ≥ 0, γ ∈ IR and ν is a measure on IR such that ν({0}) = 0 and∫
IR min(1, x2)dν(x) <∞.

Consider a Lévy process {Lt}t≥0 of the form

Lt = (r − q + µ)t+ σWt + Zt, (2)

where r and q are the risk-free interest rate and the continuous dividend
paid by the asset, respectively. This process has a drift term controlled by
µ, a Brownian component {Wt}t≥0 and a pure-jump component {Zt}t≥0. In
this paper we focus on the case where the Lévy measure in (1) associated
to the pure-jump component can be written as dν(x) = k(x)dx, where the
weight k(x) is defined as

k(x) =





C
exp(−G |x|)

|x|1+Y
if x < 0,

C
exp(−M |x|)

|x|1+Y
if x > 0,

(3)
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for constants C > 0, G ≥ 0, M ≥ 0 and Y < 2. The process {Zt}t≥0 is
known in the literature as the CGMY process [8]; it generalizes a jump-
diffusion model by Kou [15] (Y = −1) and the VG process [10] (Y = 0).
The CGMY process is in turn a particular case of the Kobol process studied
in [5] and [7], where the constant C is allowed to take on different values on
the positive and negative semiaxes.

The characteristic function of the CGMY process may be computed ex-
plicitly, see [5, 8]. In this paper, we consider only those processes hav-
ing infinite activity and finite variation, excluding the VG process, that is,
0 < Y < 1. In such situation one has

φ(z) = (r − q + µ)iz −
σ2

2
z2

+ CΓ(−Y )
{
(M − iz)Y −MY + (G+ iz)Y −GY

}
. (4)

A market model

Let a market consist of one risky asset {St}t≥0 and one bank account
{Bt}t≥0. Let us assume that the asset process {St}t≥0 evolves according
to the geometric law

St = S0 exp(Lt), (5)

where {Lt}t≥0 is the Lévy process defined in (2), and the bank account
follows the law Bt = exp(rt). Assume next the existence of some Equiv-
alent Martingale Measure Q (a measure with the same null sets as the
market probability, for which the discounted process {e−(r−q)tSt}t≥0 are
martingales). In this paper one works only with a risk-neutral measure Q,
where the drift of the Lévy process has been changed. The EMM-condition
EQ[St] = S0e

t(r−q) implies φ(−i) = r−q, so we get the following risk-neutral
form for µ:

ω := −
σ2

2
− CΓ(−Y )

{
(M − 1)Y −MY + (G+ 1)Y −GY

}
. (6)

We keep the same notation for the risk-neutral parameters G and M . The
other parameters σ, C and Y are the same in the risk-neutral world, see
e.g., [11, 18]. Note that M must be larger than one for ω to be well defined.

2.1 Options in a Lévy market

European vanilla options

Consider a European put option on the asset {St}t≥0, with time to expiration
T , and strike price K. Let us define the price of a European put option by
the formula:

v(τ, s) = e−rτEQ

[
(K − sHτ )

+
]
, 0 ≤ s <∞, 0 ≤ τ ≤ T, (7)
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where the process {Hτ}τ≥0 is the underlying risk-neutral process starting at
1, given by

Hτ := exp [(r − q + ω)τ + σWτ + Zτ ] . (8)

Note that τ means time to expiration T − t.
We will not work directly with the asset price s, but rather with its

logarithm. Thus, let x = ln s, and define the new function

u(τ, x) := v(τ, ex). (9)

From a generalization of Ito’s formula follows that u satisfies the following
Cauchy problem:





uτ − Lu = 0, τ ∈ (0, T ], x ∈ IR,

u(0, x) = (K − ex)+, x ∈ IR,
(10)

where L is an integro-differential operator of the form

Lϕ :=
σ2

2
ϕxx + (r − q −

σ2

2
)ϕx − rϕ

+

∫

IR
[ϕ(τ, x+ y)− ϕ(τ, x) − (ey − 1)ϕx(τ, x)] k(y)dy. (11)

For a derivation of (10) see [5, 18].

