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1 Introduction

The Convention on Long-Range Transboundary Air Pollution was adopted
in Geneva in 1979. It is an international agreement with the objective of pro-
tecting man and his environment against air pollution including long-range
transboundary air pollution. Various protocols to the Convention have put
explicit obligations on the contracting parties pertaining to control and re-
duction of emissions. A protocol on the reduction of sulphur emissions or
their transboundary fluxes by at least 30% was adopted at Helsinki in 1985.
Related protocols on nitrogen oxides and volatile organic compounds were
adopted in 1988 and 1991, respectively. In addition, a second sulphur pro-
tocol on further reduction of sulphur emissions was adopted in Oslo in 1994.
Rather than proportional reduction of sulphur emissions, this protocol calls
for cost-effective reductions to minimize the effects on the environment. Of
particular relevance to this article is the emphasis of the Oslo Protocol on
review of the information supplied by the parties. Indeed, the Oslo Proto-
col establishes a committee to review compliance by the parties with their
obligations.

The purpose of this article is to introduce a statistical framework that may
prove useful for monitoring compliance by European countries with their
obligations to reduce air pollutant emissions. The method is illustrated by
an application to 1990 data.

In our example, we use average concentrations of sulphate in precipitation
from the EMEP monitoring network in 1990 (Pedersen, Schaug and Skjel-
moen 1992). We also use national sulphur emissions as reported to the
Geneva Convention. The reported sulphur emissions used in this article are
given in Barrett et al (1995). In our approach, the reported sulphur emis-
sion from each country characterizes a probability distribution and the true
emission is a random variable drawn from this distribution. The reported
emissions are linked to the monitored depositions by using the acid deposition
model developed by the Meteorological Synthesizing Centre — West (MSC-
W) of EMEP, located at Norwegian Meteorological Institute. This model
is described in various publications, its latest implementation and further
references are given in Barrett et al (1995). Coefficients from the acid depo-



sition model describe the transfer of emitted sulphur dioxide from countries
to wet deposited sulphate at monitoring stations. These transfer coefficients
are used as regressors in a spatial linear regression model with the measured
depositions as response and the emissions as regression coefficients. Within
an empirical Bayes framework (Berger 1985), we obtain a mathematical con-
sistent method for combining the various sources of information.

The results given in this article pertaining to sulphur emissions may be im-
proved upon by including measured sulphur dioxide and particulate sulphate
in the statistical model. For future assessment of national reductions of sul-
phur emissions, we also recommend combining data from subsequent years.

The statistical model presented here may have wide applications to other
fields of environmental modeling, such as water pollution. Although the
focus here is on estimation of input variables (emissions), our model may
also be used for enhancing the prediction of output variables (depositions).
Thus, our results are also relevant to prediction of critical load exceedances.

Our article is structured as follows. The data are presented in Section 2.
In Section 3, the statistical framework is introduced and some special cases
are discussed. The application to European sulphur emissions is described
in Section 4. A discussion of our results and suggestions for further work are
given in Section 5.



2 Data and Available Information

The emissions information used in the analysis were 48 national and regional
emissions from 1990, as presented in Barrett et al (1995). These sulphur
dioxide emissions will be referred to as prior emissions, and the values are
given in Table 1 (left column). Of the prior emissions, only 30 values are
officially submitted, the remaining 18 values are estimated by MSC-W.

The deposition data used in this study are yearly averages of sulphate in
precipitation measured at 42 locations in Europe, obtained by averaging daily
values from the EMEP monitoring network (Pedersen, Schaug and Skjelmoen
1992) throughout 1990. For each location, the data value is a weighted
average of sulphate concentrations, with the weights taken as the proportion
of daily precipitation to the total 1990 precipitation at the location. Stations
with more than 10% missing data in any month have been excluded from
the analysis. The sulphate data are further described in Pedersen, Schaug,
Skjelmoen and Kvalvagnes (1992).

