Trading of
QoS policies in
ENNCE

A

N R::: Norsk Regnesentral
~> ANVENDT DATAFORSKNING NOTAT/NOTE

Norwegian Computing Center/Applied Research and Development

| | vic1839136026 offers .
gurations: video/nv:

] _ sanplerate
videomy
video/fjpeqy
videohzb1
4+ 704 576
. 352 283

- 176 144

DART/03/02

Wolfgang Leister
Gorm Paulsen
Pal Spilling

VIC v2.8ucl-1.0 .Menul Helpl Quit/|
|

Oslo
December 2002

A

N R::: Norsk Regnesentral

_
\ AFORSKNIN
ANVENDT DATAFORS G

Notat / Notat

Tittel /Title: Dato/Date: December
Trading of QoS policies in ENNCE Ar /Year: 2002

Notat nr/:

Note no: DART/03/02
Forfatter /Author:

Wolfgang Leister, Gorm Paulsen, Pal Spilling

Sammendrag/Abstract:

This contribution is the concluding report of the ENNCE project WP1, which elaborates the

trading mechanisms that were studied and implemented during the course of the project.
The main goal is to elaborate trading mechanisms for QoS negotiation between the involved

parties in a data network. Especially we take into account that the QoS negotiation is done

on behalf of an end user. For the negotiation we propose an agent-based system based on

code passing between the entities involved. Selected parts of the implemented systems are
presented.

Emneord/Keywords: Quality of Service, QoS negotiation, Service Agent, Trading
Malgruppe/Target group: research institutions, NR

Tilgjengelighet / Availability: Open

Prosjektdata/Project data: ENNCE

Prosjektnr/Project no: 801001

Antall sider/No of pages: 40

Norsk Regnesentral/Norwegian Computing Center
Gaustadalléen 23, Postboks 114, N-0314 Oslo, Norway
Telefon (+47) 22 85 25 00, telefax (+47) 22 69 76 60

Contents

Contents
1. The ENNCE project 1
1.1. Architecture document 2
1.2. Terje Michelsen’s thesis Lo 3
1.3. Discussions and conclusions Lo oo 6
2. Service Agent 6
2.1. Perspectives oL e e e e 7
2.2. Negotiation of Stream Bindings L. 9
2.3. QoS megotiationo 9
2.4. Reference model for negotiation oo oo 11
3. Negotiation with the Service Agent 15
3.1. Implementation of the Perspectives 15
3.2. SACP — Service Agent Control Protocol 17
3.3. The PF language 18
3.4. Negotiation in PFo 19
3.4.1. Basic negotiation L. Lo 19
3.4.2. Values, Functions and Retrieval 21
3.4.3. Stream-Bindingin PF oo oo 22
4. Discussion 23
4.1, Securityo e e e 23
4.2. Screen shots from the implementation 23
4.3. Conclusion. e e 24
4.4. Future work Lo L 24
A. The SACP 27
A1, Format 27
A.1.1. Network Format 27
A.1.2. Text Format e 27
A2, Opcodes e e e e 27
A2.1. SENDADDR opcode 27
A.2.2. Portmapper opcode 27
A.2.3. Broadcast Opcode 28
A.2.4. Often used sequences at startup 29
B. The communication library 29
B.1. The comlib interface 29
B.2. The IHINTERFACE i i 30
B.3. The broadcast interface L L oL 30
B.4. The fileinterp interface L L 30
B.5. The pipecom interface L e 30
B.6. The portmap interface 30
B.7. Example program e e e 31

compiled: 21st January 2003 5

Trading of QoS Policies in ENNCE

C. Binding to pf-Interpreter 32
C.1. Events from communication library topf 32
C.2. A program-examplel e e e 33
C3. events.pf L e 34
C.4. Communication Library Callsin PF 35
C.5. Callbacks for Opcodesin PF 35

D. PF-libraries for service agent 35
D.1. Connections.pf e e 36
D.2. Callbacks.pf e e 37
D.3. Remproc.pf e e e e 38
D.4. Program example test2.pf L L 39

6 compiled: 21st January 2003

1 THE ENNCE PROJECT

Trading of QoS policies in ENNCE

Wolfgang Leister Gorm Paulsen
Norwegian Computing Center Institute for Informatics
wolfgang.leister@nr.no University of Oslo

gormp@ifi.uio.no

Pal Spilling
Center for Technology at Kjeller
paal@unik.no

This contribution is the concluding report of the ENNCE project WP1, which
elaborates the trading mechanisms that were studied and implemented during the
course of the project. The main goal is to elaborate trading mechanisms for QoS
negotiation between the involved parties in a data network. Especially we take
into account that the QoS negotiation is done on behalf of an end user. For the
negotiation we propose an agent-based system based on code passing between the
entities involved. Selected parts of the implemented systems are presented.

Keywords
Quality of service and media scaling, Multimedia-specific intelligent agents,

Resource management, trading protocols

1. The ENNCE project

This document is an elaboration of the trading mechanisms in the ENNCE architecture, as
part of QoS management in continuous multimedia systems. The ENNCE project is funded
by the Research Council of Norway, and consists of two work packages. WP 1 comprises
an overall architecture of QoS-management, including the selection of suitable applications
and to build up an infrastructure (hardware) for experimentation. The main element of the
architecture of WP 1 includes the use of a Service Agent (SA), which will be elaborated further
in this document. The progress of this work package is presented in [1, 12, 13, 14].

WP 2 focuses more on the middleware, and underlying logic of the negotiation process.
The main elements comprise the reference model for Open Distributed Processing (RM-ODP)
[15], and the Model of Binding and Streams (MBS) [2].

This document shows how the two work packages of the ENNCE project melt together in
a more general, unified framework. The glue between the two parts can be seen in the trading
mechanisms for QoS parameters.

Trading mechanisms for QoS parameters are especially needed for continuous media, and
situations where mobility, resource awareness, varying network connections, and client capab-
ilities are involved. Several authors have proposed frameworks; see for instance [16] for the
use of an agent technology in mobile environments. The framework of the ENNCE project is
meant to be a general tool box to build QoS negotiation support for many of the use cases
mentioned above.

In the remainder of this section we present an overview of the work done in the ENNCE
project prior to the current report. We refer to the architecture document [1], the thesis of
Terje Michelsen [8], the thesis of Gorm Paulsen [17], the characterisation of the applications
[12], and implementation of the network infrastructure [13, 14].

compiled: 21st January 2003 1

Trading of QoS Policies in ENNCE

User Command Graphics-, Audio-, Video User Command Graphics-, Audio-, Video

Interface User Interface Interface User Interface
3 Service Application 3 3 Service Application 3
| Agent Process ! | Agent !
| Transport ! | !
1 | Connection ¢ Bl B | 3 | | Reservation Real-Time 3
' | Management I b ! Agent TCPUDP Transplort |
| AAL] ! I t ¢ t 1
! ATM 1 ‘ P ‘

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

End System

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

End System

Figure 1: End System Architecture for ATM (left) and IP (right)

1.1. Architecture document

The architecture document [1] elaborates the general framework which the ENNCE project
is based upon. Much multimedia research has been devoted to studying networking and
middleware aspects of QoS, and how QoS should be managed, without including the user.
The novel approach taken in ENNCE, is to place the overall QoS control in the hands of a
single entity in the requesting client system, called the Service Agent (SA), see Figure 1.

The basic underlying principle is that the higher the quality of a multimedia application,
the more resources it consumes in the network and end systems; hence the requesting user
should be charged accordingly. From the user point of view, the negotiation process will
involve the chosen application, the user’s desired quality, and the user’s willingness to pay
for that quality. From the network point of view, the negotiation process will involve the
application’s required quality and the service offered by the network. It is assumed that a
random user has no system and multimedia knowledge, and therefore needs to be guided
through the complicated negotiation process.

This SA entity (not to be associated with agent technology) can interact with all system
components, including the user. Through these interactions, it learns the capabilities of the
end system and the application process, and can negotiate QoS attributes and configure the
end systems and the network accordingly.

The Service Agent will build up standard application-specific configuration profiles, which
may also be specific for each user, and use that as a starting point in negotiating with the
user. This means that the user may modify the configuration profile as need be.

An essential functionality is the interfaces between the SA and the various components of
the end system. These interfaces specify the services used by the SA and the services offered
by the SA. Called SA Control Protocol (SACP), a dedicated control message protocol has
been developed for this purpose. It serves the following purposes:

e passes requests and status information between the user and SA,

2 compiled: 21st January 2003

1 THE ENNCE PROJECT

passes status and configuration information between SA and end system components,
supports negotiation with the network,
provides a syntax for profile information,

supports negotiation with the remote end system.

1.2. Terje Michelsen’s thesis

Distributed communicating application processes are designed and implemented under the
assumption that data are exchanged between them with a given minimum service quality. This
minimum service quality will vary from application to application. Typical traditional Internet
applications, like file transfer and email, require high reliability, but very little regarding delay
and delay variations. In contrast, applications involving voice and video streaming across the
network, have tighter requirements regarding delay and delay variations and less stringent ones
regarding reliability. These requirements will vary depending on the degree of interactivity,
simplex, half duplex, and duplex, and the voice and video coding methods.

In multimedia applications there will be a mixture of data, graphics, and streams of voice
and video. The streams require higher controllable quality than the data, and will depend on
the quality of the voice and video presented to the end users. Quite obviously, higher quality
requirements are more costly to fulfil. Hence the end users have to be charged for the extra
costs. And quite naturally, a user wants the highest possible quality for the lowest possible
costs. In utilising multimedia applications, the user should therefore be consulted regarding
what quality he/she is willing to pay for. This means that the end user has to be incorporated
in the negotiation process being initiated when a distributed multimedia application is fired
up.

Having no specialised system and multimedia knowledge, the random user needs to be
guided through part of the negotiation process with the help of the Service Agent. This has
been the focal point of Michelsen’s thesis. It involves the following elements:

e a user-to-SA interface; the control interface,
e a voice and/or video interface; user to application interface,
e a quality — cost model.

The exact relationship between cost and quality has not been essential in this thesis, but
this will be a key element in real applications.

Since the user is assumed to have no technical knowledge, it is essential that the user can
specify subjective quality requirements. These requirements are then mapped into concrete
attributes representing the requested quality of service and suitable for negotiation process
and configuration of the end systems and the network.

With reference to Figure 1, the main tasks of the Service Agent are the following:

e discovery of the QoS-dependent capabilities of the application, and the middleware and
operating system at the client side,

support the user in the QoS-specification,

configuring of the end system according to the agreed upon QoS,

establish the communication channel between the communicating end systems,

and finally negotiate the QoS requirements with the Service Agent in the remote end
system, and as a result have the remote end system configured accordingly.