American vanilla options

Consider an American put option written on the underlying asset {St}t≥0.
The price may be found by solving an optimal stopping problem of the form:

v(τ, s) = sup
τ ′∈S0,τ

EQ

[
e−rτ ′

(K − sHτ ′)+
]
. (12)

Here S0,τ denotes the set of stopping times taking values in [0, τ ] and
{Hτ}τ≥0 is the process in (8). The corresponding function u (cf. (9)) satis-
fies the free-boundary value problem [5, 17]:





uτ − Lu = 0, τ > 0, x > c̃(τ),

u(τ, x) = K − ex, τ > 0, x ≤ c̃(τ),

u(τ, x) ≥ (K − ex)+, τ > 0, x ∈ IR,

uτ − Lu ≥ 0, τ > 0, x ∈ IR,

u(0, x) = (K − ex)+, x ∈ IR,

(13)

4



where the operator L is defined in (11) and the free-boundary is given by

c̃(τ) = inf
{
x ∈ IR | u(τ, x) > (K − ex)+

}
, τ ∈ (0, T ]. (14)

The set {x ∈ IR | x ≤ c̃(τ)} is the exercise region for the logarithmic prices.
Hence, for asset prices s ≤ exp(c̃(τ)), the American put should be exercised.

3 Numerical valuation of the American CGMY

price

The function c̃(τ) is not known a-priori, and need to be found as part of the
solution. Thus, rather than solving (13) directly, it is more convenient to
use another formulation as a so-called Linear Complementarity Problem:





uτ − Lu ≥ 0 in (0, T )× IR,

u ≥ ψ in [0, T ]× IR,

(uτ − Lu) (u− ψ) = 0 in (0, T )× IR,

u(0, x) = ψ(x),

(15)

where the initial condition is given by

ψ(x) := (K − ex)+. (16)

Note that the dependency on the free-boundary c̃(τ) has disappeared, but
instead we are left with a set of inequalities. The discretization and nu-
merical solution of (15) is from now our main goal. The free-boundary is
obtained after computing the solution, by making use of (14).

3.1 Discretization and solution algorithm

The main idea of the method is to approximate the operator (11) by trun-
cating the integral term close to zero and infinity. The truncation around
infinity is harmless, as long as a sufficiently large interval is chosen and the
price is substituted by the option’s intrinsic value outside the computational
domain. However, the truncation around zero gives rise to an artificial dif-
fusion that must be taken into account. More precisely, the operator L
may be splitted into the sum of two operators: the first one containing
the Black and Scholes operator and the second accounting for the jumps,
namely, L = LBS + LJ . The jump integral part is in turn splitted into the
sum of one operator Pǫ for the integration variable in a neighborhood of

5



the origin, and Qǫ for the complementary domain. For Pǫ we use Taylor’s
expansion to write the following approximation:

(Pǫϕ)(τ, x) :=

∫

|y|≤ǫ
[ϕ(τ, x+ y)− ϕ(τ, x) − (ey − 1)ϕx(τ, x)] k(y)dy

=

∫

|y|≤ǫ
[ϕ(τ, x+ y)− ϕ(τ, x) − yϕx(τ, x)− (ey − 1− y)ϕx(τ, x)] k(y)dy

≈ (P̃ǫϕ)(τ, x) :=
σ2(ǫ)

2
ϕxx(τ, x)−

σ2(ǫ)

2
ϕx(τ, x),

with the notation:

σ2(ǫ) =

∫

|y|≤ǫ
y2k(y)dy. (17)

That is, Pǫ has been approximated by a convection-diffusion operator P̃ǫ,
with a small diffusion coefficient σ2(ǫ).