The acid deposition model of MSC-W (Barrett et al 1995) was used to obtain
transfer coefficients from emitted sulphur dioxide to wet deposited sulphate.
We will refer to this acid deposition model as the EMEP-model. Each transfer
coefficient we use describe wet deposited sulphate contribution at a specific
monitoring station from a unit emission in a specific country or region. The
transfer coefficients quantifies current knowledge of atmospheric transport,
chemical transformations and deposition processes, and it is the explanatory
tool linking emissions to monitoring data. While the monitoring data are
spatial point values, the sulphate predictions from the EMEP-model are spa-
tial averages over 150 km x 150 km grid blocks. Particular attention must be
given to monitoring stations near large emission sources. This is because the
acid deposition model is not designed to describe local deposition phenom-
ena. Therefore, including monitoring stations near large sources may amplify
the variance in emission estimates. On the other hand, the monitoring data
are often not sensitive to local emissions, because monitoring locations are
selected to measure background concentrations. Consequently, a monitoring
station located in a grid block with large local emissions is likely to mea-
sure lower sulphate concentrations than the true grid-block average. This



effect may introduce systematic errors and would give biased emission esti-
mates. Therefore, to take proper care of such data, we would need a much
more elaborate statistical model than we have used in this study. Since our
present model is Gaussian, we have instead applied some reasonable data
screening procedure. The data screening criterion used in this analysis was
to delete stations in grid blocks with yearly emissions exceeding 10 tons of
sulphur per square km. One British station and 5 stations in central Eu-
rope were removed by this criterion. In addition, a station on Faeroe Islands
was removed due to very strong marine influence. The resulting set of 42
monitoring stations used in the analysis is shown in Figure 1.

Figure 2 shows the EMEP-predicted sulphate concentrations using reported
emissions versus the measured concentrations for 1990 after the data screen-
ing described above. We see that the EMEP-predicted concentrations are
mostly smaller than the measured concentrations. The predicted concen-
trations from the EMEP-model are also shown in the leftmost column of
Table 2.

The method also requires a prior estimate for the precision of the reported
emissions. We have used a prior coefficient of variation v, = 0.3, based on
recommendations from MSC-W. This reflects the view that reported emis-
sions have a standard deviation of 0.3 times the reported value. A discussion
on the sensitivity of the results to this parameter is given in Sections 4 and 5.



Code Region Prior Posterior Increase Rel. Change CV
AL Albania 120 120 0 1.00 0.30
AT Austria 90 91 1 1.01 0.30
BE Belgium 317 317 0 1.00 0.30
BG Bulgaria 2020 2030 10 1.01 0.30
DK Denmark 180 187 7 1.04 0.29
FI Finland 260 273 13 1.05 0.28
FR France 1298 1281 -17 0.99 0.28
DD German Dem. Rep. 4755 4545 -210 0.96 0.28
DE Germany,Fed. Rep. 878 885 7 1.01 0.29
GR Greece 510 511 1 1.00 0.30
HU Hungary 1010 1079 69 1.07 0.28
IS Iceland 6 6 0 1.00 0.30
1IE Ireland 178 178 0 1.00 0.30
IT Italy 2251 2715 464 1.21 0.24
LU Luxembourg 16 16 0 0.99 0.30
NL Netherlands 201 205 4 1.02 0.29
NO Norwa; 54 54 0 1.00 0.30
PL Polan 3210 3111 -99 0.97 0.21
PT Portugal 282 282 0 1.00 0.30
RO Romania 1504 1523 19 1.01 0.30
ES Spain 2316 2336 20 1.01 0.30
SE Sweden 130 132 2 1.02 0.29
CH Switzerland 62 63 1 1.01 0.30
TR Turke 354 354 0 1.00 0.30
GB Uniteg Kingdom 3760 4206 446 1.12 0.21
REM Remaining Areas 813 817 4 1.00 0.30
BAS Baltic Sea 72 73 1 1.01 0.30
NOS North Sea 174 176 2 1.01 0.30
ATL North East Atlantic Ocean 316 317 1 1.01 0.30
MED  Mediterranean Sea 12 12 0 1.00 0.30
NAT  Natural Oceanic 721 733 12 1.02 0.29
RU1  Kola/Karelia 759 766 7 1.01 0.30
RU2  Leningrad/Novgorod-Pskov 317 321 4 1.01 0.30
RU3 Kaliningrad 44 45 1 1.01 0.30
BY Belarus 710 726 16 1.02 0.29
UA Ukraine 3850 3904 54 1.01 0.30
MD Reublic of Moldova 91 91 0 1.00 0.30
RU4 Rest of Russia 3339 3362 23 1.01 0.30
EE Estonia 240 244 4 1.02 0.29
LV Latvia 82 82 0 1.00 0.30
LT Lithuania 136 138 2 1.02 0.30
Cs* Czech Republic 1876 1822 -54 0.97 0.30
SK Slovakia, 543 557 14 1.03 0.29
SI Slovenia, 195 218 23 1.12 0.26
HR Croatia 180 184 4 1.02 0.29
BA Bosnia-Hercegovina 480 529 49 1.10 0.27
YU*1 F.Yugoslavia (-SLLHR,BA,YU*1) 508 513 5 1.01 0.30
YU*2 FYR Macedonia 10 10 0 1.00 0.30

