Forest Classification Using Spectrometer and SAR Data
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Abstract

This work deals with automatic classification of forest ar-
eas using remote sensing imagery. We compare the dis-
crimination ability of two complementary sensors, a SAR
sensor and a spectrometer. A Gaussian maximum likeli-
hood classifier was used in all classification experiments.
The hyperspectral data alone gave fairly good results for
classification of tree species. The results for SAR data
alone were not convincing. Joining the two data set in
a simple fusion experiment improved the results obtained
significantly for data from a single sensor, and also allowed
a classification of tree species and height simultaneously.

INTRODUCTION

Forest inventory on a local scale is today heavily de-
pending on expensive ground measurements. Use of re-
mote sensing has started to reduce this costs, and has a
potential for reducing them further dramatically. Several
studies have been done on the capability of SAR images
to retrieve biophysical characteristics of the forest [3], [7],
whereas others have investigated the potential of optical
sensors for the same purpose [1], [2]. The most promising
in the last category are imaging spectrometers.

This work aims first at demonstrating the capability of
an imaging spectrometer to discriminate tree species, and
its superiority to more traditional optical sensors for this
purpose. The second goal is to compare the results ob-
tained on the hyperspectral image to those obtained for
SAR images on the same site. Finally, this work inves-
tigates the potential of data fusion: Will the multisensor
classification of the hyperspectral image and the SAR im-
ages give better results than using only one of the two?

THE DATA SET

The test site is located in France, in the Fontainebleau
forest south of Paris and contains oak, beech and pine trees
in a relatively flat area. The data consist of field measure-
ments, airborne spectrometer images, and airborne SAR
images. The flights and the ground data collection took
place during the European EMAC campaign in 1994.

Field Data
For each forest stand the tree species and the quantita-
tive mean characteristics in table 1 were available.

Spectrometer Data

In this project, we use data acquired with the german
airborne Reflective Optics Spectrometric Imaging System
(ROSIS) in the frame of the European Multisensors Air-
borne Campaign (EMAC-94). The data from May 10th
1994 are investigated in this study. It was flown at 10,000
m altitude. The data were calibrated and roll corrected,
but not atmospherically corrected. They consist of 81
spectral bands in the visible and near-infrared spectrum.
The spectral sampling varies from 12 nm in the lower part
of the spectrum to 4 nm in the upper part. The images
have been resampled from the original 16 x 16m? resolution
to 5.6 x 5.6m>2.

SAR Data

The 10 SAR images were acquired with the E-SAR sen-
sor during three campaigns from April to June. They cover
the X (3cm wavelength) and P (65¢cm) bands with HH po-
larization, and C (6cm)and L (24cm) bands with both HH
and VV polarization. The original resolution was 4 x 10m?
(P-band) and 4 x 3m? (other bands). The images were first
speckle filtered using a Gamma Map filter, then normal-
ized to 45 degrees incidence angle using a cosine correction
method, before being co-registered with the hyperspectral
image.

DATA ANALYSIS

Hyperspectral

After some preliminary investigation we decided to di-
vide the forest into six classes, based on type and tree
height: oak 1 (0-13m), oak 2 (13-30m), oak 3 (30m-),
beech 2 (13-30m), beech 3 (30m-), pine. There were also
some forest stands with mixed deciduous trees. These were
omitted from our study, since we have no ground truth in-
formation about the relative portions of the various tree
species within each stand. For the purpose of classification
based on the ROSIS spectrometer we consider four classes:
oak 1 (0-13m), oak 243 (13m-), beech, pine.



After dividing the data into a training set and a test
set, we computed the mean spectra from the training set,
see Fig.1.

From Fig.1 we see that atmospheric features appears.
These features are due to absorption, of Os at 762nm and
of H>O at 720nm and 820nm.

Mean spectra
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Figure 1: Mean spectra for the hyperspectral image

Previously, only a small number of spectral bands have
been available. Therefore, we want to classify the forest
using a small subset of the available spectral bands for
the purpose of comparison. It appears that most of the
discriminatory information is contained in the upper part
of the spectrum.

The bands should be selected in order to maximize the
Bhattacharyya distance, [4], between pair of classes. Since
there are several pairs we maximize the estimated average
Bhattacharyya distance. Since the number of all possible
feature combinations is very large an exhaustive search
is prohibitive. Therefore we use a suboptimal approach
called sequential forward selection, [4].

SAR

Tree Species

The same 4 classes as for the spectrometer data were
used for tree species/height classification. Although the
E-SAR images cover a larger area than the ROSIS image,
and therefore might exploit more of the field data, the
same training and test data set was used as for the ROSIS
image. This was to ensure a fair comparison of classifi-
cation results from the two data set, and to facilitate the
multisensor classification experiment. Mean backscatter
values for each of the 4 classes and for the 10 different
frequency-polarization images are shown in Fig.2. Image
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Figure 2: Mean values for each class for the 10 SAR im-
ages

number 5, P-band with HH-polarization, looks the most
promising. However, the standard deviations of the values
vary between 1.4 and 4.0 dB, and for each of the images at
least two classes are separated by less than a standard de-
viation. This means that first order statistics will certainly
not be sufficient to distinguish between the four classes.