The operator Qǫ is simply splitted into a sum, given that this operation
is now allowed away from the origin:

(Qǫϕ)(τ, x) :=

∫

|y|≥ǫ
[ϕ(τ, x+ y)− ϕ(τ, x) − (ey − 1)ϕx(τ, x)] k(y)dy

= (J ǫϕ)(τ, x) − λ(ǫ)ϕ(τ, x) + ω(ǫ)ϕx(τ, x), (18)

where we have written J ǫ for the convolution term, and

λ(ǫ) =

∫

|y|≥ǫ
k(y)dy, (19)

ω(ǫ) =

∫

|y|≥ǫ
(1− ey)k(y)dy. (20)

Remark 3.1. These operations have a probabilistic meaning: the pure-jump
process has been approximated by a compound Poisson process plus a small
Brownian component. As proved in [4], this approximation is valid if and
only if σ(ǫ)/ǫ →∞, as ǫ → 0. Note that this condition implies 0 < Y < 1,
excluding therefore the VG process and processes with infinite activity.

An approximation result in [12] states the following. Let Lǫ := LBS +
P̃ǫ +Qǫ and uǫ be the solution of the Cauchy problem

{
uǫ

τ − L
ǫuǫ = 0,

u(0, x) = ψ(x),
(21)

then there exists a constant C > 0 such that |u(τ, x) − uǫ(τ, x)| < Cǫ, for all
τ and x. We use here -without proof- the same approximation to numerically
solve an American put option. An indication that this approximation works
also for American options is shown in Figure 1, where one observes that the
exercise boundary tends to the theoretical perpetual exercise price, when
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the time to expiration τ is taken large. The proof of this fact is thus an
open problem.

Let us focus now on problem (15), but with Lǫ instead of L. One pos-
sible idea to discretize this new problem is to apply Euler’s scheme in time
combined with an implicit-explicit iteration in space. Let the time inter-
val [0, T ] be divided into L equal parts, i.e., τj = j∆τ (j = 0, 1, . . . , L)
with ∆τ = T/L and define the functions uj ≈ u(τj , x). Let operator Lǫ be
splitted as Lǫ = A+ B. We consider the following sequence of problems:





uj+1

∆τ
−Auj+1 ≥ d j :=

uj

∆τ
+ Buj,

uj+1 ≥ ψ,

(
uj+1

∆τ
−Auj+1 − d j

)
(uj+1 − ψ) = 0,

u0 = ψ.

(22)

That is, given the function uj, we compute uj+1 by solving this integro-
differential inequalities. A natural choice for the splitting of Lǫ is the fol-
lowing:

Aϕ :=
σ2 + σ2(ǫ)

2
ϕxx +

[
r − q −

σ2 + σ2(ǫ)

2
+ ω(ǫ)

]
ϕx − rϕ (23)

Bϕ := J ǫϕ− λ(ǫ)ϕ. (24)

Observe that the integral term is treated explicitly, whereas the differential
part is treated implicitly. This method imposes a stability restriction on the
time step; see [12] for a discussion of this issue for the European case.

Spatial discretization of A

Consider a computational domain of the form [0, T ] × [xmin, xmax]. Let
lnK ∈ [xmin, xmax] and define the uniform spatial grid xi = xmin + ih
(i = 0, . . . , N) where h = (xmax − xmin)/N . Once we have defined the
grid, we can discretize A by standard second order schemes. For the first
and second derivatives, the central scheme and the standard 3-point scheme
are chosen, respectively. Namely, after introducing the notation δ1(ϕ) :=
[ϕi+1 − ϕi−1]/2h and δ2(ϕ) := [ϕi+1 − 2ϕi + ϕi−1]/h

2, where ϕi := ϕ(xi)
(i = 0, 1, . . . , N), we may write

(Aϕ)i = βδ2(ϕ) + γδ1(ϕ) − rϕi, (25)
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with the quantities β and γ defined as

β :=
σ2 + σ2(ǫ)

2
, (26)

γ := r − q −
σ2 + σ2(ǫ)

2
+ ω(ǫ). (27)

We obtain the following coefficients for the implicit part

a = −
β

h2
+

γ

2h
, (28)

b =
1

∆τ
+ r +

2β

h2
, (29)

c = −
β

h2
−

γ

2h
. (30)

The tridiagonal matrix T associated to the implicit part has constant
diagonals: b is on the main diagonal, a is on the subdiagonal and c is on the
superdiagonal.