In negotiating QoS, we envision the following steps:

compiled: 21st January 2003 3

Trading of QoS Policies in ENNCE

Step 1; The multimedia application process is fired up and contacts the Service Agent (SA)

Step 2; SA requests the application to specify the supported media types and their coding
capabilities. SA may also probe other end system components to discover their ability to
provide QoS support. SA also needs to know the cost model.

Step 3; SA, knowing the capabilities of the application, the end system, and the cost model,
starts negotiation with the user. SA maps the user’s subjective requirements into concrete
QoS parameters.

Step 4; SA interacts with the Reservation Agent, see Figure 1, and requests it to establish
a path across the network to the specified destination, making the necessary resource reser-
vations along the path according to the required quality. The request will be accepted, or
refused because the needed resources are not available. In this example we have assumed the
IntServ model. Step 4 can be adapted to the DiffServ model and to the use of MPLS.

Step 5; having established the path to the remote end system, the final step for the local SA
is to contact the remote SA, hand over the QoS requirements in order to have the remote end
system configured accordingly. If this is not possible, the session is terminated. Otherwise the
distributed application processes start the real communication.

The Pricing Model

Networks and end systems have finite capacities. It is obvious that the use of distributed
applications requiring controllable performance, both of the network and of the end systems,
must be accompanied by a pricing model — higher required performance will be charged more,
while lower required performance will be charged less. A properly designed pricing model is
therefore needed as a means to regulate the resource consumption.

For simplicity we assume a user requesting a “Video on Demand” application from a remote
server. We then have two alternatives regarding the pricing model:

e pricing depends only on the resources consumed in the network and at the server side,
e pricing incorporates also the load on the server side.

The user is interested to optimise the quality perceived for the lowest possible price. From
empirical studies the perceived quality M can be expressed as:

_a-US
- B-RC

where US is user satisfaction, RC is resource consumption and « and are weighing factors.
The ratio o/ may be static or made dynamic and dependent on the total load (network
and end system). In an interactive distributed multimedia application, US will depend on
many factors, like jitter, end-to-end delay, price, skew between picture and voice, picture rate,
and packet loss. In a dominant one-way application, end-to-end delay and jitter will be less
important. We assume that packet loss is not random and due to transmission errors, but will
be load dependent in the routers and end system. If we utilize MPEG coding of the video
information and configure the routers and end systems such that packet loss is made selective
and load dependent, we can gradually reduce the required network capacity with a gradual
decrease in picture quality. The following strategy in reducing the required bandwidth has
been followed, in order of increasing importance for the picture quality:

4 compiled: 21st January 2003

1 THE ENNCE PROJECT

User

increase the quantization level of the MPEG coding,
reduce the picture rate,

reduce the picture resolution,

increase the drop rate of B-frames.

profiles

The Service Agent (SA) maintains different aspects of user profiles, called profile vectors:

application vector; subjective application requirements are mapped into an application
attribute vector. The user participates in negotiating the contents of this vector, so that
it is consistent with the available resources (the system vector).

system vector; contains information on available system resources, like cpu- capacity,
bandwidth, buffer capacity, input/output capacity and current resource utilization.

If the negotiated requirements cannot be met, the attempt to utilize the application is
refused.

We envision the following processing steps from when the user requests a given application
until it is operational:

1.

the user notifies SA about its intention, and SA responds with requesting the application
requirements from the user.

. the user specifies the desired quality requirements and possibly a price level. The spe-

cification can have the form of subjective user requirements, an application vector, or
just a price limit.

in case the user specifies subjective requirements, SA is converting these into an initial
application vector. The application vector is application specific, because it depends on
the media coding formats. Based on the initial application vector, SA is then calculating
a traffic specification. In case the user only specifies a price limit, SA may adjust the
traffic description to conform to the user’s price limit.

the system vector is now adjusted to reflect the application requirements regarding sys-
tem resources and traffic requirements, and that there are sufficient resources available.
We assume at this stage that SA knows the address and capabilities of the application
server, and that the traffic description is not in contradiction with the server’s capability.

. the resource requirements and the resource availability are used as input in a cost cal-

culation, presented to the user for acceptance.

if accepted by the user, the application profile — including the traffic description — is
stored for later use.

the multimedia session with the server can now be established.

The Service Agent SA

The available funding and human resources did not permit a complete implementation of
SA. We therefore limit our research to investigating the interface and the negotiating process
involving the user. Further we limited our application to “Video-on-Demand” with MPEG
video coding format, and simulated a network environment with adjustable bandwidth and

compiled: 21st January 2003 5

Trading of QoS Policies in ENNCE

loss rate. This enabled us to investigate the perceived quality as function of bandwidth, loss
rate and cost. The cost C is a function of resource consumption and current load on the
network, and consists of a linear part and an exponential part:

C=X+X?

where X = RC/RF with RF = 1/(4- NW), NW denoting the network load, and RC the

resource consumption.

1.3. Discussions and conclusions

e previous work has mainly focused on end-system to network QoS negotiation, including
distributed multimedia applications, but omitting the user,

e a main point in current contribution has been to include a cost model in SA- user quality-
of-service negotiation, with focus on user satisfaction. User satisfaction is optimised as
function of price and quality (resource consumption),

e the used price model includes a fixed part and an exponential part, both dependent on
the required network resources and network load,

e the implementation has been concentrated on testing out the SA-user interface, the
relevant part of SA, and a MPEG-based configurable application. The network and the
remote end were just simulated, in order to concentrate on the user involvement in the
negotiation process,

e the user could only specify objective quality requirements, while the initial intention was
to permit both subjective and objective specifications. Funding and time constraints did
not permit this.

e the negotiation concept should be tested out in a real situation involving configurable
end systems and network,

e the cost model needs improvements to incorporate more dependencies, for a better op-
timising price and performance

e as a result of the current investigation, our pricing model seems to be an effective means
to regulate resource consumptions in multimedia applications.

2. Service Agent

The architecture and the negotiation process is presented in the architecture document [1].
The architecture uses the Service Agent as a main element. The SA negotiates on behalf of the
user and the involved applications and controls the setup of the QoS parameters. The trading
process for QoS parameters is the main concern of this report. In ENNCE the trading process
uses the stream binding paradigm, and a high level Service Agent Control Protocol (SACP)
as the main ingredients. SACP is a part of an agent technology, where both data, trading
protocols and procedures are exchanged between the parties involved, and their respective
agents.
The SA performs a variety of tasks:

e Discern the QoS capabilities of the application media, the middleware, and the network:
The SA can establish connections with agents and demon programs on the local or
remote hosts, and, where appropriate, retrieve information using the SACP, or other
convenient protocols. Additionally, the SA can retrieve information from files, or make
use of default or guessed values.

6 compiled: 21st January 2003

2 SERVICE AGENT

Coordination Module

Appl. (Server)
- perspective

Resource

perspective
G0

User
perspective

Appl. (Client
perspective

Binding

Figure 2: The perspectives and modules within the Service Agent.

e Support the user in negotiating QoS requirements: The SA can open SACP connections
with user agents, that offer user interfaces for configuring QoS parameters at user level.
Additionally, user profiles and preferences can be built up, and later utilised by the SA
in the configuration process.

e Configure the end system according to the negotiated QoS requirements: The SA can
configure the end systems by supplying the appropriate parameters in command line
mode, or by forwarding the appropriate parameters via a connection using a suitable
protocol.

e Establish the network connection with the right QoS properties: The SA negotiates
usually by means of a reservation agent (e.g. rsvpd) via a suitable protocol or API.

e Negotiate QoS requirements with the other end system: Several SA can be involved
in the negotiation part. Stream binding and the SACP protocol are used in order to
negotiate among the parties (user, client, server).

The SACP protocol includes:

e A session protocol which permits the exchange of asynchronous (text-based) messages.
The session protocol can be used to transport text-based data in whatever syntax, and
programs.

e The negotiations are facilitated by the use of a high-level language. We chose the
language PF, which implements a code passing mechanism as a means to exchange more
than just values. PF is a general purpose high level language, related to PostScript [18].
The interpreter for and its run time system is implemented in C. See Section 3.2 for a
more detailed presentation of PF..

2.1. Perspectives

The ENNCE architecture consists of several loosely coupled components, in order to break
the complexity of the system into manageable parts. Each component deals with its own
distinct, well-defined area of concern, called perspective. The perspectives and the modules
of the Service Agents relate to each other, which is illustrated in Figure 2.

compiled: 21st January 2003 7

Trading of QoS Policies in ENNCE

The media perspective. Application level QoS parameters are media specific, and dependent
on the media format, which makes the translation and mapping between the various media
difficult. Therefore, a component is required that handles the mapping of media specific
application level QoS parameters into parameters at the system level.

The media perspective can be implemented through a Media Knowledge Base, which is
an agent dealing with media specific information, such as specifying what application level
QoS parameters are required for a given media format, and providing appropriate functions
for mapping between QoS parameters at the application and system levels.

The resource perspective. Resource management and mapping of system level QoS para-
meters into resources is done by the Reservation Agent. This entity operates at the system
level, and interfaces with the OS and resource management protocols, e.g. RSVP or SNMP
(see RFC 1098). Its responsibilities include resource reservation, admission control and mon-
itoring.

The application perspective. Applications have knowledge about what types of media
formats they support, and to what extent the various parameters of each media format are
adjustable. In addition, application developers are faced with the challenge of having to im-
plement a negotiation procedure and a user interface for negotiating user level QoS parameters
for every application. We believe that there is a need for external support in managing these
tasks. If such support were present, it would allow applications to state their capabilities in
terms of media formats and application level QoS parameters in order to take advantage of ne-
gotiation facilities and reservation mechanisms in the architecture. We use an API that allows
applications to state their capabilities in terms of media support and parameter adjustments.

The user perspective. The end users of the system can specify their own preferences in terms
of media formats and user level QoS parameters. Assistance is offered for the negotiation
situation. Users are not a homogeneous group, and we can expect to find users ranging from
levels of very little technical insight to highly skilled expert users. Thus, there is a need for
user-supporting entities that can take into account the varying levels of user expertise and
help select appropriate formats and parameter values.

In our implementation these issues are handled with by the User Agent component. The
User Agent’s responsibilities include assisting the user selecting appropriate media configura-
tions at negotiation time, and to provide the system with the user’s adaptation policies. The
agent may use historic data (previous experiences) in guiding the user.

