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Preface

This document is the final report of the Mowgli project, carried out by the
authors at the Norwegian Computing Center (NR).

As part of the project a lecture series on process calculi was given at NR
in the second half of 2000. The main lecturers of the series were Anders Moen
(also organiser) and Bjarte M. @stvold, with other project members filling in.
The project’s work on approaches to analysis was published on an international
workshop [29]; that paper corresponds to Chapter 1 of the report.

The title of this report, corresponding with the project name, indicates a
wider focus of research than the end results. A more appropriate title would
have been “Mobile systems: infrastructure and formal analysis”.

The project’s work on the concept session will be used in our future work as a
benchmark to decide the fruitfulness of applying w-calculus as a means for doing
conceptual analysis in a precise manner, rather than the common imprecise way
done in software engineering.

Thematic overview

This report consists of 4 chapters. The first three can be read independently
but Chapter 3 must be read before Chapter 4.

Chapter 1 explains the scientific approach or method applied, and gives
examples of the various concepts of ‘session’. Chapter 2 studies the existing
literature on work done to support mobile users and establishes a set of elements
necessary in a framework supporting mobile users based on the limitations of
mobile environments and the requirements of mobile users. It also defines the
concept of session in a general way as to allow mobile users to continue the
same task from a different device. Chapter 3 gives a short and self-contained
presentation of w-calculus, with a flavor of recursion added to it. Chapter 4
starts the more detailed archaeological analysis, and writes out (specifies) simple
contexts of communication.

The report should be considered as the starting point (the first rocket) of
a long investigation into a framework supporting mobile users, as Chapter 4
indicates.
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Chapter 1

Conceptual analysis by
technical means

1.1 Introduction

Theoretical computer science has traditionally been used to give a scientific,
which means mathematical, foundation of new and old programming languages
and to study computability in its purity.! Following the paradigm of Milner?,
we want to exploit the various formulations of the Pi-calculus and similar sys-
tems like the Spi-calculus of [1] and the theory of ambients of Luca Cardelli
and Andrew Gordon,® in order to do conceptual analysis of presumably well
understood concepts in computer science, and especially mobile systems 4. But
it is not obvious that the new theories of theoretical computer science, will con-
tribute to the evolution of mobile distributed systems, either on the conceptual
or the technological frontier. Milner writes that:

“(... ) there are many ways of thinking about interactive systems -
implies the need to tie these ways together. If a basic set of ideas such
as the m-calculus can supply this integrity then designers will respect
it, one may dare to hope, in the way that mechanical or electronical
engineers respect the differential calculus, which ties together their
ways of thinking.”®

And he continues to reflect about the role his calculus should play;

“Beyond this conceptual unification, a good outcome for the -
calculus would be to generate new high-level languages and ana-
lytical tools, much in the way that its predecessor CCS and CSP
contributed to the design of LOTOS, a language designed to express
communications protocols.”®

IComplexity theory, subrecursion theory and recursion theory including all their different
formulations.

2 As presented in [26], [25], and [32]

3As presented in [6], [7] and [5].

4This chapter was published in [29]

5[25] p.153.

6[25] p.153.
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As we can see from these paragraphs, Milner is certainly ambivalent to the re-
ception of his calculus, both humble” and ambitious.® And he has good reason
for this ambivalence. Distributed systems, mobile systems exists independent
of the m-calculus. Why should anyone in the computing industry sit down and
learn a new complicated theory when there is already so much to learn? Tech-
nology works so why bother? We shall indicate that the increasing complexity
of the applications we deal with would benefit from formal and conceptual basic
research.

In addition to Milner’s conceptual unification and the generation of analytic
tools for constructing high-level programming languages, we suggest a third
approach. We will use the analytic tools for doing conceptual analysis, in our
version that we shall call conceptual archaeology.

1.2 The origins of conceptual analysis

The origin of conceptual analysis is ancient philosophy. In antiquity there was no
division between science, theology and philosophy. This meant that scientific
investigations were guarded by philosophical reflections, and to some extent,
philosophical reflections were influenced by scientific considerations.

1.2.1 Gottlob Frege’s contribution

A major turning-point in the history of philosophy and logic, is the work the
German mathematician and philosopher Gottlob Frege in his writings in the
two last decades of the 19’th century. Frege’s contribution to science is two-
fold. He clears the ground for modern first order logic in [9], [10] and second
order logic in [14], as shown in [2], by giving a formal system of first and second
order logic and by giving birth to semantics. Frege is also the founder of ana-
lytic philosophy, by investigating metaphysical problems within the boundaries
of language in [11], [12], [13] and [15], in arguing for the distinction between
language, meaning and reference®, pointing out that they should be divided
into three distinct conceptual layers. Analytic philosophy is the commitment to
do philosophy by scientific methods. This means to argue and formulate philo-
sophical propositions in such a way that the propositions can be falsified. An
analytic philosopher formulates her propositions with the commitment of being
true or false.

For Frege conceptual analysis and formal logic are closely interrelated. By
using a formal language he has a tool against which the concepts in mathematics
and science in general can be calibrated. Frege investigated the laws of thought.
The laws of thought could only be unraveled by a pure investigation into the
logical laws of the assertorical propositions in a formal language.!®

T«
8‘4E o

. ) one may dare to hope ( ... )”
... ) conceptual unification (... )*

9Frege’s levels are denoted Sprache, Sinn, and Bedeutung, which in English philosophical
terminology is language, meaning and reference.

10Begriffschrift, a language for pure concepts
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1.2.2 Conceptual analysis after Frege

After Frege, conceptual analysis in philosophy, has gone in two directions with
respect to the role formalization play in the analysis. The the first direction
is theories of meaning!! and reference'?, which we shall not consider in this
paper, and the second is applied logic.!® Frege’s work relates more closely to
mathematics than ordinary language and its semantics.

Applied logic grows out of Frege’s work as the extension of formal meth-
ods applied to the domain of common concepts in ordinary language. Applied
logic takes the concepts transcending first order logic serious, by introducing
new operators capturing concepts like obligation and permission [42], knowl-
edge and beliefs [17], time and computation [16], typical situation, action [36]
and counterfactual conditionals [24].

First order logic, and even propositional logic has its anomalies as shown in
the paradox of the augmentation-principle:

If the postman comes then you will get your letter. Then by propo-
sitional logic we infer: If the postman comes and he burns the letter,
then you will get your letter

This anomaly of the material implication can be solved by introducing a new
modal conditional and a new set of axioms where strengthening the antecedent is
rejected. But other anomalies may arise from the new system, where implication
is given a domain specific meaning.

There are two observation related to this example. First, the example itself
serves as an benchmark for testing theories, axiomatizations of non-monotone
reasoning that philosophers might come up with. The set of benchmarks forms
a finite set. Compared to classical theory of science, the benchmarks play the
role of observations sentences, on which the theories (formalism) are calibrated.
Second, the method of formalizing, testing, reformalizing, invent new bench-
marks and then testing, reformalizing, testing, and so on, can be described as
a circle movement. Progress in understanding is achieved by a back and forth
movement, where the calculus change, but the set of benchmarks remains a
relatively stable finite set.

1.2.3 Conceptual analysis as part of mature sciences

Conceptual analysis is not foreign to science before Frege. The treatment of
infinitesimals in the differential calculus in the 17’th century, the scientific dis-
pute preceding and including Lebnitz and Newton, was a great achievement in
mathematics and physics, where the refinement of the mathematical concepts
in the differential calculus where guarded by conceptual analysis. By doing this,
they prepared the way for modern analytic geometry.

11 The theories of what ‘“meaning’ and truth is.

12The theories concerned with the question, how can it be that names denote to objects in
the world.

13Some might claim that this is not the case, that there is no real sharp distinction between
the two directions. We find it fruitful to make the distinction because of the difference in
perspective, technical skills and methods of the two groups.



1.3. REASONS FOR DOING CONCEPTUAL ANALYSIS 9

1.3 Reasons for doing Conceptual Analysis

Concepts are not given to us a priori, as precise and well understood. Concepts
are constructed by humans.

Computer Science is a young science!® There are at least four interrelated
reasons for ‘conceptual confusion’ in computer science, which are the immaturity
of the science, the layers of abstraction, the quantity involved in computing, the
rapid development of technology.

First, computer science is a true hybrid of several sciences, physics, discrete
mathematics and social sciences. To be more specific electronics, in searching for
faster, smaller and more efficient hardware, mathematical logic, in designing cir-
cuits and designing programming languages, cognitive psychology and sociology
to understand human interaction with the computer. The goal of research is to
make computers work more efficiently in helping us solving practical problems
in our daily life and at work.

Second, the use and design of computers relies on the notion of ‘layer’ of
abstractions. To use in layers of abstractions means to use concrete and abstract
concepts. But there seems to be too little awareness of how the creation of
concepts take place and how concepts develop over time in computer science, as
seen from the community itself.!®

Third, and most importantly, new technology and concepts evolve in a true
egalitarian way. Compared to the classical scientific disciplines, computer sci-
ence is brought forwards by hackers, businessmen and managers and engineers,
and to a smaller extent by theoretical computer scientists. Scientific progress in
computer science can be described by the processes of both building concepts
and technology. Although the scientific communities contributes to foundational
research, there is an increasing tendency that the evolution of existing concepts ,
new concepts and technology (understood in the widest sense) is driven forwards
by the mass of people in the computer business outside the classical research
institutes and universities.

Fourth, the rapid development of technology itself, relies on the capability
of the contributers of the development to conceptualize what they are doing.
Understanding means conceptualizing. Conceptualizing means building new
concepts.

The consequence of this as seen from the perspective of computing engineer-
ing and computer science is a landscape of too many and too unclear concept.
It is rather the rule than the exception that a scientific term has more than
one meaning, and hence unclear meaning, or that several names have the same
meaning in different communities of engineers and computer scientists.