Total 41228 42140 912 1.02 -

Table 1: Results of emissions estimation. Prior Emission, Posterior Esti-
mated Emission and Increase are in units of 1000 tons of sulphur dioxide.
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Figure 1: Study area and data locations. Concentrations at the monitoring
stations are given in Table 2.
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Figure 2: Average concentration of sulphate in precipitation in 1990 as mea-

sured by monitoring stations and corresponding prior prediction from the
EMEP-model
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Grid block ID | Prior Posterior Increase Rel. Change Measured
AT4 0.55 0.56 0.004 1.01 0.59
BE1 0.69 0.69 0.003 1.00 0.96
CH1 0.21 0.22 0.007 1.03 0.34
DE1 0.61 0.66 0.050 1.08 0.77
DE3 0.46 0.46 -0.004 0.99 0.54
DE4 0.65 0.65 0.001 1.00 0.69
DE5 0.89 0.88 -0.011 0.99 0.85
DK5 0.68 0.72 0.034 1.05 1.13
FR3 0.26 0.26 0.002 1.01 0.42
FR9 0.69 0.69 0.003 1.00 0.61
FR11 0.30 0.30 0.000 1.00 0.47
IT5 0.46 0.48 0.026 1.06 0.95
IE1 0.02 0.02 0.000 1.02 0.27
1S2 0.04 0.04 0.002 1.04 0.22
NO1 0.35 0.38 0.027 1.08 0.71
NO8 0.42 0.46 0.039 1.09 0.39
NO15 0.07 0.07 0.004 1.05 0.16
NO39 0.07 0.08 0.005 1.06 0.11
NO41 0.28 0.29 0.010 1.04 0.55
NLS§ 1.06 1.14 0.081 1.08 1.31
PL1 1.04 1.03 -0.011 0.99 1.53
SE2 0.47 0.50 0.022 1.05 0.98
SE5 0.08 0.08 0.004 1.05 0.53
SES8 0.60 0.61 0.004 1.01 1.23
SE11 0.72 0.74 0.023 1.03 1.22
SE12 0.37 0.38 0.009 1.02 0.84
SE13 0.11 0.12 0.001 1.01 0.30
FI4 0.25 0.26 0.005 1.02 0.43
FI17 0.40 0.40 0.007 1.02 0.98
F122 0.27 0.28 0.003 1.01 0.38
SU3 0.85 0.85 0.002 1.00 0.77
SU4 1.82 1.78 -0.036 0.98 1.63
SU5 1.82 1.78 -0.036 0.98 1.67
SU6 1.84 1.81 -0.033 0.98 1.92
SU9 0.50 0.51 0.008 1.02 0.76
SU10 0.85 0.85 0.002 1.00 0.87
GB2 0.22 0.24 0.021 1.09 0.45
GB6 0.09 0.09 0.002 1.02 0.23
GB13 0.20 0.22 0.013 1.06 0.32
YU2 0.57 0.63 0.062 1.11 1.31
YU4 0.59 0.64 0.042 1.07 1.16
YU6 0.59 0.64 0.046 1.08 1.36