The overall perspective. The Service Agent component plays the role of a coordinator in
the architecture, controlling the other components. It has several responsibilities, including;:
Capturing the application’s capabilities

Performing comparability checking

Receive events from the Reservation Agent

Interface with the User Agent

Receive and send messages to the applications during sessions

Communicate with Service Agents on remote hosts

Any communication between hosts is handled by the Service Agents, such as contacting a
host for session initiation. The system is designed in such a way that applications can initiate
communication using any session initiation protocol available.

8 compiled: 21st January 2003

2 SERVICE AGENT

User Interface

: | (i)
@
Figure 3: This Figure shows an example of stream binding with SA:The objects Client, Net-

work and Server are controlled by two Service Agents, SA1 and SA2. The network
object is controlled by rsvpd. The service agents have also interfaces in-between.

4
g

-
v

2.2. Negotiation of Stream Bindings

The ENNCE model uses the MBS (Model of Bindings and Streams) as outlined by Rafaelsen
and Eliassen [2]. In this model a stream interface consists of a collection of a source and/or
sink media flows. During the stream binding process, a logical association is established
between compatible stream interfaces. The result of the binding action is a control interface
through which the binding object can be controlled. In the ENNCE model the Service Agent
controls this interface, which includes adding new interfaces, and removing existing ones. The
Service Agent also implements or has access to the binding factory (it contains the negotiation
protocol). An example on how the binding model for a client-server application could look
like is illustrated in Figure 3.

The ENNCE model follows the principles of the MBS, including the rules of conformance.
However, the negotiation procedure by Rafaelsen and Eliassen [2] is somewhat restricted, as
it implements a fixed algorithm that tries all combinations in a specified order. In contrary to
that, the ENNCE model does not define a negotiation strategy. The code-passing paradigm
makes it possible to transfer the negotiation strategy from one participant to another, accord-
ing to the user’s profile.

Work within that area includes the feature set model by Klyne in RFC 2533 [19], and
Flow type model and the language FIDL (Flow Interface Definition Language) by Mehus [20],
which has its roots in the MBS model by Eliassen and Nicol [7].

Klyne presents a syntax to describe media feature sets IN RFC 2533 [19], that are expressed
by a combinations and relations of individual media characteristics. Additionally an algorithm
to match feature sets is included.

2.3. QoS negotiation

Negotiation is the process of coming to an agreement on parameters or determine the quality
of a data transmission. Negotiation between a sender and a receiver usually consists of a
series of negotiation meta-data exchanges that proceeds until either party determines specific
data to be transmitted. This process implies an open-ended exchange of information between
sender and receiver. Another issue is service discovery.

QoS negotiation in general has been available for special purposes. Examples include the
fax negotiation protocol or the negotiation protocol for modems. For fax negotiation the

compiled: 21st January 2003 9

Trading of QoS Policies in ENNCE

recipient declares its capabilities, and the sender chooses a message variant to match.

The negotiation of QoS and media content is not yet generally available for standard
applications. However, there are attempts to implement QoS negotiation for media, like the
Transparent Content Negotiation (TCN) for the HTTP protocol [22]. TCN is experimental
with the following strategy:

e The recipient requests a resource with no variants, in which case the sender simply sends
what is available.

e A variant resource is requested, in which case the server replies with a list of available
variants, and the client chooses one variant from those offered.

e The recipient requests a variant resource, and also provides negotiation meta-data (in
the form ‘Accept’ headers) which allows the server to make a choice on the client’s behalf.

According to Danthine and Bonaventure [23], three actors are involved in a (peer-to-peer)
negotiation: calling user, called service, and service provider. This is a likely situation for the
ENNCE project. Note, that the ENNCE framework still can handle other situations as well.
Danthine and Bonaventure propose a 4-primitive information exchange: request — indication
— response — confirmation.

In the same paper, the authors discuss several types of QoS negotiations, e.g., Triangular
negotiation for information exchange, Triangular negotiation for a bounded target, Tri-
angular negotiation for a contractual value, Bilateral Negotiation, and Unilateral Negotiation.
The ENNCE framework is not bound to one of these negotiation types; either of them can be
implemented in SACP.

The ENNCE framework allows to specify different kinds of negotiation protocols. Data
(i.e. characteristics) and procedures (i.e. policies) can be exchanged between agents due to the
code-passing capability. The SACP is used for negotiation, which includes a session protocol,
and the use of the interpreted programming language PF.

In a simple case the service agents exchange the characteristics of alternative stream flows
with different qualities determined by a given protocol/policy. Then one agent calculates a
list of compatible stream flows, which then are attempted set up (possibly including user
interaction).!

The specific advantage of the ENNCE framework is that the protocols, policies, and formu-
lae for calculating derived characteristics can be exchanged between agents. The information
is then originated from a place where it is known best, even if not all information is available
there. The information can also be updated easily, and user profiles can be stored directly.
This gives much flexibility.

In order to respect the specifications of the end user, her profile is used in the negotiation
process. The end user is the consumer of the stream, and will eventually also pay for the QoS
in the stream delivery. More on accounting, charging, billing and pricing of network services in
connection with QoS can be found elsewhere [24, 25]. In the negotiation process an appraisal
function is defined, which is a function of QoS parameters, the user’s profile, and application
requirements. The appraisal function can be used as a measure on the quality of the stream.

The negotiation procedures of the stream binding process outlined in [20, 2] are somewhat
too rigid. Smaller deviations, or the utilisation of adaptation filters, cannot be handled by
these procedures. This may result in that the negotiation/binding attempt fails, even though
slightly worse alternatives exist, that are not covered by the user’s specifications.

For each stream characteristic (or attribute) we can define an appraisal function, that is
defined as a sum of weighted costs of the appraisal of QoS capabilities. This function gives a

!This procedure is quite similar to the scenario in [2].

10 compiled: 21st January 2003

2 SERVICE AGENT

value to the quality of a stream. By comparing two appraisals we can calculate the difference
or distance between two streams.
In ENNCE the media model consists of the following entities:

media description: frame work for description of qualities / characteristics of media at the
end points.

compatibility: a method for describing the degree of interoperability between end points must
be developed, so that the common media characteristics at the end points can be used.

appraisal function: information that ties the characteristics of a media format to QoS, both
on user-, network- and system level.

The appraisal function and the service agent concept can be used in connection to all entit-
ies in a network, including routers. Each router will in the ideal case forward the stream with
the required quality, or may reduce the quality for various reasons. We define the appraisal
function to compare the users specifications with the quality description of the forwarded
stream at node n. When a stream passes through several nodes the stream description is
updated to represent the actual value from the sender to this node, and a new appraisal is
calculated.

The following method can be applied in this case:

1. Since the user most likely will pay the bill for the delivery of the multimedia data, an
appraisal function is attached to all streams that are passing any entity.

2. In order to compare a stream definition with the user’s specification, we use a function
that describes the distance between the two streams. This function is a measure for the
compatibility between these two streams, where low values represent a good match, and
high values a bad match. This function is called “badness”.

3. We add the (weighted) costs with the (weighted) badness to get a value, that expresses
the costs of setting up the stream. This function is called “appraisal function”.

4. We create an appraisal functions for all nodes the stream passes through.

5. Values that are not known are assumed, possibly using statistical values (from the past)
or data from simulations (e.g. for the network behaviour).

6. When this value later shows to be wrong, e.g. a connection cannot be reserved, we set
this value later to a high badness.

7. When the outcome of the appraisal function is larger than a user-defined limit, the
stream is not set up, and the user will be notified about that fact.

8. The appraisal function (which expresses the quality of a stream) can be expressed as
being dependent on other variables.

2.4. Reference model for negotiation

RFC 2703 [21] contains a framework for setting up bindings for multimedia content. The
document is related to RFC 2533 [19], and covers content negotiation for application resources,
that goes beyond the handling of MIME headers. The overall framework is shown in Figure 4.

compiled: 21st January 2003 11

Trading of QoS Policies in ENNCE

Abstract Abstract
negotiation negotiation
process metadata
Negotiation Negotiation
protocol metadata
binding representation

1oy |

Application protocol
incorporating
content negotiation

Figure 4: Negotiation framework, from RFC 2703

The goal of RFC 2703 is to provide a protocol-independent content negotiation framework,
including the identification of some technical issues. Not all terms might be applicable to all
multimedia purposes in general.

The other parts in RFC 2703 outline a framework for describing protocol-independent
content negotiation, including some general goals and technical issues. The goals mentioned
in the document can be seen as a general checklist that is useful for designers of negotiation
protocols. In general, content negotiation covers the following three elements:

1. expressing the capabilities of the sender and the data resource, to be transmitted;
2. expressing the capabilities of a receiver;

3. a protocol by which capabilities are exchanged.

Comments on goals of RFC 2703

The framework document RFC 2703 lists goals that a negotiation framework should meet. We
comment on these goals, and compare these with our work. Some parts of RFC 2703 cannot
be applied to ENNCE, since ENNCE uses a code-passing paradigm. See Section 3 for more
details on the underlying mechanisms.

‘ Goals in RFC 2703] How ENNCE meets these goals ‘

General deployment goals

A common vocabulary for designating | The code passing paradigm, with the possibility
features and feature sets. of PF to define objects and procedures, even en-
ables the partners of the negotiation to exchange
a common vocabulary.

A stable reference for commonly used | The definition of SACP, and the appraisal func-
features. tion build such a reference.

An extensible framework, to allow | The code passing paradigm, with the possibility
rapid and easy adoption of new fea- | of PF to define objects and procedures, enables
tures. the partners of the negotiation to exchange a
common vocabulary.

12 compiled: 21st January 2003

2 SERVICE AGENT

Goals in RFC 2703

‘ How ENNCE meets these goals

Permit an indication of quality or
preference.

The appraisal function is such an indication.

Capture dependencies between fea-
ture values

As PF is a programming language, dependencies
between feature values can be expressed

A uniform framework mechanism
for exchanging negotiation meta-data
should be defined that can encompass
existing negotiable features and is ex-
tensible to future (unanticipated) fea-
tures.

SACP and PF implement this.

Efficient negotiation should be pos-
sible in both receiver initiated (‘pull’)
and sender initiated (‘push’) message
transfers.

The use of the Service Agent permits both pull
and push operation in the negotiation.

The structure of the negotiation pro-
cedure framework should stand inde-
pendently of any particular message
transfer protocol.

Even though the ENNCE framework has sev-
eral hooks for other protocols, the negotiation
is based on SACP and PF.