1471f it can be classified as a science at all. Computer science today is characterized more in
its plurality of methods and divergence of perspectives, than a clear understanding of method
and a limited domain of discourse.

15Theoretical computer science is of course an exception, but we belong to a minority. Both
from the perspective of education and industry theoretical computer scientists are pushed
more and out in the dark. Evidence for this can be found throughout Europe, positions in
theoretical computer science are withdrawn, and the companies apply for candidates with
very technology-specific skills.
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1.3.1 Being formal about informal matter

To do conceptual analysis in computer science (understood in the widest sense)
means to be confronted with actual usage of concepts in both informal discus-
sions and scientific work. More than being a logical, platonical investigation of
the internal relationship of the concepts them self, we have to investigate empir-
ically the actual usage of concepts an that the change of the informal semantics
of concepts.

The overflow of concepts and the diversity of meanings imposes the need for
working in another direction than the usual way, as done in software engineering.
It indicates the need for limitation. One such limitation is the decision to stay
inside a formal language. A formal language is precise. A sound formal language
can serve a tool for calibrating our understanding of a concept. In general
concepts are not precise and their usages normally diverge. In the research
frontier of applied computer science this is rather the rule than the exception.®

1.3.2 Three perspectives on formalization

The outcome of a process of formalizing a domain can be threefold, descriptive,
weakly normative and strongly normative.

Having a descriptive perspective means to apply a formalism in order to give
a taxonomy of a domain, so that we can reason about the domain and prove
facts about it. Two examples fit the descriptive view. Frege’s investigation of the
laws of thought is an uncovering of a platonic reality. Verification of programs,
to use formal tool in order to discover critical or dangerous consequences of
running a program that controls a nuclear power plant.'”

To be weakly normative, means to investigate the usage of concepts and
indicate, by finding inconsistency and incoherence in meaning, how usage could
be changed in order to achieve clarity.

A strongly normative perspective means to investigate usage of a set of con-
cepts and then using a formal language to specify a protocol, standard, program-
ming language or a design paradigm, which everybody is supposed to follow.
The normativity lies in the commitment for the users or programmers in apply-
ing the implemented version of the formal system.

RM-ODP is an standardization where the objective is “the developments of
standards that allows the benefits of distribution of information processing ser-
vices to be realized in an environment of heterogeneous IT resources and multiple
organizational domains”.}® It not clear whether RM-ODP could be considered
to be strongly normative, but the way they formulate their objectives and mo-
tivation strongly indicates so. In RM-ODP, the Foundations, Architecture and
Architectural semantics are all intended to be normative'®, but normative in
what sense? The conceptual framework “is based on precise concepts derived
from current distributed processing developments and, as far as possible, on

16Mathematics is of course an exception, but not many people have time to listen to the
mathematicians in the computing industry.

170ne could of course claim that the verification showing a dangerous configuration itself is
normative to the program itself, by committing the programmer to go and fix the bug in the
program.

18[18] p. 6

19118] p. ii
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the use of formal description techniques for specification of the architecture”.2°

The rapid development of new technology undermines the work of committee’s
like the Open Software Foundation?! or the Object Management Group.?? Al-
though the ISO-OSI standard was intended to be strongly normative, nobody
follows it, and it is not likely to believe that somebody will in the future. A
common situation in computer science is that intended

1.3.3 Conceptual archaeology

Our scientific method will therefore be to use the elements in the formalism as
spades and hoes to dig out the meaning of concepts in computer science. Where
no coherent meaning can be found we shall give extrapolations and refinements.
We shall call our method ‘conceptual archaeology’.

e The tools will determine the objects: The difference in expressibility of
the systems would give us different shades of the concepts or genuinely
different concepts.

This is similar to the archaeologist using spades to dig in order to uncover
an ancient building, but missing an golden ring. If she had used a spoon
she would have found the Ting but missed the building.

e Start of digging: An investigation of concepts must begin somewhere.
The expected layers of diverging meaning covering a concept must be
unraveled, but we should be careful not being limited in our investigation
by the first community of computer scientists we ask for the meaning of a
concept.

The archaeologist must seek for the most reasonable place and the appro-
priate tool to start digging. A good archaeologist has an intuition for the
landscape, where to start, and when to restart the search in another place
in order to find more interesting objects.

e Realism and humbleness: Rather than being strongly normative with re-
spect to the Domain of Discourse, our intention is to clarify and suggest
reasonable interpretations that are founded in formal systems of concepts
not including the concept for investigation. That is, we pretend only to
be weakly normative with respect to the outcome of our analysis.

The attitude of an archaeologist when finding a historical object is char-
acterized by humbleness and curiosity in the interpretation of the objects
for investigation.

e Phases of reflection and action: The work will shift between pure concep-
tual analysis - reflection and the hard work trying to make the output of
the conceptual analysis fit into an adequate formalism.

An archaeologist is both a scientist, interpreting and reflecting on the ob-
jects she finds, and a practical worker not afraid of getting dirty and tired
in searching.

20[18] p. i
21QSF for short
220MG for short
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1.4 What ‘session’ might be

A short journey in the literature and on the web gives no clear understanding
of the concept ‘session’. It is a concept changing meaning gradually, covering
new phenomena when the time goes on.

In the reference model for Open Distributed Processing [19] we do not find
‘session’. But ‘Liaison’ has family resemblance with some of our interpretations
of . ‘Liaison’ is defined by contractual context.

e Contractual context: the knowledge that a particular contract is in place,
and thus that a particular behavior of a set of objects is required. An
object may be in a number of contractual contexts simultaneously: the
behavior is constrained to the intersection of the behaviors prescribed by
each contractual context.23 24

e Liaison: The relationship between a set of objects which results from the
performance of some established behavior; the state of having a contrac-
tual context in common.?%

But, this does not really help us very much. The problem is that RM-ODP,
ideologically, is so closely related to the paradigm of object-orientation, so close
that it might be an obstacle rather than an advantage to use the concepts in
RM-ODP to explain or define ‘session’. “Every ODP system specification is
based on the concept of objects” [18] p. 11. But it does seem to be the case that
‘session’ should be understood entirely in the paradigm of object-orientation. It
might although be the case that one could interpret the concept in the paradigm
of object-orientation.

Second, we could look up in a dictionary and find its meaning: In Oxford
Advanced Learner’s Dictionary we read that ‘session’ among other things means
“single continuous period spent in one activity”. This captures the one of the
common knowledges of how to use the word, and should be taken

Thirdly, one could look up in a canonical book on Computer networks and
find that ‘session’ is a layer in a model for network-architecture that nobody uses
anymore. In [38] p. 32-33 and [37] page 253-256 the concept session appears
respectively as the 5’th layer in the ISO-OSI reference model and in the context
of the discussion on the problems with file sharing in a distributed system. The
important capabilities of the session layer is threefold, dialog control, synchro-
nization and resynchronization. To have dialog control meant that, in the old
network architecture where two agents communicating had to share the same
channel, there had to be a control mechanism deciding which agent that where
supposed to communicate (transmit) at the moment. To synchronize meant to
set timestamps on the data to be transfered over the channel, in order to be

23(19] p. 13
24The examples of liaisons which result from different establishing behaviors are
a) a dialogue,
b) a binding,
c¢) a transaction,
d) an (N)-connection,
e) an association between (N)-entities enabling them to participate in (N) connection-less
communication (as in OSI) f) a relationship between files and processes which access the files
25(19] p. 13
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able to resynchronize, which meant that the session layer had capabilities of re-
transmitting lost packages from the sender to receiver, by using the timestamps
known by both.

1.4.1 Examples of sessions

Instead of looking up in a book telling us what the concept really is, we could
take the empirical approach and search after actual and potential usages of the
concept. Let us describe some contexts of usage that is called sessions, or might
be called sessions in the future:

o I have logged in on my computer without any network-connection.2%

e I am logging in, then running several processes on a server machine from
my computer at my office, and log off at the end of the day.%”

e An ultra thin client, on which I can use a special card keeping my ID to
access my session from the ultra thin client next door, and continue to
work within the same context of programs running on the server.?®

e I use special software Y to access a server-machine from a terminal X;
equipped with an operating system Z7, get an ID for this session and use
it for a while, and then log off the and the next day I connect via a a
terminal X5, running an operating system Z3, and run the software Y
on Xo by the same ID as yesterday and continue to work with the same
processes running on the server machine.?°

e I start writing a letter to a friend on my stationary computer, but have to
leave in a hurry, so I continue to write on my portable computer equipped
with a antenna keeping the connection to the server computer. After some
minutes somebody must borrow my lap-top and therefore I continue to
work on the letter on my little Personal Digital Assistant, still connected
to my original server, being able to look what I have written up till now>°

e I join a MUD-like game, that started at time ¢y on a server machine X,
and start playing at time ¢;, but get killed at time ¢5 which is game over
for me. The game itself will go on for some while and end at ¢t3. My
participation in the game is certainly a session. But it is likely to suggest
that the game or the administrator relation to the game is a session as
well 3!

e I join an ongoing MUD-game just like above, but while the game proceed,
the Game-administrator moves the game-server from its original terminal
to a new one.

26 Personal session on a personal computer at home.

27 A session on a remote time sharing system.

28Gession mobility, realized in network of Sunray terminals connected to a Sunray-server,
where a Sunray-card gives you access to your session.

29Gessions are kept alive even though one is logged off. VNC - Virtual Network Computing.
An ID-number chosen by you, and the UNIX server machine memorizes your processes and
when requested, unfolds the encapsulated processes again. My request the next day can be
from a MacIntosh and I only need to download a VNC client for this specific machine to have
a graphical user interface exactly the same as yesterday.

30Seamless movement of a session through several devices.

31Distributed sessions.
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e [ am a participant in a real-time game over the Internet, where an arbitrary
number players interact in real-time where the whole game event appears
as a continuous event for every participants, in spite of the delay on the
network connecting the players.3?