From now on, the parameter ǫ is taken as the mesh-size h. The artificial
diffusion σ2(h) (cf. (17)) may be approximated by the composite trapezoidal
rule on the intervals [−h, 0] and [0, h]. This gives

σ2(h) ≈
[k(h) + k(−h)] h3

2
. (31)

The quantities λ(h) and ω(h) are approximated in the next paragraph.

Spatial discretization of B

The discretization of B involves the discretization of J ǫ, since Bϕ = J ǫϕ−
λ(ǫ)ϕ. The discretization of J ǫ is explained in detail in [2]. Briefly, the idea
is to truncate the integral to a finite domain and then apply the composite
trapezoidal rule, i.e,

Ji := (J ǫϕ)i =

∫

|y|≥h

ϕ(xi + y)k(y)dy

≈

∫

h≤|y|≤Mh

ϕ(xi + y)k(y)dy

≈ h

M∑

m=−M

ϕi+mkmρm, i = 0, 1, . . . ,N, (32)

where km = k(mh) for m 6= 0 and we let k0 = 0. The coefficients obtained
from applying the trapezoidal rule are:

ρm =

{
1/2 if m ∈ {−M,−1, 1,M},

1 otherwise.
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It is important to substitute ϕ by the payoff function ψ outside the compu-
tational domain. The computation of the numbers Ji constitutes the main
burden of the method, but thanks to the FFT algorithm, this may be done
efficiently, see next section. However, N must be an even number, and
M = N/2, to be able to express this convolution in matrix-vector notation.

Finally, we may use the composite trapezoidal rule to compute an ap-
proximation to the numbers λ(h) and ω(h) by simply taking ϕ in (32) as 1
and ey − 1, respectively.

Fast convolution by FFT

The Fast Fourier Transform is an algorithm that evaluates the Discrete
Fourier Transform (DFT) of a vector f = [f0, f2 . . . , fR−1] in O(R logR)
operations.

The Discrete Fourier Transform is defined as:

Fk =

R−1∑

n=0

fne
−i2πnk/R, k = 0, 1, . . . , R. (33)

One of the multiple applications of the DFT is in computing convolutions.
Let us first introduce the concept of circulant convolution. Let {xm} and
{ym} be two sequences with period R. The convolution sequence z := x ∗ y
is defined component-wise as

zn =

R−1∑

m=0

xm−nym. (34)

We use now FFT to compute the vector [z0, . . . , zR−1]. The periodic struc-
ture of x allows the derivation of the following simple relation:

Zk = Xk · Yk, (35)

where X,Y and Z denote the Discrete Fourier Transform of the sequences
x, y and z respectively. That is, DFT applied to the convolution sequence
is equal to the product of the transforms of the original two sequences.
The vector [z0, . . . , zR−1] may be recovered by means of the Inverse Discrete
Fourier Transform (IDFT):

zn =
1

R

R−1∑

k=0

Zke
i2πkn/R, n = 0, 1, . . . , R. (36)

In the language of matrices, a circulant convolution may be seen as the
product of a circulant matrix times a vector. For example, let R = 3, and
use the periodicity xk = xk+R to write (34) as



z0
z1
z2


 =



x0 x1 x2

x2 x0 x1

x1 x2 x0






y0

y1

y2


 . (37)
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A circulant matrix is thus a matrix in which each row is a “circular” shift
of the previous row.

We are interested in the convolution (32), where the vector ϕ is not
periodic. The associated matrix is a so-called Toeplitz matrix, which by
definition is a matrix that is constant along diagonals. A circulant matrix
is hence a particular type of Toeplitz matrix. The next idea is to embed
a Toeplitz matrix into a circulant matrix. As an example, let M = 1 and
N = 2, so that the matrix-vector notation for (32) reads



ϕ1 ϕ0 ϕ−1

ϕ2 ϕ1 ϕ0

ϕ3 ϕ2 ϕ1







k1/2
k0

k−1/2


 . (38)

The matrix above may be embedded in a circulant matrix C of size 5 in
the following way (For computational efficiency of the FFT algorithm, it is
advisable to use a circulant matrix whose size is a power of 2.):