Table 2: Predicted concentrations at the monitoring stations (See Figure 1)
included in the study. Prior predicted concentrations, Posterior (based on
estimated emissions) predicted concentrations and Increase are in units of

mg(S)/1.
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3 Statistical Model

Consider a random field y(x), where  is the location within some geographic
region. Let y(x) have the decomposition

y(x) = b'(x)B + €(z). (1)

Here, b(x) is an M-vector of known functions and @ is an M-vector of un-
known constants. Furthermore, ¢(x) is a Gaussian random field with zero
mean and covariance Cov (1, x2) = c(||z1 — x2]|; @), where ¢(-;0) is a co-
variance function to be specified in Section 4.1. The focus of this article is on
estimation of 3, but the unknown covariance parameters @ = (02, a)’ must
also be estimated. Here, o2 is the variance of the residual process and a is
the correlation range.

In our application, y(x) represents the (true) sulphate concentration at lo-
cation . Furthermore, b;(x) represents the contribution to this concentra-
tion as predicted by the EMEP-model for a unit emission of sulphur dioxide
from country j; 7 = 1,..., M. The unknown emission from country j is
B;, so b'(x) B is the sulphate concentration predicted by the EMEP-model.
Deviations between the true sulphate concentration and the concentration
predicted by the EMEP-model are absorbed into the residual field e(x).

We introduce an empirical Bayes framework (Berger 1985, pp. 167-), and use
prior and posterior to denote knowledge of 3 without or with observations
of the y-field. A priori, we take each 3; to be a normal distributed random
variable with prior mean yj and prior coefficient of variation ~y. Then the
probability density of 3 is

p(B; By, v0) = |2m72 diag(8,83,)|~1/?

xexp {5 (8~ B/ o5 ding(BoB)) (68— Bo) )

12



Here, we take the prior mean (3, to be the vector of reported emissions
from each country. The model for prior variance signifies that large reported
emissions are likely to be more uncertain than small emissions. Without
observations of the y-field, the natural “estimate” of 3 is B3, i.e. use the
reported emissions. The motivation for regarding b(x) as fixed and 3 as
random is the assumption that the reported emissions are much more un-
certain than the EMEP-model. Thus, possible errors in the EMEP-model
would be interpreted as errors in the reported emissions.

Since we have no a priori knowledge about the variance parameter o2, we
use the common non-informative prior p(6?) o< =2, For the range parameter
a, we use the prior p(a) o< (1 4+ a)~2, as suggested by Handcock and Wallis
(1994). The prior chosen for a reflects that the residual field € should cap-
ture high-frequency fluctuations, hence a small range is more likely a priori
than a long range. The interested reader is referred to Berger (1985) for an
introduction to Bayesian statistics and discussions on how to choose prior
densities.

Let y be the data vector of N measurements of sulphate, y =
(y(x1),...,y(xyx)). The information in the data are contained in the likeli-
hood

L(B,0:y) = [2x%(0) P exp {~3ly - BAIS @)y - BB} (2)

Here, the j’th column of B is b,;(-) evaluated at the data locations
{x1,...,xzx}, and the (i,7)th element of the covariance matrix X(0) is
c(|le: — z;l[; 6)-

By Bayes’ theorem, the posterior density of (3',0') is

p(B,0ly) o p(o?) pla) p(B; By, s) L(B,0;y).