1.4.2 The primitive concepts

The examples given above might suggest a preliminary informal definition or
rudimentary description of ‘session’:

A session is an event limited in time. It is a temporal concept, with
a start-point and an endpoint. A session is a relation between a
subject and a possible many objects. A session involves concepts of
communication.

To know the meaning of a concept, is to know what falls under the concept
and that which does not. It entails the capability of making distinctions. One
way to do this, is to find the primitive concepts that can be used to define the
concept, but are theoretically simpler. A suggestion might be:

time, place, state, communication, interpretation, identity, process

1.4.3 Five questions one could ask about the concept ‘ses-
sion’

e What is an example of the simplest session?

Which other fundamental concepts would session rely on?

Should it be possible to fork and merge sessions?
e Are there any equality predicates for sessions?

e Are sessions ordered in hierarchies?

The questions are both ontological and algebraic. They are ontological in the
sense that the answers will determine which events fall under the concept and
which does not, in other words they will determine what ‘session’ is. They are
algebraic in the sense that confirmations to the questions will unfold algebraic
properties of session-expressions as formulated in a formal theory.33

1.5 Concluding remarks

Our group is settled in an applied Research Institute where one of our concerns
is inventing new ideas for applications and speculates about future requirements
and technologies for mobile systems. There are two reasons why we consider
Pi-calculus to be a promising framework to stay inside.34

32This is a very hard technological challenge. There are no really good solutions at the
moment on how to do this.

33Where sentences in a language of sessions compile down to the language of m-calculus or
some similar system.

34Nisse Husberg proposed to us that petri-nets could be a fruitful framework to stay inside,
and we shall investigate this track in the future.
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First, Pi-calculus is a formal calculus expressed in an abstract language,
that gives the opportunity of stating technology independent properties of a
mobile system or an application running on a mobile device. Secondly, technol-
ogy evolves rapidly and freely with a continuous conflict between the need for
standardization and specialization, between compatibility and incompatibility
involving competing hardware, software and telecom-companies.

We suspect that formal methods has a role to play in on-the-edge technology
that we are exposed to where the needs for tools for thinking is critical. As
discussed above, we also expect to find several ‘session’- concepts, and hopefully
a unifying framework to reason about a subset of these. But time will show
whether we succeed or not.



Chapter 2

Mobility framework

2.1 Introduction

Advances in wireless technology and mobile information appliances and the
emergence of the agent paradigm have added a new dimension to distributed
computing, namely, mobility.

Work in mobility comes in two flavors: one concerned with mobile code and
the other with mobile appliances. Mobile code, most commonly referred to in
the literature as (mobile) agent, is a piece of code that can (autonomously) move
around the network from node to node while executing. In this report, we use
the same terminology as the one in [4] to refer to these two forms of mobility,
i.e., mobile computation and mobile computing respectively.

Mobile computation deals with issues involved in agents moving between
hosts and their communication, both with the user and among themselves, and
security issues from the point of view of both the agents and the host environ-
ments.

Mobile computing is concerned with computation carried out on mobile de-
vices in the light of the issues arising from limited resources, low bandwidth
and the intermittence of the connections of such devices to the fixed network.
Security issues are, of course, of great importance here as well.

Work in mobile computation has led to the specification of two standards:
the OMG’s! Mobile Agent System Interoperability Facility (MASIF) and the
FIPA’s? series of standards on agent communication, management and message
transport.

Originally, FIPA’s standards dealt with issues related more to intelligent
agents while OMG’s standard dealt with mobile agents. But FIPA has in the
last years addressed the issue of mobility with MASIF in mind.

Research in mobile computing has resulted in many prototypes mainly based
on the client-server paradigm and addressing different aspects of mobile com-
puting. A taxonomy of the work in that area can be found in [20]. But much
of the work on mobility has tackled the one or the other aspect of it and very
little has been done in combining both.

This chapter aims at defining a suitable framework for supporting mobile

1OMG stands for Object Management Group
2FIPA stands for Foundation of Intelligent Physical Agents

16
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users, mobility framework, by identifying the concepts essential to such a frame-
work.

2.2 A Framework for Supporting Mobile Users

In a mobile setting, in general, an end-user using a portable appliance accesses
data on or uses a service from a server located at a host in the fixed network.
The client-server paradigm is therefore adequate for systems supporting mobile
users; but it has to be tuned to the peculiarities of the mobile environment.

The premises of mobile computing differ from those of the conventional dis-
tributed computing in that

e the connectivity is weak, i.e., the connection to the host is intermittent
with fluctuating bandwidth that can become quite scarce,

e most often, mobile hosts dispose of limited resources, and
e the users are nomadic.

The first two items in the list above have to do with technological con-
straints while the last one is concerned with mobile users’ work patterns and
the requirements they give rise to.

The mobility of the users, the intermittence of the connections and the vari-
ations in the available bandwidth make the mobile environment quite dynamic.
Fixed location and connection cannot be assumed anymore. The fact that the
clients and servers can physically be located very far apart together with the
possibly narrow bandwidth available make the network latency non-negligible.

To deal with the dynamism in the environment and the latency in the net-
work are the main challenges of mobile applications. Therefore there is a need
for a framework that provides support to mobile users.

We shall now take a closer look at the characteristics of a mobile environment
and study their consequences for a mobility framework.

2.3 Weak Connectivity

On the one hand, the limited resources of mobile devices makes mobile appli-
cations very dependent on access to remote servers in the fixed network. For
example, a mobile user on a trip might suddenly need data not available locally
on his device. On the other hand, the necessity to cope with weak connectivity
points toward making them self-sufficient, i.e., capable of continued operation
while disconnected from the network.

In other words, applications operating in a weakly connected environment,
should be resilient to connectivity failures. That is, clients should be able to
continue their operation even in the absence of a server, e.g., after a connection
failure, in a disconnected mode.

There exists a vast body of work concerned with weak connectivity. A brief
discussion of work representing the main different approaches to the problem is
presented below.
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Figure 2.1: State Transitions in the Coda System.

2.3.1 The Coda File System

Coda [35, 3] is a distributed file system that provides clients with continued
access to data even in the event of server or network failures. It introduces the
notion of disconnected operation.

Coda operates in one of the states [34]: hoarding, emulating and reintegrat-
ing. It is usually in the hoarding state ready to cache critical data in the event
of connection failure. In the case of disconnection, it enters the emulating state.
In this state the client-side of the Coda system emulates its server-side making
possible continued operation. Changes made by the user to the file system in
this state should be made persistent and are logged to this end. Upon reconnec-
tion, Coda enters the reintegrating state submitting to the server the changes
made during disconnection and then enters the hoarding state again.

Note that in the above discussion, the reintegration state is a transient state
and the system will eventually proceed to the hoarding state. In the latest
version of Coda, reintegration is done by a background process that propa-
gates updates to the server asynchronously. It has therefore become a stable
state called write-disconnected and the transitions among different states have
changed. The state transitions in the two versions of Coda are depicted in
Figure 2.1.

The Coda server might therefore receive conflicting updates to the file sys-
tems from different clients. Coda’s earlier version only incorporated some auto-
mated conflict resolution mechanism at the directory level. Conflicts that could
not be resolved were handled by human intervention. Later, application-specific
resolvers (ASRs) were adopted. This mechanism was first introduced by the
Bayou system (presented next). The ASRs allow applications to leverage their
semantic knowledge and provide conflict-resolvers, programs, that are installed
and transparently invoked when necessary.

2.3.2 The Bayou System

Bayou [8] is a replicated, weakly consistent storage system in a mobile envi-
ronment. One of its main design goals is to support non-real-time collaborative
applications for disconnected work groups. In Bayou not only clients but servers
are mobile as well.

It is based on a read-any/write-any style of access. That is, in the Bayou
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system each data collection is replicated at a number of servers. Bayou clients
can read data from any server and write (insert, modify and delete) data to any
server — not necessarily the server they read from. Once a write is accepted by
a server, the client has no more responsibility for that write.

To achieve its goal, Bayou provides mechanisms that enable application spe-
cific detection and resolution of update conflicts [39], i.e., dependency checks
and merge procedures respectively, and a protocol by which the resolution of
update conflicts stabilizes thus ensuring the consistency of the replicated data
collections.

It introduces the notions of

tentative data [41]: a write accepted by a server from a client is initially con-
sidered as tentative. Eventually, it will be committed when the server can
observe that it has received and applied any write that precedes the one
at hand. This process of committing writes is made possible by the proto-
col mentioned above. Users are made aware of the state of the data, i.e.,
whether it is tentative.

session guarantees [40]: weakly consistent replicated storage systems, espe-
cially with a read-any/write-any style of access, have the disadvantages
of confusing the users. For example, a user may read a data value and
then later read an older value for the same data (from another server).
Session guarantees aim at alleviating this problem by presenting an in-
dividual application with a view of the database that is consistent with
its own operations during a session. A session is an abstraction of a se-
quence of read and write operations performed by an application during
its execution. The following four guarantees are supported:

e Read Your Writes — read operations reflect previous writes.

e Monotonic Reads — successive reads reflect a non-decreasing set of
writes.

o Writes Follow Reads — writes are propagated after reads on which
they depend.

e Monotonic Writes — writes are propagated after writes that logically
precede them.

2.3.3 The Rover Toolkit

The Rover toolkit [21, 22, 23] is a general toolkit for building mobile applica-
tions. It does so by providing two basic mechanisms: relocatable dynamic objects
(RDOs) and queued remote procedure call (QRPC).

The RDOs are objects with a well-defined interface and they can dynami-
cally be loaded from servers to clients or vice versa. To operate in a disconnected
mode, a client application can load all needed RDOs from the server. Changes
made to them are propagated back to the server upon reconnection using QR-
PCs. Rover also provides support for application-specific resolution. The Rover
toolkit is described in more detail in Section 2.4.2.
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2.3.4 Support for Weak Connectivity

Mobile clients often operate in a weakly connected networking environment. To
ensure their continued operation under these circumstances has been the goal
of many systems, some of them discussed above.

