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ABSTRACT It is proved that the strong Doeblin condition (i.e., r*(y|z) >
as(y) for all z,y in the state space) implies convergence in the relative
supremum norm for a general Markov chain. The convergence is geomet-
ric with rate (1 — a,)'/*. If the detailed balance condition is satisfied, then
the strong Doeblin condition is equivalent to convergence in the relative
supremum norm. It is proved that the pointwise relative error vanishes and
the chain converges in most other norms under weaker assumptions. The
results in the paper also give a qualitative understanding of the convergence.
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1. INTRODUCTION

Markov chains are widely used as models and computational devices in
areas ranging from statistics to physics. The theory and applications of
Markov chains are very active fields of research: see, for example, Meyn and
Tweedie (1993) and Gilks, Richardson, and Spiegelhalter (1996).

This paper shows that the strong Doeblin condition implies geometric
convergence in the relative supremum norm i.e. sup,{(p(z) — n(z))/n(z)}
if the initial relative error is bounded. The strong Doeblin condition is that
the s-step transition density r°(y|z) satisfies 7°(y|z) > asn(y) for all z,y
in the state space. The convergence rate is (1 — a,)'/*. For Markov chains
satisfying the detailed balance condition, the strong Doeblin condition is
equivalent with convergence in the relative supremum norm. Similarly, Meyn
and Tweedie (1993), Theorem 16.2.3, prove that the Doeblin condition is
equivalent to uniform ergodicity, i.e. uniform geometric convergence in total
variation norm. The strong Doeblin condition implies the Doeblin condition.

The relative supremum norm is used in this paper since there is a very
simple expression for propagation of the relative error as stated in the Propo-
sition. This simple expression leads to a bound on the relative supremum
error that easily may be used to prove convergence in other norms and
bounds on the eigenvalues. In many applications it is easier to estimate the
coefficient a; in the strong Doeblin condition than other convergence crite-
ria like e.g. eigenvalues of the transition density 7*(y|z). For Markov chains
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that do not satisfy the strong Doeblin condition, convergence in other norms
may be proved using Theorem 2 in this paper.

The relative supremum norm is widely used in approximation theory,
differential equations and linear equation systems. It is the most appropriate
norm for some applied problems. In order to bound the expected value of a
function of a stochastic variable, it is necessary to bound the relative error
of the stochastic variable. This is illustrated by the following: Let x be a

stochastic variable and p an approximation to the distribution 7 of z. Let
further f, = [ f(z)p(z)dz and fr = [ f(z)n(z)dz. Then

Ip(z) — =(z)]

()
In Stewart (1994) p. 158, this norm is recommended in checking convergence
of Markov chains.

This paper is a generalisation of the results in Holden (1998) which proves
similar theorems for the Metropolis—Hastings algorithm. It also generalises
the results in Mengersen and Tweedie (1996) from an independent to a
general proposal function in the Metropolis—Hastings algorithm.

5 fw|</f )p(x) — 7(@)|dz < frsups

2. A GENERAL MARKOV CHAIN

Let 2 C R™ be a Borel measurable state space or, alternatively, let 2 be a
discrete state space, and let u be a measure on ). Let further the transition
density r be integrable with respect to u, including point mass distributions.
The results are also valid for more general state spaces 2. A Markov chain
is defined as follows.

MARKOV CHAIN.

1. Generate an initial state 2 € © from the density p°

2. Fort=0,...,n _ .
Generate a new state z'*! from the density r(.|z°).

The s-step transition density r* and the density after j iterations, p’ are
implicitly defined by

(1) P(y) = /Q v (y|2)p' () dps(z)

where 71(y|z) = r(y|z). According to Meyn and Tweedie (1993) Theorem
13.0.1, there exists a limiting density 7 and the Markov chain converges in
total variation norm to this limiting density if the chain is aperiodic, Harris
recurrent and has an invariant measure. In this paper it is assumed that
there exists a density m that is integrable with respect to y, and 7(z) > 0
for z € Q, and [, 7(z)du(z) =1, and

(2) w(y) = /Qrs(y|zc)7r(:c) du(z) for all integers s > 0.