Inserting the appropriate expressions for the prior and the likelihood, we get

13



1
02 (1+a)?

x e { =5 (8- B3 diag(BuBH) (B B0)) (3
XSO exp {3 ly - BA'S @)y - BA)}.

p(B,0ly) o 172 diag(B,8,) |~/

According to the Bayesian paradigm, inference about 8 and @ should be
based on the posterior density (3). In the present application, we have
M + 2 = 50 parameters and N = 42 observations. Therefore, the parame-
ters can not be estimated by standard methods. In contrast, the Bayesian
framework allows for coherent parameter estimation by including prior in-
formation. Since the number of parameters is large, it is computationally
expensive to integrate the posterior density (3). To avoid integration, we
instead maximize (3), and use the posterior mode as the parameter estimate.
The a posteriori density is a penalized likelihood function, and we may apply
a method of numerical maximum likelihood estimation. We use the scoring
method proposed for spatial data by Mardia and Marshall (1984). Some cau-
tion should be exercised when selecting the covariance function, see Warnes
and Ripley (1987), and the rejoinder of Mardia and Watkins (1989). Preci-
sion estimates are obtained from the estimated parameter covariance matrix,

- __[Eaﬂogp(ﬂ,elw . (4)

Var {(8,0)} = o ] 30
8(16 3 0 )2 (,BI,OI)Z(IB ,0 )

Some special cases will be illustrated by fixing o2 and a. Denote by 3 the
covariance matrix based on the parameter estimates o2 and @. Conditional
on o2 and @ d, the expression for the estimated emissions 3 is found by differ-
entiatiating the right hand side of (3). We get

B=(Z'+BE B) (%6, + BE v). )
where 3y = 42 diag(8,8}). From (5), the variance of 8 is

14



Var 8 = (I3 + B'f]_lB)_l. (6)
Formulae (5)—(6) are discussed in the following remarks.

1. Let 79 — oo and N > M. This represents a situation with many
monitoring stations and no prior information on emissions. Then

B - (BE'B'BT 'y
Var 8 — (B'S 'B)7,

which is the maximum likelihood estimate. When ¥ is known, this
is equivalent to the generalized least squares estimate. Furthermore,
inserting ¥ = 021, we get the ordinary least squares estimate.

2. Let 79 — 0. Then ,B — B, and Var ,B — Xp. This is just the mean and
variance of the prior density, which is data-independent. Thus, with
exact emissions reports, there is no need to consider the monitoring
data.

3. Formula (5) represents the general situation with -y, finite and positive.
Then we may estimate 3 also for N < M, and the emission estimates
will be a weighted combination of the prior emission and the maximum
likelihood estimate.

4. A measure of the total variance in estimating 3 is tr(Var B8). Since
B'S 'Bisa positive definite matrix, we see from (6) that for 3 fixed,
the total variance is minimized for some positive finite value of ~,.
Thus, better emission estimates (smaller total variance) are obtained
by using both prior information and data than by using either of these
sources of information separately.
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4 Results

4.1 Main Results

The model was fitted using an exponential covariance function c(h;o?, a) =
o exp(—3h/a). Here, the correlation range a is the distance beyond which
correlation is less than 0.05. The maximum posterior density algorithm gave
residual variance estimate o2 = 0.085 [mg(S)/I]? and correlation range esti-
mate a = 851 km. This suggests that sulphate residuals will be virtually un-
correlated for lags greater than 851 km. The estimated standard deviation of
the estimated residual variance and correlation range were 0.022 [mg(S)/I]?
and 300 km, respectively. Figure 3 shows the empirical correlogram and the
estimated correlation function. The correlogram is the average covariance
between station pairs at a specified lag divided by the overall variance. Since
both the correlogram and the fitted correlation function tend to one as the
lag tends to zero, there are no indications of measurement error effects in the
sulphate data. This is partly because the sulphate data used in this analysis
are averages over many values (i.e. one year of daily observations), but also
because removal of stations near large emission sources may reduce residual
short-range variability.