In general, the elements involved in the solutions presented by those systems
are the same in essence although different in realization. The main ones are:

e caching remote data along with a mechanism for propagating the changes
made to the cached data back to the server,

e mechanisms supporting detection and resolution of update conflicts, and

e emulation of the server at the client.

A mobility framework should therefore incorporate support for the elements
listed above in a general way. That is, it should not dictate particular strategies
but provide general mechanisms.

There is no one caching strategy that suits all types of applications. There-
fore, each application must decide on its own caching strategy. On the other
hand, the framework should support cache management, logging of changes
made to the cache, propagation of those changes to the appropriate server(s),
application-specific conflict detection and resolution, and installation of server
emulations, i.e., relocation of functionality.

2.4 Limited Resources

Most of the wireless mobile hosts have limited local resources as well as access
to narrow bandwidth only. In addition, the availability of these resources may
vary over time, e.g., when running a number of services in parallel or when
experiencing fluctuations in the bandwidth. Therefore, applications must be
able to adapt themselves to the changes in the environment.

An extreme case of limited resources is in fact the absence of a resource
altogether. For example, in the absence of bandwidth, a mobile client should
operate in a disconnected mode, discussed earlier, or when the computational
power is very limited, all computation should be done at the server.

The range of adaptation strategies, shown in Figure 2.4, varies widely among
existing systems. It can range from client-only adaptation to server-only adap-
tation passing via different degrees of cooperation between the client and the
server supported by the mobility framework. This last category is called mobile-
aware.

In the client-only adaptation strategy, called also laissez-faire [31], clients
alone are responsible for the handling of the mobile environment. Such clients
in general are not concerned about coexistence with other clients and therefore
compete with each other in a destructive way. For example, all clients running
on a mobile device compete for the same resources; in the absence of some form
of cooperation among the clients, each of them will try to hold as much resources
as it needs, reducing the overall performance.

In the server-only adaptation strategy, the server hides the mobile environ-
ment from the client, taking all decisions itself. In this way, existing clients can
be used on mobile devices without any (radical) changes. This is achieved by
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Application-awareness (collaboration)

Application-transparent
(no changes to applications)

Laissez-faire
(no system support)

Figure 2.2: The spectrum of adaptation strategies.

placing a proxy server, between the client and the server. The proxy presents
to the client the same interface as the original server and processes the client
requests by accessing the server and handling all issues related to the mobile
environment. The proxy server has usually a client side and a server side.

The former strategy hinders a fair distribution of resources among concurrent
client applications, on the same device, while the latter strategy is not flexible
enough and prevents the clients, which know best about their own states and
available resources, from participating in the decision making. The best strategy,
in most cases, is therefore collaboration between the client and the server with
support from the framework for a more efficient resource management.

Different approaches have been taken to tackle the adaptation problem. We
shall now try to establish the main characteristics of a mobile-aware system by
studying a couple of existing examples.

2.4.1 The Odyssey System

The Odyssey system [31, 30], designed to support mobile information access,
focuses on adaptation with respect to the quality of data. The adaptive decisions
lie at the clients and are concerned with the quality of data received while the
servers are able to provide data in accordance with the chosen quality. For
example, as a result of a drop in the available bandwidth, a client might decide
to degrade the quality of the received video stream by accepting a reduced size
for each individual frame. The clients cooperate with the Odyssey platform to
choose a suitable quality, i.e., the clients have an adaptation policy and based
on it, they inform Odyssey of their resource requirements; Odyssey is in charge
of resource allocation, notifying the clients of resource changes, and enforcing
the adaptation policies.

The Odyssey system does not really tackle the disconnected mode. Of course,
an QOdyssey client can, if enough memory is available, cache in all the data it
needs in advance and then proceed in a disconnected mode but this is not its
main goal.

2.4.2 The Rover Toolkit

The Rover toolkit presents the applications with a distributed object system.
A Rover client application runs usually on a mobile host (it can be run on a
stationary host as well) while a Rover server application typically runs on a
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stationary host. To deal with limited resources, it provides relocatable dynamic
objects (RDOs) and queued remote procedure call (QRPC).

The RDOs are objects with a well-defined interface (they can be either very
simple or complex) that can dynamically be loaded from servers to clients or
vice versa. Their purpose is manifold. For example, clients can load RDOs
from servers to reduce communication or load RDOs into the servers to carry
out heavy computation or complex actions against data at the server.

Updates made to the RDOs are propagated to the Rover server using the
QRPC mechanism. The Rover server has the main, canonical, copy of the RDOs
and applies the received QRPCs to them.

Loading RDOs representing the necessary server functionality into the client
from the server, allows the client to operate in disconnected mode. Updates to
the cached RDOs are, as mentioned above, remembered by the QRPC mecha-
nism and propagated to the server upon reconnection.

The Rover toolkit provides general mechanisms and thus supports imple-
mentation of the whole spectrum of mobile-transparent to mobile-aware appli-
cations.

2.4.3 Support for Limited Resources

As said earlier, clients know best about their available resources and how to
manage them. Some clients do not only have limited resources, but also limited
capabilities. That is, they cannot handle all types or format of data. For
example, a regular mobile telephone cannot handle video, or a device might
only be able to display pictures stored in a particular data format (e.g., gif, jpg,
etc.).

A framework for mobile computation should therefore alleviate the problem
of limited resources at the clients by allowing them to tailor their activities
accordingly. It should enable the client to

e state its capabilities,
e state the quality of the data it can currently handle,

e delegate computation to the server (generally with considerably more re-
sources) if and when necessary.

The first two items above deal with bandwidth scarcity while the third deals
with both bandwidth scarcity, limited memory and computational resources. It
is important for the client to inform the server about its limitations so that
inappropriate data is not sent and bandwidth is not wasted.

2.5 Nomadic Users

The two previous sections, Sections 2.3 and 2.4, described how a mobility frame-
work should deal with the technological constraints imposed by mobile environ-
ments. This section is concerned with how to best support users in carrying out
their tasks efficiently in such environments.

Nomadic users can be characterized by
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e being away from their home base, i.e., their regular place of work (they
might even not have one),

e using mobile equipment,

e being disconnected for long periods of time due, e.g., to unavailability of
the network, their devices being out of power, etc., and

e possibly changing equipment.

A major consequence of mobile environments for the nomadic users is re-
duced data availability. Therefore, support for efficient ways of obtaining the
desired data is of importance. Nomadic users are often in situations where it
is desirable to carry out various tasks at the server machine either because of
lacking computational power of the mobile device, necessity to bring computa-
tion close to the involved data, the desire to perform many tasks in parallel, or
simply not being able to use the mobile device for a period of time. A typical
scenario would be that a nomadic user launches some task to be carried out at
the server while he is busy with some other task. Later in the day, he will pick
up the result.

Another aspect of nomadic work is that nomadic users might be using dif-
ferent mobile equipment at different times. Ideally, they should be able to go to
another device and continue the work they had started at the previous device.
This seems not to be possible with the existing systems.

In a mobility framework, the key in supporting nomadic users is thus flex-
ibility. That is, nomadic users should be provided with mechanisms such that
they can tailor their work pattern to the situation at hand.

2.5.1 Support for Nomadic Users

Two concepts that seem to provide the desired level of flexibility to nomadic
users are:

e mobile agents, and

e a concept of session allowing them to continue the same task at a new
device.

Mobile agents can operate independently of and also in parallel with their
originators. Using mobile agents, nomadic users have thus the possibility of
duplicating themselves to carry out multiple tasks in parallel, to carry out tasks
while they are not available themselves and to carry out the computation close
to the data or at servers with more computational resources.

A client should therefore be able to send a mobile agent to a server and re-
ceive the agent back with the desired result. The server should perform security
checks on the agent upon its arrival and let it perform its task with respect to
the outcome of the security checks, and send it to its next destination, most
probably its originator, when requested to do so.

Most of the work done on mobile computing is concerned with accessing
shared data. Only the Rover toolkit touches on the aspect of transferring com-
putation between clients and servers. The RDOs of the Rover toolkit provide
support for some of the situations listed above.
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There are many platforms supporting mobile agents, but they are not con-
cerned with mobile environments and thus lack support for the other issues,
discussed earlier, that are related to mobile environments.

As stated above, the other dimension in providing flexibility is to support
nomadic users in continuing their tasks on a new device. The concept of session
for supporting this is elaborated in the next section.

2.6 Session

A session is a concept orthogonal to mobile computing and can as well be used
in conventional environments.

The concept of session is not focused much, at least on a logical level, in
conventional environments mainly because of the availability of resources and
steadiness in connections.

Likewise, in the literature on mobile computing, there is very little emphasis
on the concept of session. All servers keep some kind of information about
the different clients they serve and all clients keep information about their own
states, but the notion of session is treated rather implicitly. Some of the systems
explicitly define sessions for very specific purposes. The Bayou system, e.g.,
defines a session as [40]

. an abstraction for the sequence of read or write operations
performed during the execution of an application. Sessions are not
intended to correspond to atomic transactions that ensure atomicity
and serializability. Instead, the intent is to present individual appli-
cations with a view of the database that is consistent with their own
actions, ...

This definition is in order to define and provide session guarantees as de-
scribed in Section 2.3.2.

The Rover toolkit also has a notion of session which is based on Bayou’s
session. Its API contains a create session method which returns a session identi-
fier. The notion of session is used to specify consistency requirements prevailing
throughout the session.

None of the systems mentioned in this report supports change of device for
continuing the same work, though this would offer great flexibility to nomadic
users.

To support the flexibility of changing devices, the notion of session should
be treated as a general high-level concept. It should be defined such that it also
supports the existing definitions such as that of the Bayou system.