The strong Doeblin condition requires that there exist an integer s > 0
and a constant a, € (0,1], such that

(3) r’(ylz) > asm(y) for all z,y € Q.
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The strong Doeblin condition implies the Doeblin condition as defined in
Meyn and Tweedie (1993) p. 391; there exists a probability measure ¢ with
the property that for some s, ¢ <1, >0

P(A) >e=r’(Alz) > ¢

for every z € Q and A C Q. We use the notation that ¢(A4) = [, &(
and r*(Alz) = [, r*(y|z)du(y). See also Doob (1953), p. 197 The Doebhn
condition has weaker assumptions in the tails of the distribution.

The detailed balance condition is

(4) r’(ylz)m(z) = r’(z|y)m(y) for all z,y € Q.

It is trivial to prove that if the detailed balance condition is satisfied for
s = 1, it is also satisfied for s > 1. This is satisfied for a wide class of
Markov chains including the Metropolis-Hastings algorithm, see Example 2
The detailed balance condition is discussed in e.g. Ripley (1987) and Geyer
(1993).

A set C C Q is vg-small if there exist s > 0 and a non-trivial measure v;
such that for z € C and y €

r(ylz) > vs(y).

It is convenient to define the pointwise relative error Ri(z) = (p'(z) —
mw(x))/m(z) = p*(x)/7(z) — 1 and the relative supremum norm R’
SUDPgcq |RZ (;v)| . The following proposition is used in several of the proofs.

PROPOSITION The pointwise relative error satisfies for i > 0

] _ (y\:v) Y] T
) = [ DU R @)n(a) duta).

The Proposition states that the relative error at step i + s is the average
of the relative error at step 7 weighted by 7 (z)r®(y|z)/n(y). In many ap-
plications 7*(y|z) is a smooth density which is large only for |z — y| small
(i.e. small steps are more likely). Assume for a moment that the error
function R'(z) may be approximated by Y, ¢; sin(2miz) and that r(y|z) =
bexp((z — y)/o)?. Then the Proposition may be used to show that high-
frequency errors ( i.e. i large) decreases faster than low-frequency errors.
This effect is larger the smaller ¢ is. This property is also illustrated in
Example 1.

PROOF Combining (1) and (2) gives

P (y) — mly) = / r(yl2) (¢ (z) — 7(2)) da(z)
which proves the Proposition by

Py . [ ri(ylw)
W) ‘1‘/9 ()

(p'(2) — 7(2)) dp(z).
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3. ASSUMING THE STRONG DOEBLIN CONDITION

THEOREM 1. Assume that 7(z) > 0 for all z € Q and that the strong
Doeblin condition (3) is satisfied including as = 0. Then the probability
density of the Markov chain satisfies for 1 > 0

P ) P'(z) — 1‘} for all y € Q.

5) ) (@)

_1‘ <(1-a)sup{

e

Assume that the detailed balance condition (4) is satisﬁed and that the
strong Doeblin condition is not satisfied, then there exist p? with RY, finite,
and a constant ¢ > 0 such that supmeg{‘p )/m(x) — 1|} > ¢ for all i> 0.

The strong Doeblin condition (3) with a5 > 0 is a necessary and suffi-
cient condition for convergence in the relative supremum norm for chains
satisfying the detailed balance condition. In Example 5 the transition den-
sity satisfies neither the strong Doeblin condition nor the detailed balance
condition, but the Markov chain converges in the relative supremum norm.
Note that the convergence depends on p° unlike similar theorems for total
variation norms, see Mengersen and Tweedie (1996). If the right hand side
of (5) is not bounded, we can not expect to get convergence.