Be capable of addressing the role
of content negotiation in fulfilling
the communication needs of less able
computer users.

The Service Agent can communicate with all
subsystems, and retrieve information on the
capabilities of a computer. This can be included
in the formulas, that are evaluated by the PF in-
terpreter.

Protocol-specific deployment goals

A negotiation should generally result
in identification of a mutually accept-
able form of message data to be trans-
ferred.

yes.

If capabilities are being sent at times
other than the time of message trans-
mission, then they should include suf-
ficient information to allow them to
be verified and authenticated.

The SACP protocol has several mechanisms
to provide this. Connections are identified by
names, and the negotiation objects can be ac-
cessed by names in the PF name space.

A capability assertion should clearly
identify the party to whom the capab-
ilities apply, the party to whom they
are being sent, and some indication
of their date/time or range of valid-
ity. To be secure, capability asser-
tions should be protected against in-
terception and substitution of valid
data by invalid data.

An indication of date/time has not been in-
cluded yet; however this should be straight for-
ward. The other parts are included in SACP.
This does imply the use of security features like
authentication, integrity protection, etc.

compiled: 21st January 2003

13

Trading of QoS Policies in ENNCE

Goals in RFC 2703

‘ How ENNCE meets these goals

A request for capability information,
if sent other than in response to de-
livery of a message, should clearly
identify the requester, the party
whose capabilities are being reques-
ted, and the time of the request. It
should include sufficient information
to allow the request to be authentic-
ated.

With the exception of time, these parts are
provided by SACP.

The negotiation mechanism should
include a standardised method for as-
sociating features with resource vari-
ants.

Provided by PF, which is a programming lan-
guage that allows the definition of structured
data.

Negotiation should provide a way to
indicate provider and recipient pref-
erences for specific features.

Yes. Profiles for user, etc. can be stored, re-
trieved, and set by standard mechanisms.

Negotiation should have the min-
imum possible impact on network re-
source consumption, particularly in
terms of bandwidth and number of
protocol round-trips required.

The code passing paradigm makes it possible
to retrieve a recipe. Therefore, instead of com-
municating with clients for every request, the
client can calculate values of known parameters
and functions. Decisions can be taken locally in
the service agent without too many round trips
necessary. Round trips are only necessary to re-
trieve actual data.

Systems should protect the privacy of
users’ profiles and providers’ invent-
ories of variants.

This feature can be implemented; however it is
not used in the current prototype.

Protocol specifications should
identify and permit mechanisms to
verify the reasonable accuracy of any
capability data provided.

Possible to define, but not implemented in the
current prototype.

Negotiation must not significantly
jeopardise the overall operation or in-
tegrity of any system in the face of er-
roneous capability data, whether ac-
cidentally or maliciously provided.

While the ENNCE prototype is not secured
against attacks, this does not affect the concept
as such. The main negotiation functionality
is provided by a separate application, the Ser-
vice Agent. Should the Service Agent be non-
functional, the applications could continue to
work as without negotiation.

14

compiled: 21st January 2003

3 NEGOTIATION WITH THE SERVICE AGENT

Goals in RFC 2703 ‘ How ENNCE meets these goals ‘

Intelligent gateways, proxies, or | Interfaces and agents representing the gateways,
caches should be allowed to particip- | proxies, etc. can be added.

ate in the negotiation.
Negotiation meta-data should be re- | SACP/PF provides this feature.
garded as cacheable, and explicit
cache control mechanisms provided to
forestall the introduction of ad-hoc
cache-busting techniques.

Automatic negotiation should not | The user’s profile can contain this.
pre-empt a user’s ability to choose
a document format from those avail-
able.

3. Negotiation with the Service Agent

3.1. Implementation of the Perspectives

The implementation of the Service Agent follows the model of perspectives described pre-
viously. Whether these perspectives are separate modules, or implemented as PF-code is
dependent on the implementation.

The architecture of the prototype system implemented by Paulsen [17] has the following
components:

service agent (each host)

user agent (for each user)

media knowledge base (connected to SA)
reservation agents (connected to SA)

applications (with or without user).

Steps in a Session

In experiments with the ENNCE concept, the following negotiation steps were chosen as an
example. Note, other procedures and negotiation protocols might be suitable as well, and
these will probably be supported by the framework. The steps of a session are as follows:

e set up connections between service agents.

information exchange (specifications from the applications to the service agents)
compatibility checking

resource checking

negotiation with the user(s). (what do users want)

admission checking (can system support the user’s desire?)

set up the streams.

adaptation

renegotiation (if necessary)

The functionality should make sure that the adaptation phase is controlled by the users’
adaptation functions. These are generated by the user agent in the negotiation phase with
the user. Therefore, it exists on a per-session basis, and therefore we have achieved a dynamic

compiled: 21st January 2003 15

Trading of QoS Policies in ENNCE

user-controlled binding. Technically, the adaptation function is a PF-function, that is sent to
the SA by the user’s agent by using the code-passing paradigm.

The steps involved when setting up a session are as follows:

An application initiates a session by making a call to its local Service Agent. At the
same time it provides its SA with its capabilities.

The involved Service Agent sets up a communication channel, exchanging capability
information on behalf of the application and performing compatibility check. An inter-
section of the capabilities of the applications is computed using media information from
the Media Knowledge Base. Intersected compatibility information then propagates back
to the respective agents.

The Service Agents, now having sufficient compatibility information, contact the user’s
User Agents (if any), initiating user negotiation.

The User Agents retrieve the user’s profile.

When no profiles exist, the User Agents execute some negotiation routine, making use
of the compatibility information and media information provided to them by the Service
Agent. This process may involve the displaying of example media clips to illustrate
various levels of QoS to the user. The required output of this negotiation is a selected
media configuration and an adaptation policy. This policy, in the architecture termed
“Adaptation Function” governs the user’s adaptation to changes in transmission condi-
tions.

Having obtained the user’s selected configurations and adaptation strategies, the agents
perform admission testing, to check whether sufficient resources are available. If this is
the case, the applications are told to set up the media streams. Otherwise, renegotiation
is initiated.

During transmission, Service Agents react to events received from the Reservation Agent,
and take appropriate actions based on the resource information provided. An example
of such an action is to invoke the user’s adaptation function in response to a resource
degradation message from the Reservation Agent. The adaptation function may perform
operations on the sending application’s configuration, e.g. lowering the sample rate, or
initiate renegotiation.

Principles of the Service Agent

The service agent has

a control interface for the user (possibly)
control interfaces between agents
control interfaces to application

Code passing

Connection need not be available at all times. An agent can make assumptions when
the corresponding peer agent is unavailable.

Send policies directly instead of data. Advantage when data change, the changes can be
adjusted locally (no network traffic).

constraints and parameters are all passed by a standard mechanism.

Practical issues: text substitution ...

16

compiled: 21st January 2003

3 NEGOTIATION WITH THE SERVICE AGENT

Application
level User Agent [—=| Application |
System-
level Reservation . Media
Agent [<—* Service Agent [+ gnowledge
ase

Figure 5: Main structure in the SACP architecture

— PF-application-layer

PF Session| other | Opcode-layer
OPC OPC OPC | (appl.-layer)

ComLib Session-layer

PF (TCP) Transport-layer
virtual

machine

(1P Network-layer

Link-layer

Figure 6: Protocol-layers in SACP (over TCP/IP)

3.2. SACP — Service Agent Control Protocol

The Service Agent Control Protocol (SACP) is used for negotiation between several Service
Agents, and between the Service Agents and other parts of the system (as the User Interface
Agent, or the applications). Therefore, the SACP has to meet the following characteristics:

o flexibility and simplicity.

e encapsulation of several protocols.

e possibility to express complex rules, and facts.
e robustness.

The SACP consists of several layers in the protocol stack, which are outlined in Figure 6.
The SACP protocol is implemented on top of a connection-oriented transport protocol (e.g.,
TCP).

The session layer has an API that does not have an explicit open or close call. Functions like
SendToApplication or incoming connections perform these calls implicitly. Unsent messages
are queued, and sent when the connections eventually are set up (again). Even when a
connection breaks down (on a lower protocol-layer), the session is still kept. A session is
identified by a channel name, which can be resolved to port number and IP address by lookup
in an internal database (also called portmapper).

The SACP exchanges messages are marked with an opcode. With this mechanism, SACP
can encapsulate other message-oriented protocols. The application can set up the interpreters
for the different opcodes. See more in the Appendix.

In SACP the PF interpreter is attached to the application. Other languages than PF
(e.g. LISP or Prolog) could be used, when a suitable interpreter is available. PF-code can

compiled: 21st January 2003 17

Trading of QoS Policies in ENNCE

be included in messages with application-defined opcodes. This PF-code is processed in an
environment that is defined by the opcode.

The SACP protocol needs more than just a mechanism to exchange data and facts on
the basis of a simple client-server based protocol. Especially for exchanging policies and
procedures (between agents) the exchange of code must be possible. The characteristics of a
language that is suitable for our purposes must include the following:

e Possibility for the use of variables, definition of procedures

e Execution of code based on an interpreter (or just-in-time compiler).

e Simple syntax, including the possibility to use a simple subset of the language for mes-
sages to applications that can parse the messages with a simple parser.

e Possibility to create run-time environments, where fragmentary code can be executed.

e Availability of interpreter and run-time system, that can be attached to the agents and
(possibly) applications. Possibility to integrate the interpreter and run-time system with
the message-system.

e Powerful language with run-time constructs, error recovery possibilities, and data struc-
tures.

e Human-readable form would be advantageous.

o Text based language makes substitution operations possible in external programs, e.g. us-
ing a Perl-script as a client.

e An extensible language is preferable.

Though built for code that is portable and usable for agents, we consider Java not to
be suitable for our purposes. Candidates for a suitable programming language would be
numerous, including various flavours of BASIC, standard programming languages based on an
interpreter, Prolog, LISP, or PostScript. In our implementation we use a subset of PostScript
(i.e. we do not need the graphics and typographic operators of the language), that is enriched
with a more sophisticated search procedure for the operators and names, in order to be able
to write PF-programs in a more object oriented style.

As mentioned above, Java is not more suitable for our purpose than other general purpose
languages. Java’s distribution model is based on byte code for the Java virtual machine.
In order to implement mobile code for exchanging policies, a just-in-time compiler would be
necessary, and the agent would have to deal with two different representations of the code. In
such an implementation Java code would be exchanged instead of byte code.