It is hard to define a session in terms of when it starts and when it ends, in
a general way suitable to all applications or services. Some services might have
a semantic that lends itself to a natural and logical definition of the start and
end of a session, but most services do not.

For example, when sending a mobile agent off, it seems logical to assume
that a session is from the time the agent is launched to the time it has returned
and delivered the result to the user. But when working on a shared document,
there is no straightforward way to define a session. We feel that the user best
knows the context and the semantics of the task at hand and therefore is best
positioned to define the start and end of the session. Ideally, a user should be
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able to run many sessions in parallel, some of them possibly involving the same
application.
We define the session as follows:

A session is as a sequence of active periods (in terms of the client
performing tasks) separated by inactive periods, which can be very
long in a mobile setting. The active periods can take place in either
of connected or disconnected modes. Moreover, as stated by the
Bayou project, sessions are not intended to correspond to atomic
transactions that ensure atomicity and serializability.

We shall now take a closer look at the elements of a session and how it can
be supported in a mobile environment.

2.6.1 Elements of a Session

According to the given definition, a session is comprised of a sequence of active
periods. A session needs therefore a memory to recall where it left off in its
previous active period. In other words, a session has a state.

Some of the ingredients of this state are common to all sessions while others
depend on the session’s application. In the following a more detailed description
of these two parts of a session state is given and the impact of session on the
framework is described.

Application Independent Elements of the State

To continue work on a previously started session, one needs to identify that
session. That is, a session must have a unique identifier (session ID or SID)
that lasts throughout its life. The session ID is issued by the server when a
session is started. The server holds the states of all the sessions it participates
in and manages them.

A server should know about the capabilities of the client device it is servicing,
in terms of the data types or formats that it can or cannot handle. It can use
this information to save bandwidth by sending only the relevant type of data in
the appropriate format to the client.

It also should know who the end-user is. This information can be, e.g.,
a user-name/password combination. The server can use this information in
various ways, such as for billing or for security checks.

To access information on the server that might not be public, the user needs
to present the server with his credentials describing the access rights and priv-
ileges he has. This information can be tied to the user-name/password of an
user or it can be some separate piece of information.

An identification of the service (application) offered in a session is also part
of the session state. In addition, the server needs an identification of the client’s
device to be able to notice a change of equipment and the address at which the
client can be accessed (e.g., IP address, phone number, etc.). This address can
be used to establish contact with the client if necessary or to put others looking
for the corresponding user in touch with him, if such a service is desirable.
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Application-Dependent Elements of the State

The application-dependent elements of the session state can be defined in terms
of one general requirement. They should hold enough information to reinstate
the state of the session to what it was at the end of the previous active session
on any machine at any location. For example, if the session ran a distributed
file service, the state should contain a list of all files cached at the client. In the
case of the user continuing his work on a new device, the server will use that
information to load all the files into the new device.

The ability to operate in a disconnected mode entails additional complexity
for the transfer of a session from one device to another. If the last active period
of the session was carried out in disconnected mode, then the server is unaware
of actions undertaken in that period and its session state does not reflect them.
The same is true if the previous active period has been terminated by, e.g.,
a sudden network failure. In most cases, some of the client actions are not
committed to the server yet. The best the server can do is to reinstate the
session state to the last active, non-disconnected period.

Clients keep record of non-committed operations and commit them upon
reconnection and thus update the state of the server. Therefore, continuing the
work from the same client device does not cause any loss of information since
the information missing at the server is at the client which brings the server
up-to-date. This suggests that the application-dependent part of a session state
has both a client-side and a server-side.

By continuing the work at another device, the client-side’s state information,
e.g., the set of non-committed operations, is not available at the new device
anymore. That is, by changing device, the user might lose some of his work.

2.6.2 What Session Means for the Framework

Section 2.6.1 suggested the use of a unique server-generated session identifier
(SID). The uniqueness of a SID is, of course, with respect to the server generating
it. This section will elaborate on the pros and cons of the SID.

If a client is restricted to only one session with a given server, then a SID
is no longer needed. Upon connecting to the server, the user identifies himself,
the server uses the identification information (e.g., user-name/password) to find
the corresponding session, notices that the physical address has changed, and
therefore reinstates the client’s state from its own session state. Such a restric-
tion though highly reduces the flexibility of work for nomadic users and is thus
not desirable.

If the client is allowed to establish more than one session with a server, in
the absence of a SID, the above scenario still holds. The major difference is that
the new client is reinstated with the states of all the sessions that the user had
at that server. The user is not able to choose a particular session if he wishes so.
In an environment where resources are scarce, this will lead to waste of valuable
resources, such as bandwidth and memory.

Using a SID gives the user the flexibility to both establish many sessions
and to be able to pick only one for further work at a new device. But the SID
has the disadvantage that it should be transferred somehow from one device to
another.

The first candidate that comes to mind for the transfer is the user. The SID
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can be saved on, e.g., a CD, a floppy disk or in the user’s memory, and carried
to the new device.

A better and more robust alternative is to offer to the user a registry service
where each server registers each new session, i.e., the SID along with necessary
information allowing users to get hold of the needed SID.

The scheme discussed above does not solve the problem of loss of work due
to disconnected mode of operation or a sudden network failure. The client
can provide the user with the ability to checkpoint the client’s state when he
wants at a specified location, e.g., a CD, a floppy disk, etc, and to re-establish
the client’s state from the checkpoint. But the checkpointed state should be
carried to the new equipment by the user. Of course, it is possible to have the
checkpointed state saved at some kind of a server as well, but this alternative
might not be very efficient. Some hands-on experience with implementing a
mobile framework is needed in order to test the alternatives.

According to the above discussion, the information that should be provided
by a client upon establishment of a session with a server consists of the following
parts.

e identification of the user (user-name/password),

e client device’s address,

client device’s identification,

client device’s capabilities, and

o the desired service (application).

The client receives in return a server-generated SID, which it saves. On
the server side, the server establishes a new session comprised of the generated
SID, the information provided by the corresponding client, and the application
dependent information.

2.7 Conclusion

The previous sections dealt with the impact of different aspects of mobile envi-
ronments on a mobility framework and the necessary elements to support them.
This section gives a summary of the desired characteristics and facilities of such
a framework.

The major desired characteristic is flexibility both in terms of

e supporting a range of strategies and allowing the applications to decide
on the appropriate ones, and

e allowing the nomadic user to adapt his work pattern to the situation at
hand.

In order to achieve the first bullet in the list above, a mobility framework
should not try to hide the characteristics of the mobile environment from the
clients but provide them with mechanisms that enable them to tackle the dy-
namism and the shortcomings of the mobile environment as they see fit. For
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example, it should allow to build mobile-aware as well as mobile-transparent
services.

To satisfy the second bullet above, two elements were identified: an agent-
like facility and the concept of session as presented in Section 2.6.

To summarize, a mobility platform should include support for

e disconnected mode of operation, which involves

— support for caching remote data in terms of a cache management
facility caching the necessary file, logging the changes made to them
and propagating the changes to the server,

— mechanisms for detection and resolution of update conflicts, and

— emulation of the server at the client;
e limited resources, including

— client adaptation to the changes in the mobile environment by noti-
fying the client of the changes in the resources, negotiating with it
resource usage, and enforcing the result of negotiations;

— moving computation between clients and servers;
e agent facility;
e session as defined earlier;

In addition, support for security, which is not handled in this report, is
necessary.



Chapter 3

The m-calculus

Our presentation of the 7-calculus attempts a (partial) reconstruction of §9 in
Milner’s textbook [25], but we give a more rigorous treatment. Also, we limit
ourselves to the m-calculus proper, while Milner develops the theory starting
from automata theory.

We have presented the theory in a level of explicitness that would satisfy the
reader being introduced to 7-calculus for the first time. In concrete this means
that our recursive definitions and inductive proofs should leave no doubt about
the mathematical precision of the abstract objects in discussion.

3.1 Basic calculus

This section details with the 7-calculus itself and its basic properties.

3.1.1 Syntax and substitution

Here we define the syntax of the m-calculus, that is, the structure of process
expressions. We also define substitution on process expressions and state some
properties of substitution that are needed later on.

Syntactic conventions: 7 is an action prefix; a, b, x,y, z are names; P,Q, R
are process expressions; o, p are substitutions. In addition we use subscripts or
primes on the above. Like Milner we use these symbols as both meta-variables
and in the concrete syntax; distinguishing the two leads to a lot of extra book-
keeping without much gain. Meta-equality is used to state that two expressions
are syntactically identical, P = P’.

We have one piece of non-standard meta-notation: we sometimes use a ‘un-
derline’ to denote which part of a process expression that will change when we
reason about process expressions, for example:

0_|a.0 =a.0

Note that the underlined part need not be a process expression, in fact, here it
is not.

Definition 3.1 There is an infinite set of names N' = {z,y, z,... }. The action
prefizes are m = {z(y)|z,y € N} U{Z(y)|z,y e N} U{r}.

29
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T is called the unobservable action. Note that two occurrences of the same name
may refer to two distinct variables.

Note that the symbol 7 is overloaded: it denotes the set of action prefixes,
but is also used as a meta-variable standing for an action prefix, and finally it
is used to stand for a proof-tree. The risk of confusion is negligible.

Definition 3.2 (P™) The set P™ of process expressions is the smallest set such
that

0eP” (3.1)
If PeP" and a € N then newa P,\P € P" (3.2)
If P, P, € P™ then P|P, € P™ (3.3)
If, for every i € I(|I| =n), it holds that m; € © and P; € P™ then
> mi.PeP" (3.4)
i€l

We assume that a name a introduced by newa P is always globally unique.
When convenient we shall use + since, Eie{l,Z} 7. P, = m.Py + . Ps.
Hence;

Definition 3.3 The process operators PO™is the set PO™ ={|, ., new, +,!}.