The theorem implies that RY; = sup,cq |(p'(z)/7(z)) — 1| does not in-
crease and that the Markov chain converges geometrically if a; > 0 and RY,
finite. The convergence is fast if 7*(y|z) ~ 7w(y) for all z,y € Q and in s
steps if r°(y|z) = 7(y). Often r(y|z) = 0 for combinations of z,y € Q. Then
it is necessary to use several steps (i.e. s > 1) such that the strong Doeblin
condition (3) is satisfied as shown in Holden (1998). In that method it is
necessary to specify a path between any two states. The size of a; depends
on how probable this path is. The decrease in the relative supremum norm
per iteration is (1 —a,)'/%. In some cases increasing s gives better estimates
for the convergence per step. This is illustrated in Example 1.

This theorem may be used for comparison between different transition
densities. This is also possible if these transition densities have different
computational cost, such that the number of iterations differs in the com-
parison.

In later sections this result is used for proving geometric convergence in
other norms and bounds on the eigenvalues. Convergence in the relative
supremum norm implies convergence in most other norms.

PROOF The Proposition gives

Ri*(y) = / “"”R’( Jr(z) du(@)
/ W nta) dto) = [ TRl — B o)) dio)

< Rl —a, /Q (Riy — Ri(z))m(z) du(z)

— R (1—a,) + as/ Ri(2)n(z) du(z)
= Ri,(1 — ay).
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Define $' such that the corresponding R = —R!. Note that §* may be
negative and thus not a density. Perform the same calculation as above
with R replacing R. This gives

—R"™3(y) = R"™(y) < Rjy (1 — a,)

which combined with the inequality above gives (5). It remains to prove the
implication in the other direction.

First it is needed to prove that there exist Borel measurable sets A, B C Q)
satisfying

(6) r*2(ylz) > m(y)/2 forallz € Aand ally € B

where m(A) > 0 and w(B) > 0. Define the function ¢g(y, ) = max{0, 2 (y|z)—
m(y)/2}. This function is non-negative and for all values of z, [ g(y,z)dy >

.5. Then the Tonelli theorem in (Royden 1968), p 270, implies that the

function g is integrable for (y,z) in Q@ x D where D is a subset of Q of

finite measure. Then [, , g(y,2)d(p X p)(y,2) > 0 implies the existence

of Ax BCQxD CQxQ such that g(y,z) > 0 for (z,y) € A x B. This

implies (6).

Assume that the strong Doeblin condition is not satisfied. Then the ratio
r¥(v|w)/m(v) for any s > 0 may be made arbitrary small for some choice of
v,w € 2. The jump from w to v may be made using s; steps to x € A, and
so steps to y € B, and then s3 steps to v where s; + so + s3 = s. This gives
the following bound on the ratio

r¥(v|w) 1

Tz s [ el e el du()dut

2vr1(v) A/B7““<$lw>w<y)r53<u|y>du<y>du(z)

= 577 [ Wl @) [ el duts)

A/

where the detailed balance equation is used in the last equation. Since
r*(v|w)/m(v) can be arbitrary small for any value of s > 0, then either

Ha(w, s1) = =5 [, v (wle)m(@)du(z) or Hp(v,53) = =5 [ (vle)m(z)d(a)
can be made arbitrary small. Define

O A iffor all € > 0 and all s, there exists w € 2 such that Hy(w,s) < ¢
" | B otherwise.

Then He(z,s') = W(lz) I5 ¥ (z|z)7(z)dp(z) can be arbitrary small for any

value of s'. Define

(7) PO (z) = {(1 +a)m(z) forzeC,

(1—co)m(z) forzeQ)\C,
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for ¢y, co > 0. The definition of p°(z) gives for any value of s’ > 0

/

" (2) — () = /Q (2]2) (0° (&) — () dps()
_ /C r? (2]z) (p° (&) — 7(2)) dpu(z)
+ /Q\c r* (2]) (p° (x) — m(x)) dpa()

=c /Crs (z|z)m(z) du(z) — c2 /Q\C 7% (z|z)m(z) dp(z)