Even if we would choose Java, we could not make use of the mechanisms that the Java
concept offers with regard to mobile code. Only the byte code for the Java virtual machine is
mobile with normal use. However, the byte code is not object oriented, and modifications of
the code would be quite difficult to achieve. A solution could be to compile the byte code to
Java. However, we consider such a model to be too complicated for a prototype.

3.3. The PF language

PF is an interpreted programming language which is derived from PostScript [26, 18]. However,
the graphics and typographic parts of the language definition are not implemented, and there
are minor changes in the key words, for practical reasons. PF has an additional feature that
changes the search of names within the interpreter. This facility gives PF the possibility for
multiple inheritance when the variable __PARENT__ is set properly in an object. Objects are
implemented as dict in PF.

Usually in Postscript the search path for names is to search the dicts in the dict stack.

18 compiled: 21st January 2003

3 NEGOTIATION WITH THE SERVICE AGENT

The PF feature __PARENT__ defined for each dict can contain a list (array) of dicts, which are
searched first recursively. Using this feature, objects can be defined which inherit from parent
directories. In the PF language, a dict can be used as an object. A dict is a collection of
name-value pairs.

PostScript is stack-based. Therefore, the language is mostly independent from devices
and implementations. However, PostScript is also rather unusual for use as a programming
language. As PostScript is stack based, the syntax is somewhat “backwards”’ to a human pro-
grammer, but this concept permits a low overhead in processing and storage. Each instruction
can be acted upon immediately, without the need to buffer large amounts of the program.

The implementation of the PF-interpreter and run time system was done by M. Linsen-
mann around 1990, and used in several occasions, e.g., [27]. The implementation is somewhat
unfinished, and several operators are missing. Some differences to original PostScript are
unintended, and a result of not being prioritised while the system was implemented. How-
ever, other differences to PostScript are intended, e.g., the inheritance (search rules) of the
interpreter. The main issues for the use of PF and its interpreter are:

e Study language constructs, and use the system as an object of study and experimenta-
tion.
e Use the interpreter to build flexible systems for prototyping.

3.4. Negotiation in PF

In the following we show a few examples to illustrate the principles negotiations are based
upon, including code-passing of PF. It is not intended to give a complete overview, rather than
to show the flexibility of the concept. The functions shown are to be considered as examples.

3.4.1. Basic negotiation

Example 1: In an object “player” the value of the variable “framerate” is set to 25. In the
next line the value of “framerate” is printed.

{ /framerate 25 def } player send
/framerate player send =

Example 2: The frame rate for delivering a video can be expressed from the source, the
network throughput, and the capabilities on the sink. However, the network is unaware of
the term “frame rate”. Therefore we could define the source framerate as a function of the
frame rates provided by the server and a profile of the throughput of the network. In that
case the frame rate of the source is provided as this function, containing variables which value
is unknown for the source (server). A simple example for such a definition could be (frame
rate 25 when network throughput greater than 5Mbit/s, else 12Mbit/s).

\server-framerate {
network-throughput 5000000 gt { 256 } { 12 } ifelse
} def

Example 3: In the service agent several objects are connections, which define an environ-
ment in which commands are executed. Therefore all connections are kept in a dict. When
executing commands, the operator ConnSend is used to execute the operator within the right
environment.

{ server-framerate = } /player connSend

compiled: 21st January 2003 19

Trading of QoS Policies in ENNCE

Example 4: Procedures are defined as executable arrays but also used as an array of execut-
able commands, that can be printed, altered, or sent to another recipient. The communication
library is added as a separate package into PF. SendToApplication is used to send a text
string to another application. For our purposes, where procedures / code is to be sent between
the service agents, a procedure CodeSend is implemented, that converts an executable array
to a text string, and sends it to another application (channel) with the specified opcode. The
implementation is as follows:

/CodeSend {
512 string dup O ssetlength
3 index CVSA 2 index 2 index SendToApplication pop
pPop pop pop

} def

/ReturnSend {
Q@eval@ 123 ev_channel CodeSend
} def

Example for use of CodeSend, where the procedures CodeSend and ReturnSend are imple-
mented at the remote agent in the same manner as on the own host:

{ /CodeSend /CodeSend load @@ def } @eval@ 123 (sacp) CodeSend
{ /ReturnSend /ReturnSend load @@ def } Qeval@ 123 (sacp) CodeSend

The example above shows an extension to the evaluation principle of PF for the service
agent. Normally the executable arrays are only evaluated when necessary by the operator.
A call of exec would evaluate the whole executable array. However, in the service agent
partial evaluation must be possible, where the operator is substituted with the result of the
evaluation. To mark this evaluation the pseudo-operator @@ is used. A subsequent call of
@eval@ performs the substitution in the current context. Note: @@ is a pseudo operator,
and does not necessarily have an implementation. We show also how the routine @eval@ is
implemented:

/@eval@ {
[exch
{ dup /@@ cvx eq { pop exec } if
dup type 68 eq { Qeval@ } if
} aforall
] cvx
} def

Example 5: The following example shows a simple negotiation: The frame rate that is
defined for “player” in the remote agent is queried. The response from the remote agent is
an executable definition of the value in the form /player-frame-rate 25 def at the SACP
opcode 122.:

{ { { /player-frame-rate frame-rate Q@@ def }
ReturnSend
} /player ConnSend
} 122 (sacp) CodeSend

20 compiled: 21st January 2003

3 NEGOTIATION WITH THE SERVICE AGENT

3.4.2. Values, Functions and Retrieval

In the service agent the information and characteristics on the applications is kept in dicts. For
each connection or application one dict is kept that contains information on QoS parameters
in the form of:

e values (in PF values are functions that return a constant result);

e functions on how to calculate the value from other known values;

e retrieval functions that describe how to retrieve the functions for getting a value from a
remote agent.

Due to the dynamic inheritance structure of PF, an optimisation can be performed that
stores retrieved functions, so that they can be used later, and therefore avoid multiple evalu-
ation of the same expression. To achieve this, we use the inheritance mechanism of PF.

For each connection or application four dicts are defined in addition:
FUNC: used to store all functions and values;
CACHE: cached values are stored here;
RETRIEVE: used to store the functions to retrieve the functions or values.
DEFAULT: used store the functions to retrieve functions or values.

The functionality to retrieve the functions is asynchronous. Therefore we cannot wait for
the response, for a function to arrive, and be executed. Therefore, it is important to note that
retrieve-functions could e.g., include code, that could be used to trigger new calculations.

In order to bind the four dicts into the main dict of the connection by using the inheritence,
the following call is used:

/__PARENT__ [CACHE FUNC DEFAULT] def

A cache functionality can be easily achieved. Before using a function, we have to check,
whether the function is available in FUNC. If it is not available, we have to retrieve the
function from the remote agent. This function is not available directly, and the SA has to
decide, whether to use a preliminary value, that might be stored in the DEFAULT dict. An
example for retrieving a function might be:

/Exec&Retrieve {
% mname --> value
dup FUNC exch known {
Exec&Cache
A
dup RETRIEVE exch send
cvx exec % found in CACHE or DEFAULT
} ifelse
} def

Storing a value in the cache is not automatic yet, and values have to be put into the stack
using a procedure like the following:

compiled: 21st January 2003 21

Trading of QoS Policies in ENNCE

/Exec&Cache {
% name --> value
dup cvx exec
exch 1 index
CACHE 2 index known {
pop pop
A
CACHE begin def end
} ifelse
} def

3.4.3. Stream-Binding in PF

The stream binding mechanism consists of the definition of streams and the constraint func-
tion. Instead of the language FIDL defined by Mehus [20], we want to express the stream
binding mechanism entirely in PF. Paulsen [17] used PF in the implementation, but the de-
scription of the stream binding was not done entirely in PF.2 In the following, we show a way
which constructs of PF can be used for this purpose.

Stream descriptions in general can be defined as objects or nested objects. In PF we could
use a dict (dict) for this purpose. Dicts are a collection of name-content pairs. Each stream
definition could be done in separate objects. As an example, the following FIDL definition
(left) could be described as shown on the right:

/StreamDocument <<
/__PARENT__ [Stream]
/FlowDocument <<
/__PARENT__ [Source_Flow]
stream StreamDocument { /htm <<
source flow FlowDocument { /__PARENT__ [Text]
text htm { /encoding (HTML)
encoding = "HTML"; /version (2.0)
version = "2.0"; >>
} /gif <<
image gif { /__PARENT__ [Image]
encoding = "GIF"; /encoding (GIF)
version = "87a"; /version (87a)
height = 200; /height 200
width = 100; /width 100
} >>
constraint htm & gif; /constraint { htm gif Q@and@ }
} >>
} >> def

Using this method, each stream definition is one object. The constraint definition is defined
as an executable array in PF, which is resolved when the media configuration is evaluated.
The mechanisms behind would be similar as in the FIDL definition. The special operators
@and@, @or@, etc. are distinct from the logical operators and, or, etc.; these can only be used
in connection with the constraint function. Besides the constraint definition the object can
also define other functions like the appraisal function.

Alternatives could be expressed in PF like this:

ZTherefore, an extra parser for some data structures had been necessary to implement.

22 compiled: 21st January 2003

4 DISCUSSION

/size { 17 19 @alternative@ } def
/size { [17 19 20 21] @alternative@ } def

Other possibilities could include preferences in a definition like

/size {
[17 19 21] @preferred@
[19 23] @possible®@
@alternative@

} def

The semantics of these functions is implementation dependent. Note, that the definition
of these functions can be exchanged between the participants of the negotiation.

The purpose of the descriptions above was to show the principles and possibilities of
negotiation in SACP in some examples. While parts of the system are implemented, an
implementation still is to be performed for the entire system.

4. Discussion

In this section we discuss a few open points, and give a conclusion.

4.1. Security

The use of agents involve always an additional security concern in an application or system.
The security concerns include:

e A login procedure should be employed. This is possible to integrate into the session
protocol. However this is not yet implemented.

e It is possible to introduce an encryption mechanism into the session protocol. Other
possibilities would include the use of Open SSH and port forwarding.

e Malicious or malformed code could crash the service agent. The interpreter has a try-
catch mechanism that can recover from these problems. However, there is still some
work to be done for this feature being fully implemented.

e PF includes the possibility to log messages in PF, which could be included at a later
run, e.g., for error recovery purposes. A possibility would be to write the current state
in PF to a file, perform a recovery with the same state that is written to the file.

4.2. Screen shots from the implementation

Figure 7 shows an screen shot from the Implementation by Paulsen. The system uses the
well-known vic application, which was adapted to the SACP protocol. This was done in
order to show that a real application can be connected with SACP.