The Bhattacharyya, or Jeffries-Matusita, distance was
utilized to estimate the mean and minimum class sepa-
rability for each of the 10 images. Best separability was
obtained when using all 10 images simultaneously. This
was also the case for the hyperspectral and is in accor-
dance with theory [5].

Biomass

Due to the low number of biomass data, which consist
of the mean value for each forest stand, data not covered
by the hyperspectral image were also used in this study.
Plots for each image of the mean backscatter value within
each forest stand versus its mean biomass indicate that the
estimation of biomass using only one image is extremely
difficult. Fig.3 shows the most promising plot, which is for
the P-band. Clearly, no regression is possible for all for-
est stands. However, several experiments trying to find a
regression model between forest biomass and backscatter
values found a saturation of the latter at a level depend-
ing on the frequency band. The longer the wavelength,
the higher the saturation point. For P-band the satura-
tion level has been reported between 150 and 250 tons/ha.
Also it has been reported that relation between biomass
and backscatter depends on forest structure [3]. Stands
dominated by a different tree species should consequently
be treated a part. Considering only oak stands in Fig.3
a linear or other relation for the lower biomasses with a
saturation level between 150 and 225 tons/ha seems plau-
sible. The same could be the case for pine stands, but only
4 values below 200 tons/ha do not provide a sufficient data



set. For the beech stands, no regression model would fit.

The best results were obtained for a linear regression for
oak below 200 tons/ha which gives a coeflicient of deter-
mination of 0.83, and for a loglinear regression for all oak
stands which gives a coefficient of determination of 0.80.
This last result is in accordance with the results obtained
by Proisy et al. [6].

Using multiple regression would probably ameliorate
the results for stands other than oak below 200 tons/ha,
but the ground truth data set does not provide sufficient
statistics.

As a consequence, to be able to extract useful informa-
tion about biomass from every pixel, a regression model is
not suited for these data.

An alternative approach is to define biomass classes and
try to classify each pixel into one of these classes. For this,
5 biomass classes were defined (units are tons/ha): 1: 0-
75, 2: 75-175, 3: 175-275, 4: 275-375 and 5: above 375. A
similar analysis to the one for species classification was
performed. The best separability was obtained for the set
of all 10 bands.
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Figure 3: Biomass versus backscatter for the P-band Sar
1mage

CLASSIFICATION

A Gaussian Mazimum Likelihood (GML) classifier is
used in all classification experiments. For comparison we
also test the Minimum Euclidean Distance (MED) classi-
fier on the hyperspectral data.

Hyperspectral classification

The mean percent correct classification rates for the
various number of features when the Gaussian maximum
likelihood classifier is used are visualized in Fig.4. We see
that the classification accuracy increases as the number of
features increases. The highest correct classification rate
is 85.5%.

However, if the Minimum FEuclidean Distance classifier
is used, increasing the number of features does not improve

the classification accuracy. Then the correct classification
rate does not exceed 57%.

Confusion matrix for the case where all the 81 bands
are used, are shown in Table 2. We see that pine is rel-
atively easily distinguished from the three other classes.
The correct classification rate is higher than 80% for each
class.

Mean correct classification rates
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Figure 4: Classification rates

Band Averaging

In order to demonstrate the usefulness of the hyper-
spectral imagery for classification of forest we produce im-
ages similar to images acquired by known sensors, such as
Landsat TM, SPOT and airborne IR-film camera. These
sensors have a small number of spectral bands. Each band
of these images is produced by averaging the ROSIS bands
with wavelength within its spectral range corresponding to
one of the spectral bands of a given sensor. Table 3 shows
the spectral range of the bands of interest. Note that there
is no ROSIS band corresponding to wavelengths longer
than 850 nm. Moreover, the IFOV of the ROSIS sensor is
not the same as the IFOV of the other sensors. Thus the
comparison may not be adequate.

The images corresponding to each sensor were classified
using the Gaussian Maximum likelihood classifier. Table 4
shows a summary of the results. The table suggests that
we may obtain 65.3% mean percent correct classification
rate using Landsat TM while Spot and airborne film cam-
era yield slightly worse results. Since we obtained 85.5%
using hyperspectral methods we believe that remote sens-
ing spectrometry has a greater potential than traditional
imagery for forest classification.

SAR classification
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Oak
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19

12
8
5

15-420
111-351
115-292
140-361

5-41
14-33
21-26
24-38

33-17525
413-5053
86-1304
89-1025

2.5-62
6-18
16-43
12-40

3-28
10-17
12-30
10-18

Sensor Number of | Mean %
bands correct %
Landsat TM 4 65.3
SPOT 3 64.3
Film 3 64.6
Rosis 81 85.5

Table 1: Characteristics and range values available for the
stands covered by the spectrometer image and the SAR
images.