= —erm(2) + 1+ e2) [ ¥ (zla)(o) dua)

Since ﬁ Jo ¥ (z|z)7(z) du(z) may be made arbitrary small for any value
of §'
s/
Sup|p () -1 > ¢
e 7"('7")

for all values of s’. The relative supremum norm does not increase according
to the first part of the theorem. Hence, the last part of the theorem is at
least satisfied for p® defined in (7). O

4. WITHOUT ASSUMING THE STRONG DOEBLIN CONDITION

In this section we prove that the pointwise relative error vanishes under
weaker assumption than the strong Doeblin condition. This weaker assump-
tion may for some applications be easier to verify than other convergence
criteria. It is also useful for proving convergence in other norms than the
relative supremum norm.

THEOREM 2. Assume there exist B C A C 2, and a > 0 such that
(8) r’(y|z) > asm(y) forallze Bandy € A

Assume further that the initial relative error is bounded i.e. |p°(z)/m(z) — 1| <

RY, for all z € Q. Then the probability density of the Markov chain satisfies
ns

(9) P ) < RY, ((1 —ash)" + 21—_b) forn>0andallye A

7(y) b

where b = 7(B) and 0 < asb < 1.

If there exists a sequence {(A;, B;)}; that satisfies (8) such that b, =
m(B;) — 1 when ¢ — oo and A; D B satisfy U;»;4; = Q for all 4 € N,
then the relative error vanishes pointwise, i.e. for all y € € we have
|1 —pi(y)/n(y)| — 0 when i — co. If A; = Q for all i > 0, then the Markov
chain converges in relative supremum norm i.e. sup,cq |1 —p*(y)/x(y)| —= 0
when ¢ — oo.

-1

The theorem states that if the strong Doeblin condition is satisfied in
sub-spaces B C A C (), then the error in the relative supremum norm at
least decreases geometrically to (1 —b)/b=1/n(B) — 1 in A relative to the
initial error. Property (8) is weaker than that B is a small set with measure
7, since the equation is only satisfied for y € A, not for all y € Q.
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If the Markov chain is ¢-irreducible and aperiodic, then according to Meyn
and Tweedie (1993) Proposition 5.5.5 (iii) and Theorem 5.5.7, there exists a
sequence of small sets B; such that U; B; = ). However, these small sets will
in general not satisfy (8) with = as minorizing measure. This is shown in
example 4. In that example the Markov chain is ¢-irreducible and aperiodic
but there does not exist a sequence of small sets B; such that U;B; = €.
Theorem 2 may be used to prove that the pointwise relative error vanishes
in that example.

PROOF Define RY = sup, g |R!(z)| and

Cy:={z € Q:r’(ylz) > asn(y)}

for y € A. Note that B C Cy. It follows from Theorem 1 that |R!(z)| < RY,
for all 4 > 0 and z € 2. Further calculation using the Proposition gives for

yeA

ivs [ ’(ylr) i\l -
R <y)—/ﬂ—R<)<>du<)

m(y)

<

*(ylz)

— Rt Ts(y|x)7r$ T)— Y — R'(z))m(x T
=Ry | D (@) due) - [ (R - Fi@)(o) dua)

- | W) gy Ri@))r(a) du(o)

. ()

o °(ylz) i RV (z z
foe, R~ R @) o

< Ry a, /C (Rl — Ri(z))n(z) dyu(z) + ROya, / () dys(z)

Q\Cy

~ Riy(1-a, /C r(@) dp(z) —ay | Ri(@)m(x) du(z)

Y Q\Cy

+ RY%,a, m(x) du(x)
O\Cy

< Riy(1 - a, /B 7(z) du(z)) + 2R, a, /Q oLt
= R5(1 — asb) + 2R%a5(1 — b).