Definition 3.4 The degree of process-expressions are defined by

deg(0) =0 (3.5)
deg(m.P) = deg(new a P) = deg(!P) = deg(P) + 1 (3.6)
deg(P1|P2) = deg(P1 + P2) = maz(deg(P1),deg(Ps)) + 1 (3.7

It is recursive to measure the number of occurrences of an operator in a process
expression.

Definition 3.5 Let ©® € PO™ then num(®, P), where Py, Py € P™ is;

num(©,0) =0 (3.8)
num(©®, ®P;) = num(®, P;) + 1 (3.9)
num(@®, P; ® P2) = maz(num(@, P;), num(®, P2)) + 1 (3.10)

If § # © then both num(®, §P;) = num(®, P1) and
num(@®, PifP) = maz(num(®, P;),num(©, P;))

Syntactic conventions:

=m0
newas ---a, P =new(a; ---a,) P

newa P = P or newa;---a, P

Notation new @ P represents a restriction over zero or more variables d@, where a
restriction over zero variables means no restriction.
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The w-calculus operators have precedence from high (tight binding) to low
(loose binding) as follows:

U+

Operator new always takes a single process argument, using brackets if neces-
sary. The following convention follows from the precedences above:

In.P =!(m.P)

Definition 3.6 (Free names, fn) The free names of process expressions:

fn(0) = 0 (3.12)
fn(z(y).P) = {z} U (n(P) \ {y}) (3.13)
fn(z(y).P) = {z,y} U n(P) (3.14)

fn(newaP) =fn(P) \ {a} (3.15)
fn(!P) = fn(P) (3.16)
fn(P,|P;) = fn(Pr) U fn(P) (3.17)
Z’“ ) = f(mi.P) (3.18)

The brackets are significant in Equation 3.13 above; we must ensure that, when
x = y, it holds that z € fn(z(z)), that is, that the two occurrences of name x
are identified as distinct variables.

Later we need a form of substitution on process expressions to define re-
action between processes, and we also use properties of substitution in proofs.
Substitution is known to be hard to get right and we therefore analyze it further.

The kind of substitution we use here is simpler than substitution in A-
calculus [33, §2]:

e we only substitute variables for variables, not general expressions for vari-
ables;

e substitutions may replace at most one variable (but several occurrences of
that variable) in a process expression.

If a,b € N then {b/a} denotes a substitution. We use Milner’s prefix notation
for application. On names substitution has the obvious meaning;:

{b/a}a=10b (3.19)
{b/a}z ==z when = # a (3.20)

The substitution {b/a} replaces free occurrences of a with b in a process expres-
sion P. The following definition makes this precise.
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Definition 3.7 (Substitution on process expressions)

00=0 (3.21)
{b/a}(xz(a).P) = ({b/a}z)(a)-P (3.22)
{b/a}(z(y).P) = ({b/a}z)(y){b/a} P when y # a,b#y (3.23)
{b/a}(z(b).P) = ({b/a}zx)(b').{b/a}{V' /b}P where y # a,b’ & tn(P) (3.24)

o(z(y).P) = oz{oy).cP (3.25)
{b/a}newa P = newa P (3.26)
{b/a} newz P = newz {b/a}P when x # a,b# (3.27)
{b/a} newb P = newb' {b/a}{V'/b} P when x # a,b’ & fn(P) (3.28)

olP =1oP (3.29)
o(P1|P2) = oPi|o P, (3.30)
O'(Z m.P) = Z om;.P; (3.31)

iel il
Syntactic conventions:

0102P = 01(02P)
{}p=P (empty substitution)

Proposition 3.8 Laws for substitution:

{a/a} ={}
o{}=o
oo

{b/a}{a/b} = {b/a}

{z/b}{a/b} = {a/b}

{z/yHa/b} = {({z/y}a)/b{z/y} whenb#y andb#
{a/b}P =P when b & f(P)

The laws involving two substitution on the left-hand side are special cases of
laws given by Mitchell [28, p. 54].

Proof The proofs are obvious; they are left as an exercise for the interested
reader. m|

3.1.2 Structural congruence

Definition 3.9 If M € P™, a € N and m; € 7 then the set of elementary
contexts € is the smallest set such that; m1.[] + M, M + m1.[], []|M, M]|[],
newal[],![] €€.

Definition 3.10 If M € P™, a € N and m; € =, then the set of w-process
contexts PC™ is the smallest set such that
EcCPCT (3.32)
If K € PC™ then m.K + M, M + m.K,

_ (3.33)
KIM, MIK, newa K, IK € PC
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Notice that the set PC™ is a language of syntactic constructs. Note also that
PC™ NPT is empty because there is always one and only one occurrence of the
minimal context [] in every K € PC™ (as easily shown through an inductive
proof).

Definition 3.11 The syntactic complezity deg(K), where K € PC™ is a map-
ping deg(.) : PC™ — N, defined recursively as:

deg([]) = 0 (3.34)
deg(m1.K + M) = deg(M + 71.K) = deg(K|M) = deg(M|K)

3.35

= deg(newa K) = deg(!IK) = deg(K) +1 (3:35)

The purpose of a context expression is to be able to insert any process

expression at the [] place and end up with a well-formed process expression.
More formal:

Definition 3.12 Context application is defined as the mapping .[,] : PC" x
P™ — P™ for the empty context as [|[P] = P and for all other contexts recur-
sively as follows:

[(pl=r (m.K)[P] = m.K[P] (3.36)
(r.K+M)[P|=nK[P|+M  (M+7K)P|=M+nK[P| (3.37)
(KlQ)[P] = K[P]|Q (QIK)[P] = QIK[P] (3.38)
(new a K)[P] = new a K[P] (1K) [P) =\(K[P)) (3.39)

Context application is overloaded to be applied on process contexts also: .[.] :
PC™ x PC™ — PC™. Its semantic should be self-evident and will satisfies the
following:

deg(K) = j,deg(K') = j' = deg(K[K]) = j + j' (3.40)
(KIKP] = KIK'[P]] (3.41)

A process expression P contains usually more structure than we are inter-
ested in, e.g., we would like to consider P|@ and Q|P as equivalent in some
sense. This is usually done by partitioning the set PC™ by the means of congru-
ence relations. In general a congruence relation, 2, is an equivalence relation
that is preserved through algebraic operations, (e.g. if x = y then f(z) = f(y)

for all z,y and f (with any arity)). To be more specific, we define:

Definition 3.13 (Process congruence) An arbitrary equivalence relation =
is a process congruence if for all P,Q € P™ and € € £ such that if P = Q then

€[P] = €[Q)].
That a process congruence holds over any context application follows from:

Proposition 3.14 For an arbitrary equivalence relation = the following two
statements are equivalent:

1S a process congruence (3.42)

VK € PC™,P,Q € P™: (P~ Q = K[P] 2 K[Q)]) (3.43)
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Proof Suppose 3.43. Then it must also be true for £ € & (since &€ C PC™).
Thus, 2 is by definition a process congruence.

So, assume that 2 is a process congruence. We shall prove 3.43 by induction
on the syntactic complexity of K.

Base case: deg(K) = 0. Then K € £ and it follows from the definition of
process congruence that VP,Q € P™: (P 2 @ = K[P] = K[Q])

Induction step: Suppose that VP,Q € P™: (P = Q = K[P] = K[Q)) is true
for all K such that deg(K) < n and let K’ be arbitrary such that deg(K') =
n > 0. There are several cases, but the proof will be identical for each one.
We present only one here, namely suppose X' = 7. + M, and let P,Q € P™
be arbitrary such that P = Q. As deg(K) < n we know from the induction
hypothesis that K[P] = K[Q]. Further

K'[P] = (7.K + M)[P] = n.K[P]+ M = (r.[] + M)[K[P]] (3.44)
K'Q] = (m.K+ M)[Q] = m.K[Q] + M = (.[] + M)[K[Q]] (3.45)
and as 7.[]+ M is an elementary context, it follows from the definition of process

context that (7.[] + M)[K[P]] £ (n.[] + M)[K[Q]] or K'[P] = K'[Q]. Induction
step is completed, and proof also. O

A particular process congruence is needed. We shall define it constructively,
and need the following basics first:

Definition 3.15 The basic structural relation, =, is defined over the set P™ of
process expressions as follows. For all P,Q € P™ and a,a’,z,y,y' € N,

newa P 2newa' {a'/a}P where a' ¢ fn(P) (3.46)
z(y).P2z(y).{y'/y} P where y' & fn(P) (3.47)
P+Q=Q+P (3.48)

P+(Q+R)2(P+Q)+R (3.49)
Plo=P (3.50)
PlQ=Q|P (3.51)
P|(QIR)=(P|Q)|R (3.52)
newz (P|Q) = P|newz Q if ¢ & fn(P) (3.53)
newz0=0 (3.54)

new zy P 2 new yx P (3.55)
\P= P|1P (3.56)

Further, the equations work both ways (< is commutative.)

We could now define structural congruence as the least congruence relation that
satisfies the above equations, or we can say that two process expressions are
structural congruent if we can transform one into the other by manipulating
subexpressions by using & repeatedly. However, we choose to forward con-
structively.