The two upper windows in the screen shot belong to the User Agent. The “smiley face”
constitutes the main window of the User Agent, which is used to control other child windows,
such as the configuration selection dialogue, which is labelled “gap/vic” in the example. Here
the user chooses between available media encodings and parameter qualities. The resulting
configuration is communicated to the Service Agent at the remote host, and if accepted, used
as the sending application’s source configuration.

The two windows below belong to the SACP-enhanced vic application. On the right side is
the main window of vic, showing a thumbnail image of the received video stream. The “menu”
button is generally not used when using vic in the SACP framework, because transmission

compiled: 21st January 2003 23

Trading of QoS Policies in ENNCE

vic1839136026 offers i .
configurations: videomv:

zamplerate

video/nv
video/fjpeqy
video/hzZ61

framesize:

% 704 576
~ 352 288

w176 144

gscale

-~ |156.116.2.223
156.116.2.223 /0y
| 12658 319kb/s (0%}

I mute || o color || info...

VIC v2 8ucl-1.0 Menul Helpl Quil/I
—_—

Figure 7: Screen shot from vic used with SACP

is controlled by the receiving side. On the left side is an enlarged version of the thumbnail
image.

4.3. Conclusion

In this document we have described the ENNCE service agent framework. We have shown
the flexibility of the framework in some examples, and the conformance to other, more general
frameworks, like the RFC 2703. Parts of this system have been implemented within two
master theses, and the work funded by the Norwegian Research Council.

The work by Michelsen [8] looked at the user aspects within the framework. Paulsen [17]
implemented a prototype of the negotiation and agents. However, in both attempts the use
of PF has not been implemented so profound as desirable, because some technical necessities
have directed the implementors other ways. Therefore, much work has been left for later
implementations, that would include the implementation of the entire system.

In our work we did not implement all parts. Especially the important part of setting up
the stream, communicating with RSVP, etc. have not been performed as intended. A reason
for this is the late implementation of the network, which was delayed by unexpected technical
reasons (cf. [14]).

4.4. Future work

The work of WP1 of the ENNCE project is relevant for mobile applications. Especially for
multimedia-online-applications with synchronised media content it is important to have the
possibility for QoS negotiation techniques. The ENNCE architecture was considered as a basis

24 compiled: 21st January 2003

References

for several projects, e.g., for implementing a client-server based multimedia application used on
mobile terminals with varying network and terminal QoS properties, where also renegotiation
issues were of interest.

References

[1]

[2]

3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

W. Leister and P. Spilling. A service Agent for Connection and QoS Management in
Multimedia Systems. notat IMEDIA /05/98, Norsk Regnesentral, Oslo, 1998.

H.O. Rafaelsen and F. Eliassen. Trading and Negotiating Stream Bindings. In Proc.
IFIP/ACM Middleware’2000, april 2000.

. Hanssen and F. Eliassen. Policy Trading. In Int. Symp. Distributed Objects and
Applications, Antwerp, pages 219-227, 2000.

F. Eliassen and H.O. Rafaelsen. A Conformance Relationship supporting Selection of
Explicit Stream Bindings. In Proc. NIK’99, Trondheim, pages 69-80, 1999.

F. Eliassen and H.O. Rafaelsen. A Trading Model of Stream Binding Selection. In Proc.
Smartnet’99, Bangkok, pages 251-264. Kluwer, 1999.

T. Plagemann, F. Eliassen, V. Goebel, T. Kristensen, and H.O. Rafaelsen. Adaptive QoS
Aware Binding of Persistent Multimedia Objects. In Proc. DOA’99, 1999.

F. Eliassen and J.R. Nicol. Supporting interoperation of continuous media objects. Theory
and Practice of Object Systems: Special Issue on Distributed Object Management, 2(2):95—
117, 1996.

T. Michelsen. Bruk av agent-teknologi ved brukerintegrert QoS-forhandling. Cand.Scient
Thesis in Computer Science, Institutt for Informatikk, University of Oslo, 1999.

T. Kristensen and T. Plagemann. Enabling Flexible QoS Support in the Object Re-
quest Broker COOL. In Proc. International Workshop on Distributed Real-Time Systems
(IWDRS 2000), april 2000.

F. Eliassen, T. Kristensen, T. Plagemann, and H.O. Rafaelsen. MULTE-ORB: Adaptive
QoS Aware Binding”, (position paper). In Workshop on Reflective Middleware (RM 2000),
Proc. IFIP/ACM Middleware’2000, april 2000.

T. Plagemann, F. Eliassen, B. Hafskjold, T. Kristensen, R. Macdonald, and H.O. Ra-
faelsen. Managing Cross-Cutting QoS Issues in MULTE Middleware, (extended abstract).
In Proc. Workshop on Quality of Service in Distributed Object Systems (QoSDOS), in
association with 14th European Conference on Object-Oriented Programming (ECOOP
2000), june 2000.

W. Leister and P. Holmes. Characterization and selection of applications for ENNCE
WP1. notat IMEDIA /03/99, Norsk Regnesentral, Oslo, 1999.

L. Aarhus, J. Riisnas, and T. Karlsen. An experimental network infrastructure supporting
QoS. notat IMEDIA /02/99, Norsk Regnesentral, Oslo, 1999.

L. Aarhus, E. Fjellheim, and J.-O. Eide. ENNCE - Final QoS-controllable Network
Infrastructure. notat IMEDIA /02/01, Norsk Regnesentral, Oslo, 2001.

compiled: 21st January 2003 25

Trading of QoS Policies in ENNCE

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

Draft Internation Standard. ISO-10746-1: Basic reference model of Open Distributed
Processing. ISO/TEC JTC1/SC21/WGT7, 1995.

Y. Ding and R. Malaka. An Agent-based Architecture for Resource-Aware Mobile Com-
puting. In Proc. IMC2000, Rostock- Warnemdiinde, 2000.

G. Paulsen. Howvedfagsoppgave, to appear. Cand.Scient Thesis in Computer Science,
Institutt for Informatikk, University of Oslo, 1999.

Adobe Inc. Postscript Language Reference. Addison-Wesley, 1999.

G. Klyne. A syntax for describing media feature sets. IETF, RFC 2533, 1999. Standards
Track.

S. Mehus. Type Checking and Binding of Stream Interfaces in a Multimedia Database
System. Cand.Scient Thesis in Computer Science, Department of Computer Science,
University of Tromsg, 1997.

G. Klyne. Protocol-independent content negotiation framework. IETF, RFC 2703, 1999.
Informational.

K Holtman and A. Mutz. Transparent content negotiation in http. IETF, RFC 2295,
1998. Experimental.

A. Danthine and O. Bonaventure. From Best Effort to Enhanced QoS. In O. Spaniol,
A. Danthine, and W. Effelsberg, editors, Architecture and Protocols for High-Speed Net-
works. Kluwer Academic Publishers, 1994.

Burkhard Stiller, George Fankhauser, Bernhard Plattner, and Nathalie Weiler. Pre-study
on customer care, accounting, charging, billing, and pricing. Pre-stydy, ETH Ziirich, 1998.

Burkhard Stiller. Overview of billing systems for internet service providers. Pre-stydy,
ETH Ziirich, 1998.

G. Reid. Thinking in Postscript. Addison-Wesley, 1990.

W. Leister. Geometrisches Modellieren durch interaktive Rekonstruktionsmethoden. Dis-
sertation, Fakultat fiir Informatik, Universitdt Karlsruhe, 1991.

26

compiled: 21st January 2003

A THE SACP

A. The SACP

A.1. Format

The SACP protocol comes with two formats: The Network Format is for use on networks.
where it is not necessary for humans to read the contents. The second format is textual. It is
intended for use when saving messages on files or when messages are supposed to be entered
by a human operator (e.g. for debugging purposes). The protocol-library detects the format
automatically.

The SACP protocol is based on a connection oriented network protocol on the applica-
tion level. When a connection is opened, a sequence of messages is transferred. Some state
information is kept, e.g. the names of the connections.

All messages have an opcode and a payload. The contents of the payload is characterised
by the opcode. Opcodes are application defined. However, some opcodes are system-defined,
and used to maintain connections.

A.1.1. Network Format

0 1 2 3
0000 0001 | 0000 0000 | OpCode
Message Length
Payload

A.1.2. Text Format

xopcode*payload# | message with payload
*opcode# empty message
end of message sequence

A.2. Opcodes

The reserved opcodes in SACP are defined in Table 1. Other opcodes are defined by the
application. Opcodes can be used to distinguish different types of messages. Usually the
SENDADDR message is sent first, followed by Protocol version numbers, authentification,
password check, and protocol switch follow. Thereafter the payload information starts.

A.2.1. SENDADDR opcode

After opening a connection for the SACP protocol, the sender identifies itself using opcode 0.
In file-format this might look like

*0*myname#

A.2.2. Portmapper opcode

The portmapper opcode is used to locate other servers within the SACP domain. A participi-
ant can be notified with the portmapper opcode where an application with a specific name

compiled: 21st January 2003 27

Trading of QoS Policies in ENNCE

Code ‘ Name ‘ Payload ‘ Explanation

0 SENDADDR | name identification (senders address)
1 NOP — empty command

2 VERSION version protocol version number

3 PORTMAP connection host:port | portmapper message

3 PORTMAP connection O clear portmapper message

3 PORTMAP connection portmapper query

4 BROADCAST | connection opcodes. .. | specify opcodes for broadcast
5 PSWITCH — switch to text format

6 AUTH username specify username

7 PASSWD password specify password

8 -

9 PF pf-code pf-message

Table 1: Reserved Opcodes in SACP

can be found with respect to hostname and port number. (Note: This makes only sense for
servers!). By sending the value 0 instead of hostname:portnumber the entry for this name is
deleted from the database. Requests are sent by sending the name of the application only.
(Note: The requested application may or may not answer!).

Example: An application myname tells its own address, deletes the entry for thisiswrong
and requests the data for the name wanttoknow. (Note: The receiver does not have to answer
to any request. The communication is asynchronous.

*3xmyname myhost:1234#
*3*xthisiswrong O#
*3*xwanttoknow#

A.2.3. Broadcast Opcode

The library permits to send a message to multiple recipients. All recipients that want to
receive a message that is broadcast register with the sender by giving the opcodes they are
interested in. When using the communication library broadcast call these messages are sent to
all interested recipients. Note: This is not a real broadcast as for IP, but a sequential message
passed to several recipients. The syntax is as follows:

*4*connection br-opcode
opcode-list#
The following br-opcodes are defined:
e 0: delete all broadcast opcodes for the specified connection.
e 1: add the opcodes in opcode-list for the specified connection.
e 2: delete the opcodes in opcode-list for the specified connection.