The results for the estimated emissions are described in Figure 4 and in Ta-
ble 1. In Figure 4, the reported emissions and the estimated emissions are
shown. The upper and lower boundaries of the boxes indicate 63% “con-
fidence” intervals for the emissions, and the central bars are the reported
(broken line) or estimated (full line) emissions. Figure 4 shows that the es-
timation method gives larger emissions for Italy and Great Britain than re-
ported. For Italy, United Kingdom and Poland, the heights of the full boxes
are smaller than the heights of the broken boxes. A shrinkage of the full box
compared to the broken box in Figure 4 (for example Italy, United Kingdom
and Poland) signifies that the estimated emission has smaller estimated pos-
terior uncertainty than the prior uncertainty. Figure 4 also shows smaller
estimated emissions than reported for former German Democratic Republic
and Poland. Table 1 shows that our method of including information from
the EMEP model and sulphate measurements allocate an additional 464 000
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tons of sulphur dioxide to Italy (21% increase) and an additional of 446 000
tons to Great Britain (12% increase), as compared to the reported emissions.
Similarly, our method indicates that emissions from former German Demo-
cratic Republic were 210 000 tons smaller than reported and emissions from
Poland were 99 000 tons smaller than reported, corresponding to 3-4% of
the respective reported emissions. The estimation method suggests that the
total emissions of sulphur dioxide from all European sources are 912 000 tons
greater (2%) than reported. A total of 32 estimated emissions exceeded the
prior emissions, while 4 estimates are smaller than reported. For 12 regions
the estimated and reported emissions are equal.

Our method also gives estimated correlation between posterior estimated
emissions from different countries. All these estimated correlations were
smaller than 40.3.

Table 2 shows the sulphate concentrations at monitoring locations resulting
from using the estimated emissions instead of the reported emissions. Only 6
locations get slightly smaller concentrations than the prior predictions. Some
regions of largest increase seem to be former Yugoslavia and Norway. These
results are only indicative for the updated deposition situation in Europe,
because the density of monitoring stations vary geographically. To obtain
the complete picture, we would have to evaluate the EMEP-model for all
grid blocks in Europe, not only for the monitoring stations.

17



4.2 Sensitivity Study

The sensitivity of the statistical model was checked through analysis of some
runs under various model assumptions. We are particularly interested in the
capability of the method to “detect” unusual prior emissions. In addition, we
will investigate the sensitivity to prior uncertainty. We reestimate emissions
for prior coefficient of variation vy = 0.2,0.3,0.5,1.0. Furthermore, we vary
the prior emission of the greatest contributor, former German Democratic
Republic (DD), and investigate the results. The hypothetical prior emissions
chosen are the official emission (4 755 000 tons) multiplied by factors 0.5, 1.0
and 2.0.

The results are shown in Table 3 for German Democratic Republic (DD),
United Kingdom (GB), Italy (IT) and Poland (PL). The three latter countries
were selected because they are important contributors, whose emissions can
be estimated with relatively good precision (small posterior coefficient of
variation).

Table 3 (upper panel) shows that when the DD prior emission is unreasonable
small, both the DD and PL posterior emissions are increased compared to the
prior emissions. Correspondingly, Table 3 (lower panel) shows that when the
DD prior emission is unreasonably large, both the DD and PL emissions are
reduced a posteriori. Therefore, it seems that the DD and PL emissions may
be confounded in our statistical model. Possibly, a different configuration of
the monitoring network could give better separation of the emissions from
these two regions. On the other hand, it is possible that we may need higher
resolution in the EMEP-model to separate these regional emissions.

When interpreting the columns of Table 3, recall that the posterior variability
is proportional to the hypothetical DD prior emission. Therefore, for a fixed
prior coefficient of variation, the I'T, PL. and GB posterior emissions will tend
to be closer to the reported emission when the hypothetical DD emission is
small (upper panel) than when the hypothetical DD emission is large (lower
panel). Across all three panels of Table 3, we see that the emissions from
Italy (IT) and United Kingdom (GB) are increased a posteriori. In partic-
ular, Table 3 (middle panel, right column) gives the posterior emissions for
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the reported DD prior emissions when the deposition data are given much
weight. We see that the deposition data suggest a small posterior decrease
of DD and PL emissions, and a substantial posterior increase of the GB and
IT emissions. However, to obtain significant results, we would need more
monitoring data.