Define 5" such that the corresponding R® = —R’. Note that 5* may be
negative and thus not a density. Perform the same calculation as above

with R’ replacing R'. This gives
RH_S(?/) < RZ‘B(1 —asb) + 2R(J)\/[as(1 —b)
which implies

|R™*(y)| < Ri(1 — asb) + 2R} as(1 —b)
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for y € A O B. Induction gives for y € A
n—1
|R™ (y)| < RY;(1 — asb)™ + 2Ras(1 — b) > (1 — azb)?
j=0

1—(1—asb)"
_ no . n 0 - S
= RM(]‘ asb) + 2RMGIS(]— b) 1— (1 — a,sb)
1—0b

= R (1 = asb)" + 2Ry ——(1 = (1 - asb)")
< R, ((1 —a:b)" + 21%’) -

It is trivial to prove that 0 < 1 —agsb < 1.

If there exists a sequence {(A;, B;)}; that satisfies (8) such that b, =
7(B;) = 1 when ¢ — oo and A; D B; satisfy Uj»;A; = Q, then for all € > 0,
there exists I such that for 4 > I implies 2(1 — b;)/b; < €/2. For all y € Q,
there exists 7 > I such that y € A; and there exists N such that n > N
implies (1 — as;b;)™ < /2. This implies that R"(y) < eRY,. If 4; = Q,
then R™*(y) may be replaced by R}/ in the above expression.

]

5. OTHER NORMS

The theorems may be generalised to convergence results in other norms.
So far we have used the relative supremum norm, L; o:

‘@
(z)

||f||7r,oo = Sup
TEN

Define the Ly norm, g € (0, 00)

171 = ([ 1) du(w))l/q,

the supremum norm, L, as

[ flloo = sup | f ()]
e

and the total variation norm as
|llv = sup \ [ f@ du(o)
ccalle

It is well known and easy to prove that if H = L, L, or the total variation
norm, then

(10) 1fllzr < A1 ool -

Hence, Theorem 1 may be used to prove convergence in other norms.

Athreya, Doss and Sethuraman (1996) give an example where there is not
geometric convergence in the total variation norm. The example satisfies the
detailed balance condition (4). According to Theorem 1 there is either geo-
metric convergence or no convergence in relative supremum norm. Since
the total variation norm is less than the relative supremum norm, there is
at least one p° for which there is not convergence in the relative supremum
norm in their example.
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COROLLARY 1. Assume there exists a sequence {(4;, B;)}; that satisfies
(8) such that b; = 7(B;) — 1 when 7 — oo and A; satisfy U;5;A4; = Q for
all i € N and sup,cq |1 — p°(z)/7(z)| is bounded.

The Markov chain converges in Lq norm if [, 79(z) du(z) is finite.

The Markov chain converges in Ly, norm if m(z) is bounded in Q and
SUPgeo\ ;{7 (7)} — 0 when i — oo.

The Markov chain converges in total variation norm.

PROOF Convergence in Ly norm is proved by

™ — 4 = / " (2) — w(2) [ du(z / IR ()| () dia()
e 0;)" 1-b mi(z T mi(x T
< (R%) (((1—%,2@) oy [ atwdute) + [ ) ))

which may be made arbitrarily small by choosing b; close to 1 and n large.
The Ly, norm is expressed as

1—1b
1P — oo = sup{R" ()7 (2)} < Ry max{4——sup{n(z)}, sup {m(z)}},
z€Q i z€Q z€Q\B;
for sufficient large n dependent on b;. When ¢ — oo, the expression above
vanishes which implies convergence in L,

The total variation norm may be expressed as

I — nllry = sup / R™ (2)n(z) dyu(c)
ccale

= glélf)z {/CnBi R™(x)m(x) du(x) + LO(Q\Bi)R”S(w)W(x) dp(x)} )

The Markov chain converges in total variation by the same argument as for
the Ly norm given above. O