Example: Register opcodes 17, 23, and 44 for broadcast and unregister opcodes 24 and
99:

*4xmyconnection 1 17 23 44#
*4xmyconnection 2 24 99#

28

compiled: 21st January 2003

B THE COMMUNICATION LIBRARY

A.2.4. Often used sequences at startup

Client applications should use the following startup sequence:

*0*myname#
*5#

Server programs, that listen to a port that can receive the SACP protocol should have the
following startup sequence:

*Oxmyname#
*5#
*3*myname myhost:myport#

B. The communication library

A communication library in the programming language C is used. It consists of the following
modules:

e addutil (additional utilities)

e comlib (main communication library)

e libihix (binding for use with X11)

e libihim (binding for use without X11)

B.1. The comlib interface

extern void InstallRecvSocketHandler (void (*CB) (), char *CBD);

extern void InstallConnectCallbackRoutine (void (*CB) (char*));

extern void InstallDisconnectCallbackRoutine(void (*CB) (charx*)) ;

extern int SendToApplication(char *connection, int jobno, char *messptr);

extern int SendToApplicationBinary(char *connection, int jobno,
char #*messptr, int messlen);

extern int OpenClient (char *connection);

extern int OpenServer(char *connection, int portnumber);

extern int ConnectionAvail (char *connection);

extern int ConnectionForce(char *connection);

extern int ConvertAddressToPortnumber (char *portname) ;

extern int SendPortmapMessage (char *connection, char *conninfo);

extern int InterpPortmapMessage(char *connection, char *message);

extern int DistributePortmapInformation(char *connection);

extern void socketcomClose() ;

compiled: 21st January 2003 29

Trading of QoS Policies in ENNCE

B.2. The IHINTERFACE

The IHINTERFACE is the interface towards the operating system, and implements methods
used within the comlib. There are two bindigs, one for use with the X-Windows system, and
one for standalone use. The following interface is common for both bindings:

extern int InstallComInputHandler (CommunicationDescriptor*, void (*IH) ());
extern int RemoveComInputHandler (CommunicationDescriptor#) ;

The standalone binding has these calls in addition:

extern void IHI_MainLoop();

extern void IHI_Dispatch();

extern int InstallTickerHandler(int duration, void (*IH) ());
extern int RemoveTickerHandler();

B.3. The broadcast interface

extern int BroadcastBinary(int,char*,int);
extern int Broadcast(int,char*);

extern int OrderBroadcast(char*,int);
extern int CancelBroadcast(char*,int);
extern int ClearBroadcast(char*);

B.4. The fileinterp interface

int FileReadCommand (FILE*,int*,charx*);
void FileInterprete(FILEx*);
int BufferReadCommand(char*,int*,charx*);

B.5. The pipecom interface

int initPipeCommand(char*) ;

int startPipeCommand (char*,int,int);

int stopPipeCommand() ;

int InstallRecvPipeHandler(void (*CB) (),void*);

B.6. The portmap interface

int AddPortmapEntry (char*, char*, charx);
int RemovePortmapEntry(char*);

/* Note: The return pointers for QueryPortmapEntry

* must not be used after a new call of a routine of portmap
* if these values should be needed: make a copy with strdup
*/

int QueryPortmapEntry (char*, char*#*, char¥x*);

int KeepPortmapEntry(char*,int);

30 compiled: 21st January 2003

B THE COMMUNICATION LIBRARY

B.7. Example program

The following example shows how to use the communication library.

Copyright (c) 1998 Wolfgang Leister
Norsk Regnesentral

This program published under the conditions of the GPL
The copyright remains with the author
This program comes WITHOUT ANY WARRANTY

#include <stdio.h>
#include <mcall.h>
#include <addutil.h>
#include <appaddr.h>
#include <ihim.h>
#include <socketcom.h>
#include <cominterp.h>
#include <stdlib.h>
#include <sys/types.h>
#include <signal.h>
#include <sys/wait.h>

/KRR oK ok ok ok ok o o o ok ok ok KoKk ok ok ok ok ok ok o o ok ok ok Kok ok ok ok ok ok ok ko kK K KKk ok ok ok /
/* Global Variables */
char *0WN_ADDR
AppAddress *Self

NULL;
NULL;

void connectCB(char *a)
{
if (@) {
fprintf (stderr, "ConnectCB connected: %s\n",a);
}
} /* connectCB */

[/ KKk KoK ok ok ok ok ok o o o ok ok ok Kok ok ok ok ok ok ok ok o o o ok ok ok K Kok ok ok ok ok ok ok o ok ok ok kK kK Kok ok ok ok /
void comint_NOINTERP_CB(char *vmeD, char *clientD)
{

extern int comintLastOpcode;
fprintf (stderr,"NOINTERP: 0PC=d\n",comintLastOpcode);
} /* comint_NOINTERP_CB */

/o ook ok o sk o sk ok ks ok ok stk ok sk ok ok ok ok ok ok sk ok ok ok ook ok o sk ok o sk ok sk ok sk ok ok ok ok /
void comint_17_CB(char *vmeD, char *clientD)
{

fprintf (stderr,"Received message: %s %s\n",vmeD,clientD);
} /* comint_17_CB */

/3 sk sk sk s sk sk sk sk ok sk s s s o sk s s sk sk s sk sk sk sk ok ks sk s ok sk sk sk ko sk sk sk ok ok sk /
void tickerCB()
{
fprintf (stderr,"TICKER\n") ;
SendToApplication("sacp2",18,"Ticker");

compiled: 21st January 2003 31

Trading of QoS Policies in ENNCE

} /*tickerCBx/
/33K kb ok s ok ok sk s ok sk ok sk s ok kol ok s ko sk s sk sk sk s ok ko sk s o ki ok sk kb ok ok ek ok ok ok /

main(int argc, char *argv[])
{
extern int socketcom_debug;
socketcom_debug = 1;
Self = sscanAppAddress("sacpl","sacpl","localhost");
MCALL(Self,SetHost) (Self,0WN_ADDR) ;

InstallConnectCallbackRoutine (connectCB) ;
InstallRecvSocketHandler (comintInterpreter,NULL) ;
InstallTickerHandler (50000,tickerCB) ;
comintInterpInit();

comintInterpSetDefault (comint_NOINTERP_CB, NULL);
comintInterpSetCallback(17, comint_17_CB, NULL) ;

if (OpenServer(Self->connection,
ConvertAddressToPortnumber (Self->portname))<0) {
fprintf (stderr, "Cannot open Socket Connection");

}
SendToApplication("sacp2",17,"Put this in queue");

IHI_MainLoop();

} /* main */

C. Binding to pf-Interpreter

The binding between the communication library and the pf-Interpreter is based on a previous
implementation between X Windows and the pf-Interpreter.

C.1. Events from communication library to pf

#define MAX_EVENTS 20
#define PF_GETEVENT 17
#define PF_POLL 0
#define PF_EXIT 99

// Events 1-8 define for other purposes

#define ComCode 9
#define ComTimer 10
#define ComConnect 11
#define ComDisconnect 12
#define ComMessage 13

typedef struct {
short ev_type;
char *ev_contents;
char *ev_channel;
int ev_jobtype;
} PfEv_Event;

32 compiled: 21st January 2003

C BINDING TO PF-INTERPRETER

PfEv_Event *PfEv_PutEvent();
PfEv_Event *PfEv_GetEvent();
int PfEv_ProcessEvents();
void PfEv_DispatchInput();

int SetEvent();

int InitEvents();

C.2. A program-example

This program example starts the pf-interpreter, and the communication library. Thereafter,
events from the communication library are sent to the PF interpreter in an endless loop.

#include <stdio.h>
#include <mcall.h>
#include <addutil.h>
#include <appaddr.h>
#include <ihim.h>
#include <socketcom.h>
#include <cominterp.h>

#include <stdlib.h>

#include <sys/types.h>

#include <signal.h>

#include <sys/wait.h>
#include <time.h>

#include <global.h>

#include <pf.h>

#include "events.h"

#include "comintcb.h"

/**/

/* Global Variables */

char *OWN_ADDR
AppAddress *self

/**/

char *reqgbuf

main(argc,argv,envp)

int argc;
char *argv[];

char xenvp[];

{

/* from pf - begin */
extern int _pf_status;

#if LINUX

extern char **environPtr;
environPtr = envp;

#endif

/* from pf - end */
extern int socketcom_debug;

= NULL;
char **environPtr;
char *ProgFileName;

compiled: 21st January 2003 33

Trading of QoS Policies in ENNCE

socketcom_debug = 1;
ProgFileName = argv[0];
pf_initQ;
InitEvents();

self = sscanAppAddress("sacp","sacp","localhost");
MCALL(self,SetHost) (self,OWN_ADDR) ;

regbuf = (char*) malloc(100*sizeof (char));
sprintAppAddress (reqgbuf,self);

fprintf (stderr,"Server Connection %s is set to %s\n",
self->connection,regbuf) ;

InstallConnectCallbackRoutine (connectCB) ;
InstallDisconnectCallbackRoutine (disconnectCB) ;
InstallRecvSocketHandler (comintInterpreter,NULL) ;
InstallTickerHandler (500000,tickerCB) ;

comintInterpInit();

comintInterpSetDefault (comint_NOINTERP_CB,NULL) ;
comintInterpSetCallback(3 ,comint_OPCM_PORTMAP_CB ,NULL);
comintInterpSetCallback(9 ,comint_Code9_CB ,NULL) ;

if (OpenServer(self->connection,
ConvertAddressToPortnumber (self->portname))<0) {
fprintf (stderr,"Cannot open Socket Connection");

}

pf_boot () ;
pf_argv(argv);
while (!(_pf_status=pf_run()));
PfEv_DispatchInput();
pf_end(Q;
exit (0);
} /* main */

C.3. events.pf

The file events.pf is needed for the pf-part of the binding:

% file events.pf

/Event 11 dict dup begin
/ev_type O def
/ev_window O def
/ev_state 0 def
/ev_detail 0 def
/ev_mx 0 def
/ev_my 0 def
/cntl O def
/cnt2 0 def

end def

/EventLoop {
{

Event

34 compiled: 21st January 2003

D PF-LIBRARIES FOR SERVICE AGENT

17 halt
dup begin /cnt2 dup cvx exec 1 add store end
(Event:\n) print
dup display_event

pop
} loop
} bind def

C.4.