As subexpressions are not taken care of we see that even if P02 P, it is
still such that P|0+ @ # P + Q. The next operation is to define a relation that
takes care of subexpressions:
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Definition 3.16 The relation =" is defined over the set P™ as follows:

P='Q if and only if I € PC",P',Q' € P": P = K[P'] A (3.57)
Q=K[QA (3.58)
deg(K) =iAnP 2qQ (3.59)
Example:

P =R+ z().(S|0) Q=R+Zz().S (3.60)
K=R+z().[] deg(K) =2 (3.61)
P’ =(5|0) Q =S (3.62)
P=q (3.63)
Therefore: P=2Q (3.64)

Proposition 3.17 =" is symmeltric.
Proof Follows easily from the fact that & is symmetric. 0O

What we in fact has defined is a class of relations, i.e. {='};cn. However,
neither of them is reflexive nor transitive. E.g. for every ¢ € N it is so that
0#'0 and also:

P =z.(5]0) + y.(IT|U) (3.65)
Q==z.5+y.((T|'T)|U) (3.66)
P#Q (3.67)

Thus, we need to extend =" reflexively and transitively:

Definition 3.18 The relation =, is defined over the set P™ as follows:

P=¢Q if and only if P = Q (3.68)
P=;.1Q if and only if BR€ P™,j: P=;RAR=7Q (3.69)

Considering the example above:

R, =P Ry = z.(S]0) + y.((T'T)|U) (3.70)
j1=3 J2=2 (3.711)
Ri=*R; Ry=%Q (3.72)
(3.73)

Finally, structural congruence can be defined:

Definition 3.19 The relation = is defined over the set P™ as follows:
P=Q if and only if Ji: P=;Q
It remains to show that = is a process congruence:

Proposition 3.20 The relation = is a process congruence.
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Proof We must show that = is an equivalence relation, and that it is preserved
over elementary contexts.

That = is reflexive follows from the fact that P =y P for every P € P". Tran-
sitivity from that if P =@ and Q) = R, then there exists ¢ and j such that P=; @
and @ =; R, thus with a simple induction argument we have that P=;; R.
Symmetricness follows also easily from that =" is symmetric.

So what remains is to show that = satisfies the condition of definition 3.13.

Suppose P=(, we must prove that for every elementary process context
€ € PC™, we have that €[P]=¢€[Q].

This is done by double induction, first on the length of a =,,-chain and on
the depth of a =" relation. Let € be an arbitrary elementary context.

Base case: In this case we have that P =¢ Q) which means that P = @, and
trivially e[P]=€[Q)].

Induction step: Suppose for all P, @ and i < n(n > 0) such that if P=; Q we
have that €[P]=;¢[Q] (induction hypothesis). Let P and @ be arbitrary such
that P =, Q. Then there exists an R and a j such that P=,_; R and R=7 Q.
The induction hypothesis implies that €[ P]=,,_; €[R] so if we can show that

Vi: R=7Q = €[R]=' €[Q)] (3.74)

we can use transitivity to conclude that €[ P] =, €[Q] which thereby finishes the
induction step, and the proposition follows directly.

Proof of 8.74: We want to prove that for all R=7 Q, ¢[R] =’ €[Q)] follows. If
the premise holds, we know that there exists a process context K € PC™, and
process expressions R, Q' € P™ such that j = deg(K),R' 2 @', R = K[R'] and
Q = KIQ'.

However, by definition the expression €[K] is a process context of degree
j + 1. Thus, we automatically have that (e[K])[R]=/T1(e[K])[Q’'], or that
€[K[R']] =711 €[K[Q']] from which 3.74 follows. m|

3.1.3 Syntactic sugar

This section introduces some useful syntactic sugar, that is, high-level notation
that can be compiled into the core m-calculus. Unlike Milner we do not compile
all name binding operations down to abstraction.

The polyadic m-calculus

As the observant reader will have noticed the core calculus of Definition 3.2
allows only processes to communicate one name (or value) at a time over a
channel. Instead of giving a semantics to multiple arguments in the core calculus
the following translation into the core ensure that multiple argument syntax is
well-defined:

z(y1, -, Yn)-P = z(w)w(yr). - .w(y,).P
Z(z1y. .y 20).Q = neww z(w).w(z1). -+ w(zpn).Q
We leave it as an exercise to the interested reader to show that the ‘obvious

translation’ is to simple—it can lead to mix-up in the presence of more two
processes that communicate on a channel.
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Process definition and application

A process definition is meta-syntax for introducing a name for a process expres-
sion. The names introduce are called process identifiers; we shall denote them
as A, B, P,Q.

In general process definitions can be parametric, that is, a definition may
require arguments—that is names—to be supplied when the it is referenced
in process expression. Those arguments will then be bound to the parameter
names when the process is used.

Definition of process identifier A with distinct parameters zi,...,z, and

body Q4:
def
Az, ... 2n) E Qa.
When referring to a process identifier—such as A above—outside of a process
expression we sometimes write A : n to indicate that A has n arguments. Also,

with such a definition in place we abuse terminology and refer to the ‘process
A’. Using the process A on arguments yq, ..., Yy, is denoted as follows.

Ay, -y Yn)-

For recursive process definitions things get more complicated. A recursive
process is the process resulting from a definition where a process identifier A

occurs also on the right-hand side of the def sign, for example,

Alz,y) & 2(y).Aly, z).

Given a recursive definition of an identifier

Adéf QA,

that is Q4 refers to A, and where the scope of this definition is some process
P. Here is Milner’s procedure [25, Ch. 9.5] for ‘compiling’ the right-hand side
P into a process expression in the core syntax m-calculus of Definition 3.2.

1. Invent a new name, say a, to stand for A.

2. Let R denote the result of replacing every application A(ws,...,w,) by
a(ws,...,w,) in process R.

3. Replace P, and the accompanying definition of A by the following core
process expression:

newa (Plla(zy,...,2,).Qa -
The generalization to mutually recursive process definitions in straightforward.

3.1.4 Reactions

The rules for reactions gives us a recursive definition of the reaction-trees.Since
there is no branching rule we might call these objects reaction-truncs. Given
two expressions P,Q € P™, we call P— @ a reaction sequent,and we call P
and @ respectively the source and target of a reaction sequent.
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Definition 3.21 (Reaction rules)

TP+M—P TAU
(z(y).-P + M)|(z(y)-Q + N) —{z/y}P|Q  REACT

i i
P—P P—P
P|Q— P'|Q PAR newa P —s newa P’ RES
II

|
P—P P=Q P=(

Q—Q
In the definition above immediate sub-trunc is defined implicitly, in the obvious

way: TAU, REACT has no immediate sub-trunk, PAR, RES and STRUCT has
the immediate subproof

STRUCT

i

P—P

We shall write II F P — P’ meaning that there exists a derivation (reaction-
trunk) II for the reaction-sequent P — P’.

Definition 3.22 (Depth of reaction-truncs) d(II) is defined by:

d(TAU) = d(REACT) =0 (3.75)
If the last rules in II is PAR,RES or STRUCT with

o (3.76)
immediate sub-trunk I, then d(II) = d(II,) + 1

We observe that the struct-rule is a genuinely pseudo-rule, highly non-const-
ructive. It carries all the information of structural congruence inside. From a
computational point of view this is not nice. A way to interpret this is that the
formal calculus is infected by the semantics of the calculus. Given a reaction
sequent, the obvious recursive construction of the reaction-trunk from bottom
up fail in case of the struct-rule, where the theorem-prover must take a brake
and run through every process-expression structurally equivalent to ) and @',
which will take infinite time for both Q and Q’. First, some definitions:

Definition 3.23 The reflerive and transitive closure of —:
PP (3.77)
P Q if IR(PRAR—Q) (3.78)

3.1.5 Time and computation

A natural question to pose is what role time does play in a calculus that is
modeling synchronous communication. As we shall see later, when giving formal
models of concrete contexts of communication, asynchronicity drops in the back-
door every moment.

Time comes into play at both an abstract and a concrete level. First, on
the level of language-abstraction it is important to have a recursive grounding
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of the number of rewriting-steps necessary to show the structural equivalence
of two P™. This was taken care of in the previous section. Second, on the
level of concrete transactions of a concrete process-expression, it is important
to understand how concepts of time are apparent.

There is no discussion of ‘time’ in [25]. Time occurs in the ambient-calculus
of [6], and in the m-calculus in [27]. In both papers temporal concepts are
connected to relations of transitions (actions). In [27] modality is introduced
to reason about bisimilarity. “It may be shown that two processes are strongly
bisimilar iff they satisfy the same formulae ( ... )” !. The main goal of Milner
et al. is to study the high level specification languages capturing and unifying
different formulations of (structural) equivalences. But, the expressibility of the
specification language of time in #-calculus is rather limited. Let us recapitulate
Milner, Parrow and Walker [27]:

P E true (3.79)
PE=-Aiff P A (3.80)
PEAANBif PEAand PEB (3.81)
Pl (o) Aiff IP' (P P AP | A) (3.82)

Note that « is an action prefix. The interpretation of formulas are given by
the standard Tarski semantics, with the only atomary formula P |= true. But
the expressibility of the logical language itself is rather poor, actually the only
structure uncovered are reactions.

In [6], the corresponding formulas of the logical language is containing the
full flavour of processes. That is, the properties of the ambients are mapped
into the logical language. The temporal possibility modality is explicated as
the reduction relation on ambients. It is a proper “extention” of the reaction
relation of Milner. There are some differences though. The ambient calculus is
restriction-free and do not have the ordinary reaction rule. Cardelli and Gordons
reductions describes the dynamic behaviour of ambients.

n[in m.P|Q]|m[R] — m[n[P|Q]|R] (RedIn)
m[n[out m.P|Q]|R] — n[P|Q]|m[R] (RedOut)
open n.P|n[Q] — P|Q (RedOpen)
(n).P|(M) —{M/n}P (RedComm)
If P— Q then n[P] — n[Q)] (RedAmb)
If P— Q then PR — Q|R (RedPar)
fP—Q,P=P,Q=Q then P — Q' (Red =)

But (Red Comm) can easily be proved using the react axiom of Milner:
(z(y).P+ M)|(Z(y).Q + N) —{z/y} P|@ has the conrete instance:
(z(y)-P)|(Z(m).0) —{m/y}P|0={m/y} P, letting m denote M.

Cardelli and Gordon’s specification logic bimodal capturing the notions of
both time and place. In case of time we cite:

PloAiff IP'(P5P' AP | A)

which means that A is realizable once upon a time in the future.