6. EIGENVALUES

It is also possible to express the convergence in the form of eigenvalues
of the transition density r(y|z). Since the algorithm converges, the absolute
value of all eigenvalues except for the eigenvalue which correspond to the
limiting distribution 7 () is less than 1. The eigenvalue with the next largest
absolute value determines the convergence rate. Note however that in the
infinite dimensional case it is natural to use spectrum instead of eigenvalues.
In the non-degenerate case the spectrum is typically an interval with 1 as
the right hand end of the interval, see Example 4. Hence, it will have values
arbitrary close to 1 and corresponding slow convergence. If the strong Doe-
blin condition is satisfied, it is possible to bound the convergence in terms of
eigenvalues/spectrum. The following corollary is proved. Example 3 shows
however that the bound is not necessarily optimal.

COROLLARY 2. If the strong Doeblin condition (3) is satisfied, then any
solution A and v of the equation

(11) Moly) = /Q r(yle)o(z) duz)
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satisfies either A = 1 and v = 7, or |A| < (1 — a,)'/*.

PROOF Let us first observe that any solution (A,v) of (11) with A # 1
satisfies [, v(x)du(z) = 0, since

A odut) = [ ([ ria)dut) ) o) duta) = [ (o) duto).

This implies [, v(z) du(z) = 0.
Assume p° = 7 + v where v satisfies (11). Then Theorem 1 states that
for all y € Q

v(y)

M2 < (1 —ag)su

Hence |A| < (1 — as)Y/5. O

v(x)

m(x)

7. SOME EXAMPLES

EXAMPLE 1. Let 2 = (0,1), n(z) =1 and
1—d)/c if|z— < c/2,
r(yla) = {( /e ifle—yh <cf

d/(1 —c) otherwise,

where 0 <d < 1,0 < ¢ < 1 and |z|; = minez{|z+7|}. For d > 0, the strong
Doeblin condition is satisfied with s = 1 and a = d/(1 — ¢) for ¢ < 1 — d.
If d is small, this gives slow convergence. For d = 0 or d small it may be
better to choose s > 1. In order to find a; for s > 1, it is natural to use
the approach in Holden (1998). That is, for given z,y € Q, define possible
sequences for jumping from z to y. Define the sequence {D;}{_; such that
Dy = {z} Ds; = {y} and for any u € D;, v € D;1, |lu—v|1 < ¢/2. This gives
for s > 1/c that as = ((1 —d)/c)((1 — d)(cs — 1)/(2¢s))* L. This is not the
optimal choice for all values of s, but it combines a reasonably good choice
with simplicity of calculation.
Assume

2 for 252 F <z <(25+1)2 FforjeN
p(T) = .
0 otherwise

for k¥ € N. The initial error supy.,; [p(z) — 7(z)| = 2 independent of k.
However, the error supy. 1 |pk(z) — m(z)| decreases faster as a function of
1 the larger k is, since high frequency errors decreases faster than low fre-
quency errors. The dependency on k is larger the smaller ¢ and d are.

ExAMPLE 2. The Metropolis—Hastings algorithm generates a sample
from the density 7 by:
1. Generate an initial state 2° € Q from the density p°.
2. Fort=0,...,n:
(a) Generate a state y from the density q(-|=*

g |z")
z* |y
(b) Calculate a(y,z’) = min {1, ﬂ(zl)q( |x,)} .
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(c) Set zit! — {y with probability a(y, z?)

z'  with probability 1 — a(y, z').

The Metropolis—Hastings algorithm satisfies always the detailed balance
condition. It satisfies the strong Doeblin condition (3) with the same a with
s =1if g(y|z) > an(y) for all z,y € Q since

r(ylz) > afy, 2)q(y|z) = min {q<y|x), %q(xw)} > an(y).

It is also possible to use weaker assumptions. Given z,y € €2, define possible
sequences for jumping from z to y by defining the sequence {D;}{_, such
that Dy = {z}, Ds = {y} and for any v € D; and v € D;;, satisfy
q(v|u) > a;m(v) and g(u|v) > a;m(u). This gives
S
(ko) 2 w0 [ ([ #0)dute))
i=1 i

which satisfies the strong Doeblin condition for sufficient large values of s.
This is discussed in more detail in Holden (1998).