The following definitions

/SendToApplication 1 comopdef
/OpenClient 2 comopdef
/OpenServer 3 comopdef
/CVPortnumber 4 comopdef
/ConnectionAvail 5 comopdef
/ConnectionForce 6 comopdef
/SendPortmapMessage 7 comopdef

/InterpPortmapMessage 8 comopdef
/DistributePortmapInformation 9 comopdef ¥ chan

/SocketcomClose 10 comopdef
/Broadcast 11 comopdef
/OrderBroadcast 12 comopdef
/CancelBroadcast 13 comopdef
/ClearBroadcast 14 comopdef

/AddPortmapEntry 15
/RemovePortmapEntry 16
/QueryPortmapEntry 17
/KeepPortmapEntry 18
/SocketcomDebug 19

C.5.

comopdef
comopdef
comopdef
comopdef
comopdef

h
h
h
h
h
h
h
h

h
h
h
h
h
h
h
h
h
h

Callbacks for Opcodes in PF

% £ill information in event

% remove event from stack

Communication Library Calls in PF

message opcode channel ->

chan

chan portnumber (int)

portname

chan

chan

coninfo channel
message channel

->
msg opc

opc chan
opc chan
chan
host
chan -> result
chan
bool
int -> int

res
res
res
res

port chan -> result

-> host port result
chan -> bool

are used for the calls from PF to the communication library.

result

result

result
portnumber (int)
bool

bool

result

result

-> result

Opcodes that are not mentioned in Tablel are visible in the pf-code program. The c-pf interface
generates an event with the values for ev_type, ev_contents, ev_channel and ev_jobtype

respectively.

The functionality for opcodes is programmed in pf within a dict Callbacks.
The functionality for mapping special events to opcodes is programmed in comlibcb.c.

The hitherto reserved opcodes for SACP are used as follows:

Code ‘ Name ‘ Payload ‘ Explanation

17 TICKER date ticker event

997 OPENCHAN | channel | generated instead of opcode 0

998 CLOSECHAN | channel | generated when channel is closed

999 EXIT — exit program

122 EXEC pf code | exec code in channel dict environment
123 EXEC pf code | exec code in event dict environment

D.

PF-libraries for service agent

The following section shows libraries and convenience functions that are used to support the
Service Agent.

compiled: 21st January 2003

35

Trading of QoS Policies in ENNCE

D.1. Connections.pf

(Class connections\n) print
/Connections 30 dict def
Th Tt to oo ToToToto o o e o T To ToTo o o oo o To T o 1o o o o T T To o 1o o oo T T T o 2o o oo o T T o o o oo o T o o o oo o e

% Callback redefinition of callbacks related to Connections

Callbacks begin
bl T to o Toto o ToTo o o T Toto oo ToTo to o o T to o T o o o T T o o o T o o oo T o o o T T o o T o o o T
% 997 = Open channel (redefinition)
997 {
(997: Open Channel) print
ev_channel print (\n) print
Connections ev_channel % cvn not necessary; ev_channel is NAME_TYPE
% in new implementation cvn can be used additionally.
1 index 1 index known {
(channel) print ev_channel print (already known\n) print
pop pop
A
exch begin
/conn-dictsize Connections send dict def
end
(channel) print ev_channel print (generated\n) print
} ifelse
} def 7 997

D IoTotototo oo Tolotototo o oo ToToTo o to o o oo ToToToto o o o o o ToTo o oo o o ol To o oo o o o T Fo o o o o o o oo
% 122 = execute in proper Connection environment
122 {
(122: Exec ...\n) print ev_contents print (\n) print
Connections ev_channel
1 index 1 index known {
dget begin
ev_contents cvx exec
end
L
(channel) print ev_channel print (unknown\n) print
pop pop
} ifelse
} def 7 122
end

FototoToto TotoTo o To oo Toto Toto To o To o Fo fo o Foto Foto To o Fo fo o Fo o Yo to o o To T o to Fo o Yoo Fo o o o o To o Yoo o o o o s o
% ... method conn-name -->
/ConnBegin {
Connections exch
1 index 1 index known {
dget begin
A
pop /uchan dget begin
} ifelse
} def

Tt ot T T o o To T To o o To o To o To T T T T To o To o To o T fo o T o Yo o To o To e o Yo o Voo o o To o o o o T o oo o oo o o o
/ConnEnd {

36 compiled: 21st January 2003

D PF-LIBRARIES FOR SERVICE AGENT

end
} def

T loto 1o 1o ToToTot T tote o o To o ToToToTo o o o o oo o To o T To T T oo o o o oo oo o T T o o o oo oo o o

/ConnSend { ConnBegin cvx exec ConnEnd } def

Dot o Toto o Toto o To o e oo o To o o To o o Fo o o o o o T o T o o T o o T o oo
Connections begin

/conn-dictsize 10 def

/uchan conn-dictsize dict def
end

D.2. Callbacks.pf

(Class callbacks\n) print
/Callbacks 30 dict def

Callbacks begin
bbb to 1o ToToToTos T oo o o o 1o ToToToTo o o o o o o oo To oo T To T Jo o o o oo oo oo T T To o o o o oo oo o o
% 999 = stop and exit programme
999 {
(999: Exiting ...\n) print
SocketcomClose
99 halt
} def % 999

Tl oo TolaToTola ToToTo o ToToToToToTo T ToTo T To o T T o o oo o oo o oo o oo oo oo o oo oo oo oo o oo o o
% 998 = Close channel
998 {
(998: Close Channel) print
ev_channel print (\n) print
} def % 998

bl T to e oo To o o ToTo o e T Toto oo ToTo to o T T to o T o o o T T o o o T o o oo To o o o T T o o T o o o T
% 997 = Open channel
997 {
(997: Open Channel) print
ev_channel print (\n) print
} def % 997

TototototoTo T TotoTot To foTo Foto To o To o o foTo Fo o Foto To o Fo o Fo Fo o Yoo Fo o Yo o Fo Fo o Fo o o o Fo o Fo o o Fo to Fo to o o Fo o o o
% 123 = execute in current (i.e. event dict) environment
123 {
(123: Exec ...\n) print ev_contents print (\n) print
ev_contents cvx exec
} def % 123

Tttt T T o To o To Toto o to To o To o T fo Bo Fo b Fo o To o To o o Fo to Fo o To o To o T Yo b Fo o Voo o o o o o Fo o Vo to o o o o o o
% 17 = ticker

17 {

(17: Ticker ...\n) print ev_contents print
} def % 123

end

compiled: 21st January 2003 37

Trading of QoS Policies in ENNCE

D.3. Remproc.pf

(Install remproc.pf\n) print

% @@ is a pseudo-operator
/0@ { } def

% cvs&sappend: string simple --> substring
/cvs&sappend { O cvs sappend } dup O 512 string aput def

/@eval@ {
[exch
{ dup /@@ cvx eq { pop exec } if
dup type 68 eq { Qeval@ } if
} aforall
] cvx
} def

/CVSA {
% append object to string
% string any -> substring
{ dup type 68 eq {
dup xcheck {
1 index ({) sappend
CVSA
0 index (}) sappend
A
1 index ([) sappend
CVSA
0 index (]) sappend
} ifelse
}{
% dup (#) print type = (#) print
dup type 6 eq {
% names
dup xcheck {
1 index () sappend
1 index exch cvs&sappend
AL
1 index (/) sappend
1 index exch cvs&sappend
} ifelse
A
dup type 73 eq {
% string type
1 index (\() sappend
1 index exch cvs&sappend
0 index (\)) sappend
AL
dup type 69 eq {
% dict type
1 index (<<) sappend
{
exch CVSA CVSA
} dforall

38 compiled: 21st January 2003

D PF-LIBRARIES FOR SERVICE AGENT

1 index (>>) sappend

A
% all the other cases
1 index () sappend
1 index exch cvs&sappend

} ifelse

} ifelse
} ifelse
} ifelse
} aforall
} def

D.4. Program example test2.pf

(Dict test2\n) print
/stacksize { (stack size:) print count = (\n) print } def
/pause { (---pause---\n) print input pop } def

DI It T T Tots ol Tototo o ToToto o T To o 1o o ToToto o To o o o Tt o o To T 2o o To o o o T T o o o T T o o T T o oo T o o o
/test2 300 dict def

test2 begin

/comopdef { 512 add opdef } bind def

(comlibop.pf) run

/nullproc { { } } def

Toh T totototo oo ToToTototo o e o T To ToTo o o oo o T To T To 1o 1o o o o T Fo T 1o 1o o o o o T T o 1o o oo o T T o o oo oo
(callbacks.pf) run

(events.pf) run

(connections.pf) run

(remproc.pf) run

Tl To oo To o To o To o o To To T T To T T T T T oo o o oo oo oo oo o oo oo oo oo o oo o o o o o o
% Execute all files in argv (use of suffix is mandatory).
1 1 argv alength 1 sub {
argv exch aget dup (Load) print = (\n) print run
} for

TlolololoToToToTo oo o o o o ToToToTo oo o o oo To o To o ToTo o Jo o o o o oo Fo oo T T o To o o oo oo o o T T T oo
% Open Client

3 SocketcomDebug =

1 SleepRetry pop

0 BindRetry pop

(ttt) OpenClient

(naos) (1360) (sacp) AddPortmapEntry pop
(Opened Socket Connection) print = (\n) print

(hello) 56 (sacp) SendToApplication pop
/TheString 512 string dup O ssetlength def

TheString { /frame-rate 2977 def } @eval@ CVSA 122 (sacp) SendToApplication pop

compiled: 21st January 2003 39

Trading of QoS Policies in ENNCE

TheString dup O ssetlength
{ { frame-rate 20 string cvs 88 ev_channel SendToApplication pop } /spiller ConnSend }
Q@eval@ CVSA 122 (sacp) SendToApplication pop

/CodeSend {

% code opcode channel -->

% without Qeval@
512 string dup O ssetlength
3 index CVSA 2 index 2 index SendToApplication pop
Pop pop pop

} def

/ReturnSend {
@eval@ 123 ev_channel CodeSend
} def

{ /CodeSend /CodeSend load @@ def } @eval@ 123 (sacp) CodeSend
{ /ReturnSend /ReturnSend load @@ def } Qeval@ 123 (sacp) CodeSend

{ { { /spiller-frame-rate frame-rate @@ def }
ReturnSend
} /spiller ConnSend

} 122 (sacp) CodeSend

Tl oo To o oo T To o o T To T T To T T T T o oo oo oo o 1o o oo o o oo oo o oo o oo o o o
EventLoop

quit
end

40 compiled: 21st January 2003