C =




ϕ1 ϕ0 ϕ−1 ϕ3 ϕ2

ϕ2 ϕ1 ϕ0 ϕ−1 ϕ3

ϕ3 ϕ2 ϕ1 ϕ0 ϕ−1

ϕ−1 ϕ3 ϕ2 ϕ1 ϕ0

ϕ0 ϕ−1 ϕ3 ϕ2 ϕ1



. (39)

If we define the vector η := [k1/2, k0, k−1/2, 0, 0]
T , then the product (38)

is the vector consisting of the first three elements in the product Cη. As
explained before, a product of a circulant matrix and a vector may be effi-
ciently done by applying the FFT algorithm.

As a summary, following the ideas explained above, it is possible to
compute the convolution (32), with M = N/2, by “embedding” the resulting
matrix into a circulant matrix. The product of a circulant matrix and a
vector is carried out in three FFT operations, namely, two DFT and one
IDFT.

In paper [3] we applied the FFT algorithm in the computation of Eu-
ropean options for Merton’s model and Kou’s model, and in [2] to find the
American price under the Variance Gamma process. For further details on
the computation of convolutions by FFT we refer to [21].

Boundary conditions

We used points on the boundary when discretizing the differential operator
A. This means that the vector dj needs to be updated. For a put option,
this is done by updating the first and the last entries of dj as follows:

dj
1 ← dj

1 − a(K − e
xmin), dj

N−1 ← 0. (40)
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Discrete LCP

We are now in position to write the discrete inequalities that correspond to
the discretization of (22):





Tuj+1 ≥ dj ,
uj+1 ≥ ψ,
(Tuj+1 − dj , uj+1 − ψ) = 0,
u0 = ψ,

(41)

for j = 0, 1, . . . , L − 1. The matrix T has entries given by (28)-(30), dj
i =

uj
i/∆τ + (J ǫuj)i − λ(ǫ)uj

i (i = 1, . . . ,N − 1) with the update (40) and ψ is
the vector [ψ1, ψ2, . . . , ψN−1]

T , with ψi = ψ(xi) (cf. (16)). The same letter
ψ is used to simplify the notation.

We proceed to explain a simple algorithm to solve (41).

Brennan-Schwartz algorithm for a put option

Let a tridiagonal matrix

T =




b1 c1
a2 b2 c2

. . .
. . .

. . .

an−1 bn−1 cn−1

an bn




(42)

and vectors d = [d1, . . . , dn]T and ψ = [ψ1, . . . , ψn]T be given. Consider the
following problem: Find a vector u satisfying the system





Tu ≥ d,
u ≥ ψ,
(Tu− d, u− ψ) = 0.

(43)

The following algorithm to find u in (43) was proposed by Brennan and
Schwartz [6] (for put options) and discussed in detail by Jaillet et al. [14]:

• Step 1: Compute recursively a vector b̃ as

b̃n = bn,

b̃j−1 = bj−1 − cj−1aj/b̃j , j = n, . . . , 2.

• Step 2: Compute recursively a vector d̃ as

d̃n = dn,

d̃j−1 = dj−1 − cj−1d̃j/b̃j , j = n, . . . , 2.
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• Step 3: Compute u forward as follows:

u1 = max
[
d̃1/b1 , ψ1

]
,

uj = max
[(
d̃j − ajuj−1

)
/b̃j , ψj

]
, j = 2, . . . , n.

We apply these three steps with ai = a, bi = b and ci = c, with a, b, c as in
(28)-(30). The splitting proposed in (23)-(24) does not in general guarantee
the validity of Brennan-Schwartz algorithm. However, the convection term
may be moved to the explicit part of the splitting, so that the conditions of
Brennan-Schwartz algorithm hold [3]. The solutions obtained in both ways
are the same, to within the discretization error.

4 Numerical experiments

In this section, European and American option prices are computed numer-
ically. In the first experiment we compute an European option (problem
(21)) and compare it with the solution obtained by the Carr-Madan formula
in [9]; see also the appendix, formula (9). Both solutions are compared in
the ℓ∞-norm, and the results are shown in Table 1. A linear convergence
rate is observed, and note that the algorithm computes the European price
with an error of one cent in about one second.