Classified
True oak 1 oak 24+3 beech pine
oak 1 80.8 12.6 6.3 0.3
oak 243 | 7.3 83.7 7.8 1.2
beech 6.9 11.8 81.1 0.3
pine 1.0 1.9 0.5 96.5

Table 2: The table summarizes the classification results
in the case where 81 bands and the Gaussian Maximum
likelihood classifier were used. The element in row 4 and
column j contains the mean percent of pixels of true class
i classified as class j.

Sensor Band  Spectral Spectral
range range of
number  of band ROSIS

(nm)  bands (nm)
Landsat 1 450-520 457-517
™ 2 520-600 529-597
3 630-690 633-689
4 760-900 761-845
SPOT 1 500-590 505-589
2 610-680 601-677
3 790-890 793-845
Film 1 525-580 529-577
2 580-680 581-677
3 680-900 681-845

Table 3: Spectral bands of known sensors and correspond-

ing ROSIS bands.

Table 4: Mean percent correct classification rates for var-
ious simulated imagery. The rightmost column show the
percent of correct classification when the Gaussian maxi-
mum likelihood method was used.

The GML classifier was also used to classify the SAR
images. As predicted by the separability analysis, the
classification accuracy is low. For the 4 class tree
species /height classification, the ratio X/P is the best 1D-
feature and gives an accuracy of 51.3%. The highest accu-
racy is obtained for the set of all 10 images: 67.5%. This is
poorer than the results reported by Rignot et al. [7] who
used fully polarimetric C, L and P-band SAR to classify
forest types in Alaska. One reason for this might be that
there were no cross-polarization images in our data set.
Rignot et al. found HV-polarization to be the most useful
for all frequencies.

Classifying the images into 5 biomass classes gave an ac-
curacy of 52.0% when using all 10 images, and only 33.4%
for P-band which was the best single image. As discussed
under the data analysis section, the backscatter reaches a
saturation level for a biomass of 150 to 250 tons/ha for the
P-band (and even lower for the other bands) and most of
the pixels used to estimate the accuracy belong to areas
with biomass above that level. This obviously affects the
results. Also, according to other works, cross-polarization
images might have given better results [3].

Fusion

The simplest and most popular multisensor classifica-
tion method is the augmented vector approach, which con-
sists in concatenating the data from the different sensors
as if they were measurements from one single sensor. This
approach allow us to apply the same GML classifier to the
joined data set. Of course, the multivariate normal distri-
bution is not theoretically valid here, since we have images
from different dates and from sensors which measures com-
pletely different physical properties. However the purpose
was not to find the best possible fusion method, but to
investigate if the use of the joint data set may give signif-
icantly better classification results.

For the 4 class tree species/height classification the re-
sults are shown in table 5. The classification accuracy is
90.8%. Compared to the accuracy of 85.5% obtained for
the hyperspectral image alone, this shows that adding the
SAR data improves significantly the classification results.



Classified
True oak 1 oak 243 beech pine
oak 1 90.1 6.5 3.3 0.1
oak 243 | 3.7 89.0 6.5 0.7
beech 4.2 9.1 86.4 0.2
pine 0.1 1.6 0.8 97.5

Table 5: Classification results obtained by using all 81
bands of the hyperspectral image and all 10 SAR images.

The same biomass classification experiment as for SAR
data only was also performed with the joined data set.
The accuracy obtained was 79.2%, compared to 52.0% for
only the SAR images.

Because of these encouraging results, a classification ex-
periment using the original 6 tree species/height classes
was also undertaken. These 6 classes had been merged
to 4 because of the poor separability using the hyperspec-
tral image alone. Using the joined data set we obtained a
classification accuracy of 86.9% (see table 6).

Classified
Oak Beech
True 1 2 3 2 3
oak1l | 8.2 23 59 32 23 0.1
oak 2 25 822 95 32 22 0.4
oak 3 21 93 821 38 21 0.5
beech 2 | 41 3.7 58 819 4.3 0.3
beech3 | 0.3 26 31 28 91.1 0.1
pine 0.1 1.1 0.8 02 01 976

Pine

Table 6: Classification results in the case where all 81
bands of the hyperspectral image and all 10 SAR images
were classified to 6 species and height classes.

CONCLUSION

We have compared the discrimination ability for for-
est classification of two complementary sensors, a SAR
sensor and a spectrometer. A Gaussian maximum likeli-
hood classifier was used in all classification experiments.
The hyperspectral data alone gave fairly good results for
tree species classification. A simulated comparison with
SPOT, Landsat TM and photographic film shows that the
hyperspectral image gives much better results. The results
for SAR data alone were not convincing. Joining the two
data set in a simple fusion experiment improved signifi-
cantly the results obtained for data from a single sensor,
and also allowed a classification of tree species and height
simultaneously.

According to the ground truth data that were used, the
forest stands are completely homogeneous. Within for ex-

ample an oak stand of biomass 50 tons/ha, there should
not be a single beech tree, and the biomass should be the
same for all 5.6x5.6 m2 squares corresponding to a pixel.
This is probably not the case. Also this means that the
classification results would certainly have been further im-
proved if a contextual method was used, i.e. by modelizing
the a priori probabilities using a Markov Random Field in
order to obtain larger and smoother class regions.
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