Emitter Prior coefficient of variation

0 0.2 0.3 0.5 1
DD 2377 2378 2391 2517 2632
IT 2251 2436 2671 3453 5011
PL 3210 3260 3308 3406 3295
GB 3760 3910 4063 4506 4680
DD 4755 4617 4545 4682 4332
IT 2251 2455 2715 3587 5300
PL 3210 3131 3111 3086 3009
GB 3760 3991 4206 4753 4898
DD 9510 7865 7115 6601 5519
IT 2251 2471 2755 3694 5433
PL 3210 2863 2793 2736 2801
GB 3760 4073 4345 4937 5166

Table 3: Posterior estimated emissions for various prior specifications, in
units of 1000 tons of sulphur dioxide. Boldface numbers indicate hypothetical
reported emission from former German Democratic Republic (DD)
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4.3 Cross-validation of Sulphate Values

While we in previous sections described emissions estimation, we now focus
on implications for prediction of sulphate concentrations. We will do this by
introducing a statistical interpolator, and compare the predictive capability
of the acid deposition model predictor with this interpolator.

For a given location @, the sulphate value can be inferred from the (empirical
Bayes) kriging interpolator

~ -1

j(x) =b'(z)B+c'(z)E (y— BP). (7)

Here, the elements of the N-vector c(z) are (c(z)); = c(||z — z;|);02,@).
The term b'(z)3 on the right hand side of (7) can be interpreted as the
acid deposition model prediction based on estimated emissions. The second
term on the right hand side of (7) interpolates the fitted residuals (y — Bf3).
This term represents deviations between the observed and predicted sulphate
concentrations. The corresponding interpolation error estimate is the usual

Var {y(z) — j(z)} = «'Sa +2a'¢c(z) + o2, (8)

where the weights « are

-1

a = S c(x) + £ B(E;' + B'S ' B)![b(z) - B'S ¢(z)]

After estimating the parameters, the following cross-validation exercise was
carried out. One monitoring station at a time was omitted and that location
was interpolated using all other data. The procedure was repeated for each of
the 42 monitoring stations. Then the cross-validated (interpolated) sulphate
values were compared with the observed sulphate values.

Figure 5 shows observed and cross-validated sulphate concentrations. Com-

pared to Figure 2, there seems to be a smaller bias in the interpolated sul-
phate values. For each location, we form the squared difference between the
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measured sulphate value and the interpolated (cross-validated) value. De-
note the root mean of all such values by the rms true interpolation error. In
this article, we have used the arithmetic mean, although one could alterna-
tively use a spatially weighted mean. The cross-validation exercise also gives
an estimate of the interpolation variance at each location, as given by (8).
Denote the root mean of all such values by the rms estimated interpolation
error. The rms true interpolation error is 0.227 and the rms estimated in-
terpolation error is 0.235. This close correspondence between estimated and
true interpolation errors indicates that the proposed statistical model is a
reasonable method for assessing sulphate concentrations in Europe.

In comparison, we can also calculate the rms prediction error from the
squared difference between measured sulphate and the value predicted by
the acid deposition model (i.e., not interpolating the residual). The rms
prior prediction error (using reported emissions only) is 0.334, while the rms
posterior prediction error is 0.318. Thus, there is only a slight improvement
on sulphate predictive capability by incorporating the monitoring data, as
long as we do not interpolate the residuals. This is because much weight is
given to the prior emissions in the present example. A larger prior coefficient
of variation would give smaller posterior prediction errors. For example, us-
ing 7o = 0.5 reduces the rms posterior prediction error to 0.288. Prediction
performance would also be improved by including more data, either from
other years or from other monitored components. The results of this sec-
tion indicate that prediction performance may be further improved by also
interpolating the residual field. Although this may be preferable in terms
of predicting actual sulphate concentrations, it will reduce interpretability,
since unexplained variability would be introduced into the predictor. This
unexplained variability represents sulphur that cannot be accounted for in
the mass—balance formulation of the EMEP-model.