N L ℓ∞-error CPU-time

50 5 0.2675 0.22 s.

100 10 0.1281 0.31 s.

200 20 0.0459 0.34 s.

400 40 0.0160 1.06 s.

Table 1: Linear convergence to exact solution in ℓ∞-norm and CPU times
on a Pentium IV, 1.7Ghz. The parameters are: r = 0, q = 0, K = 10,
T = 1, C = 1, G = 7, M = 9 and Y = 0.7.

A second experiments concerns the verification of the theoretical perpet-
ual exercise price against the asymptotic behavior of the free boundary for
some large time to expiry. The asymptotic value s∗ of the American put
was verified with the aid of a formula in [5], Theorem 3.2 and Theorem 5.1:

s∗ = exp(x∗) = K exp

{
−

1

2π

∫ ∞+iρ

−∞+iρ

ln [r + q + φ0(z)]

z2 + iz
dz

}
, (44)

with ρ a positive number (not arbitrary, see [5]) and φ0(z) is given by (47).
Figure 1 shows two examples of exercise boundaries and their corresponding
theoretical asymptotic values. In these examples, ρ = 1 gives the right value.
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In the next two experiments, we examine the behavior of the option
price and free boundary for different values of Y and M . We conclude from
figures 2 and 3 that the American option price is an increasing function of
Y and a decreasing function of M . We mention that the results shown in
Figure 2 are in accordance with the numerical tests in [17], Figure 6.

The last test is designed to verify the smooth-fit principle. According to
[1], the smooth-fit principle holds for perpetual American put options in the
bounded variation case considered here if and only if the drift r − q + ω is
negative, or an additional condition on the jump measure is satisfied for zero
drift. In Figure 4, left, we show the numerical derivative vs at time T = 1,
for a set of parameters giving negative drift. In this case we have smooth-fit.
For a second set of parameters chosen such that the drift is positive, we see
a discontinuous derivative in Figure 4, right, so there is no smooth-fit.

A Analytic formula for European option prices

We include here the analytic expression given in [16] for European options,
adapted to the case of a CGMY process:

u(t, x) =
e−rt

2π

∫ iα+∞

iα−∞
exp [−izx+ tφ0(−z)] ψ̂(z)dz, (45)

where ψ̂(z) is the generalized Fourier transform of the payoff ψ, which for a
put option is given by

ψ̂(z) = −
Kiz+1

z2 − iz
, (46)

and the risk-neutral characteristic function φ0 to be used is obtained by
substituting µ by ω from (6) in expression (4), i.e.,

φ0(z) = (r − q + ω)iz −
σ2

2
z2

+CΓ(−Y )
{
(M − iz)Y −MY + (G+ iz)Y −GY

}
. (47)

The constant α in (45) is determined by the region of validity of (46) together
with the strip of regularity of (47). In this case we may pick α ∈ (−G, 0).
A method using the FFT algorithm was proposed in [9] to evaluate an
analogous version of (45).
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Figure 1: Exercise boundary and perpetual boundary for two different values
of Y ; σ = 0, r = 0.1, q = 0, K = 10, T = 20, C = 1, G = 7, M = 9.
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Figure 2: Left picture: Option prices for different values of parameter Y ;
σ = 0, r = 0.1, q = 0, K = 10, T = 5, C = 1, G = 7.8, M = 8.2. Right
picture: Corresponding exercise boundaries.
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Figure 3: Left picture: Option prices for different values of parameter M ;
σ = 0, r = 0.1, q = 0, K = 10, T = 5, C = 1, G = 7, Y = 0.2. Right
picture: Corresponding exercise boundaries.
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Figure 4: Left picture: Continuous option Delta for G = 10 and M = 3.
Right picture: Discontinuous option Delta for G = 7 and M = 9; σ = 0,
r = 0.1, q = 0, K = 10, T = 1 and C = 1.
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