ExaMpPLE 3. This example shows that the bound on the eigenvalue in
Corollary 3 is not always optimal. Assume the state space consists of n
points with limiting distribution (71, 7, ..., ;) and with transition matrix

7r1+(1—a)7r2 71'2—(1—0,)7'('2 T3 we. Tp
m—1—a)m m+(1—a)m 73 ... ™,

Q = 1 T2 M3  we. Tp
1 0 T3 e Tp

where 0 < a < 1. This transition matrix satisfies the strong Doeblin condi-

tion Q; ; = r(i|j) > am; and has eigenvectors (w1, 7, ..., 7, ) and (1,—1,0,0, ...

with eigenvalues 1 and (1 — a)(m; + m2), respectively and n — 2 eigenvectors
with eigenvalue 0. In this example the upper bound given in Corollary 2 is
optimal for n = 2 but not optimal for n > 2.

ExXAMPLE 4 Define the following random walk on Z

0 for|j—i|>1

1/4 forj=iifi#0

1/4 for j=i+1and (j —i)i >0
1/2 otherwise

ri(jli) =

The limiting distribution for the random walk is 7! = p* = 27l /3. This
Markov chain satisfies the detailed balance condition (4) but does not sat-
isfy the strong Doeblin condition and hence does not converge in the relative
supremum norm. Theorem 2 and Corollary 1 may be used to prove conver-
gence in other norms. Let s = 2!, A; = B; = {j € Z;|j| < i} and a; = 273"
Then b; = 1 — 27+2/3 for i > 0. This gives

[R™(y)] < Ry (1 —2720)" +2779)  for [y| <

=]
~—
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i.e. the pointwise relative error vanishes. Corollary 1 gives convergence in
L4, Ly, and total variation norm.

Any values of p_1,pg,p1 different from zero defines a solution A and v =
(...yp—1,P0,P1,--.) of (11) defined by the equations

A= 1+p-1/po+p1/po)/2
Pit1 = —Pi—1/2 + (2/\ — 1/2)]), fori >0
Pi—1 = —Pit1/2+ (2X —1/2)p; for i <0

Pi, © € Z bounded for —1/2 < A < 1. Note that (—1/2,1] is part of the
spectrum of the transition density 7(j|7).
EXAMPLE 5 Let © =R and

r(ylz) = exp(—|z —y|) for z(y —z) <0
0 otherwise

The limiting distribution is () = 3 exp(—|z|). This Markov chain does not
satisfy the detailed balance condition (4) since

exp(—|z —y[ —[y) >>exp(—|z —y| —|z])  for |y| << ||
nor the strong Doeblin condition since
5(0
r(0lz) -0 when |z| — oo.
7(0)

This is proved by

S
r*(zs|zo) = /---/Hr(xi\mi_l)dxl...dms_l
=1 s
o ot

The integration area is divided into a disjoint union {I; } o Where

Ij = {{=i}i=1; max|z;| € [jzo, (7 + L)zo)}
The area of the integration in I; is bounded by ((j + 1)z¢)*~! and for
{;}:2] € Ij and x5 = 0, we have exp(— >5_, |z; — z;_1]) < exp(—2sjxo).
This gives
o0
7%(0|z0) Z § 4 1)z0)* exp(—2sjz) — 0
j=0
when 2y — oo for all s € N.

Theorem 2 may be used to show that the Markov chain converges in the
relative supremum norm by choosing s =2, A = Q and B; = {z € O;|z| <
i}. Then b; — 1 and R%; — 0 when i — oc. This example shows that the de-
tailed balance condition is a necessary condition in order to have equivalence
between the strong Doeblin condition and convergence of Markov chains in
the relative supremum norm. The Markov chain converges also in Lg, Lo
and total variation norm according to (10).
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