The results of this section should be interpreted with some care, since we are
in fact assessing the quality of interpolation and prediction of sulphate, not
emissions estimations. Also, there may be some dispute as to how one should
average the cross-validated and predicted values. In particular, we may want
to give greater weight to distant locations, since these locations “represent”
a larger area than locations from densely sampled regions.
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Figure 3: Correlogram of fitted residuals (points) and estimated correlation
function (line) with range=851 km
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(broken bozxes) for each region. Predicted emission and £ one (estimated)
standard deviation. Region codes are explained in Table 1
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5 Discussion

We have proposed a statistical framework for combining reported emissions,
monitored deposition data and information from an acid deposition model.
Our method was used to investigate sulphur emissions and sulphur wet depo-
sitions in Europe during 1990 with the view towards improving the emissions
estimates.

Our main findings are that the 1990 sulphur emissions from Italy and United
Kingdom seem to be larger than reported, while emissions from Poland and
former German Democratic Republic probably were somewhat smaller than
reported. Furthermore, there are indications that the total emissions from
all sources are somewhat greater than reported in Barrett et al (1995).

The precision of our results depends on the prior uncertainty about reported
emissions. The prior uncertainty is quantified by the hyperparameter -,
which has to be specified prior to the analysis. In the absence of exact
knowledge of 7y, the following considerations apply. Choosing 7, too small
will overemphasize the confidence in reported emissions and give emissions
estimates that are close to the reported emissions. On the other hand, choos-
ing v too large will underemphasize emission reports and the resulting emis-
sions estimates will be based mainly on sulphate data and the acid deposition
model. This will give less biased emissions estimates, but greater posterior
variance. Thus, a pragmatic point of view is to regard 7, as a smoothing
parameter governing the bias-variance trade-off. If the main concern is to
identify potentially unreliable emission reports, the emphasis should be on
bias reduction. Consequently, we would be better off using a value for 7,
which is somewhat too large rather than one which is too small. Alterna-
tively, a topic for further research could be to estimate ,. Possibly, this
problem may be addressed through cross-validation of the prior emissions

Bo-

The precision of our estimates also depends on the locations of monitor-
ing stations. In general, increasing the number of monitoring stations will
give better emissions estimates. In Section 2, we argued that locating mon-
itoring stations near large emission sources may introduce bias in emissions
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estimates. Furthermore, the detailed geometry of the monitoring network
affects the variance of emissions estimates in a non-trivial manner through
interaction with the acid deposition model coefficients. Although beyond the
scope of this article, the problem of locating new monitoring stations can
be addressed by the current framework. In particular, the possible improve-
ment on emission estimates from a particular region resulting from adding
or deleting monitoring stations can be quantified.

A further question is the sensitivity of the present results to possible system-
atic errors in the acid deposition model. Such errors should not be important
if the emissions are the main source of uncertainty. Other questions on sen-
sitivity include alternative regional subdivisions. Stochastic simulation may
prove a useful tool for addressing these and related topics.

Our framework can also be used for enhancing the predictions of sulphate
concentrations and depositions. In general, one should expect better corre-
spondence between predicted and measured concentrations when using the
proposed method than when using reported emissions only. This has bear-
ing also on predicting exceedances of critical loads, and is another topic for
further research.

Even though statistical interpolation of the residuals may further improve
predictions, only posterior predicted concentrations can be attributed to re-
gional sources, through the link provided by the EMEP-model. In this con-
text, the residual field is a nuisance term representing unexplained variability,
i.e. sulphate not accounted for by the EMEP—-model. The proposed frame-
work is a tool for reducing the importance of the unexplained variability
relative to the explained variability. This would be preferable for decision
making, since only the explained variability is subject to negotiations on
emissions reductions.

Further work may include extending the method to include other monitored
sulphur compounds, such as sulphur dioxide and particulate sulphate. This
may enhance predictions of total depositions and would modify predicted
exceedances of critical loads. Emissions estimates may be further improved
by including data from several years, although a more elaborate statistical
model would be required to incorporate possible temporal correlations. To
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this date, all data should be available for estimating compliance with the
Helsinki protocol on 30% reduction of sulphur dioxide emissions. In the
future, we hope to use the method for investigating compliance with the
Oslo Protocol, and to extend the method to also include nitrogen and volatile
organic compounds.
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