1p.150.
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Since the diamond and box operators of modal logic are defined by quantifiers
we are only capable of expressing abstract properties of time, like “sometimes”,
“eventually”, “always” and so on.

We can make a twist to the problem a start searching for temporality inside
m-calculus. The natural starting point is reaction, since the source and target
in a reaction are two perspectives on an interaction between processes, with
an implicit reference to time, referring to respectively ¢; and t2, two points
in an execution-graph of processes. Given a process expression in m-calculus,
we can form the graph of reaction sequents, we call this a reaction graph. A
time-interval is a path in a reaction-graph.

Definition 3.24 Let Q € P™, then the reaction-graph of Q called rg(Q) is the
set of reactions such that rg(Q) = {Q1 — Q2|Q — Q1 }

We note that by a-conversion and the fact that P|0 2 P (basic rewriting rules),
we might immediately get w many react-elements, by STRUCT.

Definition 3.25 A reaction P — @ 1is conservative iff deg(P) < deg(Q) and
fn(Q) C fn(P)

Definition 3.26 A reduction graph T’ is conservative iff
every reaction P — Q € I is conservative.

Proposition 3.27 If Q € P™ is not containing replication, then there exists a
conservative reaction graph rg(Q) such that |rg(Q)| < n.

Proof Must be fixed. ]
Proposition 3.28 If Q € P™ contains replication, then |rg(Q)| = w.

Proof Must be fixed. O

3.2 Specification

m-calculus is often considered as a specification language by its own. With this,
one can express many basic ideas involving communication and parallelism and
such. However, one find sometimes the need for a still more abstract language
to express what the communication protocols expressed in 7-calculus really try
to achieve. That is, a specification of m-calculus.

Ambient calculus [..] which is built upon 7-calculus has both an formal
object language and a specification language which uses modal logic in order
to express properties with ambient programs. We do not have such tools in
m-calculus, so we try to develop some ideas based on SPI calculus [1].

3.2.1 Barbing

Consider any channel z and process expression P. From [1] we borrow the
notation P | x to express that the process P is able to receive a message on
channel xz. We write P | T to express that the process P is able to send a
message on channel z. If we write P to mean either one.

Formally, this is defined as:
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Definition 3.29 (Barbing)

(y).Plz  xz(y).Ple
PLB PLB
(P+Q)B  newmPlB B¢{m,m}
Pl P=Q, PlB
PlQlB QLB

This is the position just now. [1] extended this into the future:
Definition 3.30 (General barbing)

Pl P—Q, QIS

Pyg Pyp

That is, P} 8 if there is some reaction chain from P that leads into a process
that is able to communicate on (3.

3.2.2 Testing equivalence

[1] goes further and defines a test that is a pair (R, ) of a process expression
R and a channel (input or output) 8 such that we say that a process P passes
the test if (P|R){} 8. Two processes may now be compared:
Definition 3.31 (Testing equivalence)
def
PCQ=VY(R,B) e P"xN: (PIR)IS = (QIR)IB
Pes Q¥ PLQAQLP

That is P «~ @, i.e. are testing equivalent, whenever P passes a test () does
also and vice versa. (There is a small irregularity. The channel name 3 is said
to be either an input or an output channel. However, channel names are not
categorized such. In reality, we are not talking about the set of names N, but
a set of tagged names: N x {in,out}.)

So far, everything is taken from [1].

3.2.3 Some notation

Given any preorder (reflexive and transitive) relation <. We extend this on sets:

A<BYvVacATBeB:a=b
We do the same with equivalence relations, =, however, here we must ensure
that it works both ways. That is, given any equivalence relation ~:

AxBY Yac AFbeB: anb)A(YbeBac A: b~ a)
It is simple to show that the preorder on sets is a preorder, and that equiv-
alence on sets is an equivalence relation.
Barbing and generalized barbing are also extended to sets.

ALBYYac A: alp

AVBYE Yae A: a8



42 CHAPTER 3. THE n-CALCULUS

3.2.4 Invariants

General barbing is existential in nature. That is, P} 8 if there exists a reaction
path that ends in a situation such that the final process is able to participate in
a communication on channel 3. We would also like to express properties that
this is a necessity.

Define the reaction set, rs to be the set of process expressions that might
follow from a given P:

Definition 3.32 (Reaction set)

def

rs(P) = {QIP = Q}
If a process cannot do anything by its own, it is terminal:
Definition 3.33 (Terminal process) A process expression P is terminal if

{P}=rs(P). The set of terminal process expression originating from P is de-
noted Term, that is: Term(P) = {Q|Q € rs(P) A Q is terminal}.

It is essential terminal if, whatever the process does we cannot observe it:

Definition 3.34 (Essential terminal) A process ezpression P is essential
terminal if {P} «~ rs(P)

A process expression that constantly is able to participate on a communica-
tion channel z is called x-stable:
Definition 3.35 (Stable) A process expression P is called B-stable if rs(P)|
B.

It might happen that a process expression sometimes is busy doing other

work, but that is eventually will be able to do some communication on a given
channel. We call this forever z-able:

Definition 3.36 (Forever able) A process expression is forever (-able if
rs(P)| S

In other cases we want the process to eventually settle down in a stable
listening situation:

Definition 3.37 A process expression is eventually (B-stable if the set S =
{Q|Q € rs(P),~Q 1B} is finite and S N Term(P) = 0.

That is, if the process is in any state where it is not capable to communicate on
channel 3 this won’t last long and it is certainly not terminal.

3.2.5 Liveness

We are now able to express some liveness properties. A process is able to forever
listen on a channel z if it receives a request, handles it, and settles down listening
on the same channel:

Definition 3.38 (Single input able) A process is Single xz-input stable if
Yy: (Z(y).0| P) is eventually z-stable.

Note that x here really denotes the input end of the channel. However, we want
this to last forever:

Definition 3.39 (Forever input able) A process is Forever z-input able
if ('newy Z(y).0)|P) is forever z-able.



Chapter 4

Application: Modeling
communicating systems

In this chapter we apply formal techniques to analyze communicating systems
in a fundamental way—what are they and how do they behave?

Our method is conceptual analysis: we give English-language descriptions
of communication acts, and then we formalize the concepts used there with the
machinery of the m-calculus. The calculus allows us to build models of the acts
and give them precise meaning based on the meaning of w-calculus expressions.

The method lets us uncover fundamental properties of the communicating
systems we study, and also identifies strengths and weaknesses of our chosen
formalism—the 7-calculus itself.

4.1 Preliminaries

An actor A is a process definition:

def
A(xl,...,a;n) = P1||Pm,
where arguments z1,...,x, can be considered parameters to the actor, and the
processes P, ..., Py, are a logically related set of processes.

We denote actors by A, B.

4.2 Modeling basic communication

This section studies basic communication systems and acts. In each case there
are two communicating actors and neither ‘moves around’ the network.

We stick to the following simple description of an act of communication where
the static part describes the initial system and the dynamic part describes the
system’s behavior.

Act 4.1 Static part: There are actors A, B and a network connecting them
somehow. The actors reside in the same place of the network at all times.
Both actors have access to a resource n providing them with the capacity to
communicate with each other across the network.

Dynamic part: Actor A communicates data x to actor B across the network.

43
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n : e

Figure 4.1: Direct communication over fixed channel n in Model 4.2.

The following is the simplest model for Act 4.1 possible in the m-calculus.

Model 4.2 Actors:

Communication:

A(n)|B(n) = 1(z).A1[n(y)-B1 — Ai|{z/y} B
This is the only reaction sequence possible for the system A(n)|B(n); it is de-
picted in Figure 4.1. In our diagram notation an arrow represents the sending
of data (here ) across a named resource (here channel n).
Remarks:

e Data communication is ‘ideal’: it’s synchronous, instantaneous, no data
is lost or corrupted, and data elements is always sent and received in the
same order. (Transfer of several data elements x4, ..., z,, could be realized
using multiple arguments, n(z1,...,Zm).)

e The resource providing communication capacity is modeled simply by a
fixed m-calculus channel that both actors get knowledge about initially.

The model does not compare very well to our intuitions about the communica-
tion act above. Especially the ‘network’ part of the model seems quite primitive.

Here’s another model where we introduce a separate entity N to model the
network, and let NV provide a fresh channel on which communication between
A and B is to take place. The entity IV is contacted on a fixed channel n.

Model 4.3 Actors:
A Y n(a).alz).4 B ¥ n(b).b(y).By
N % new d (7(d)|7(d))

where we assume that d ¢ fn(A(n)|B(n)).!
Communication: See Figure 4.2. In the figure As, By are renamings of
A1, By due to the name bound by input on n.?

In the above reduction sequence Equation (tp) models that A accesses the net-
work, N, to obtain a communication resource, and Equation (¢;) models that
B does the same. The actual data communication between A and B is mod-
eled by Equation (¢2). The diagram series in Figure 4.3 shows this, with times
corresponding to w-calculus reductions.

Tn the following we assume that a restriction new a P introduces a new (globally) unique
name a instead of explicitly making assumptions like this.

2From now on we sometimes sweep under the carpet model issues that are only internal to
the model and that do not mirror aspects of the act being modeled.
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(n(a) 1|n(b).b(y)-B1|n(d)|n(d)) (to)
s new d (d(z). As|n(b).b(y) B |0|(d)) (t2)
s new d (d(z). As|d(y).B2[0[0) (t2)

— s newd (As|{z/y} B|0|0)
=As|{z/y}Bz| newd (0]0)

Figure 4.2: Reductions in Model 4.3.

®)| |@ (8)| |((W——®)

(a) Time to. (b) Time ¢1. (c) Time ¢2.

Figure 4.3: Direct communication on new channel n in Model 4.3.

The reduction sequence shown here models that A accesses the network
before B does, but there is another reduction sequence for the same system
that models B accessing it first. Both reduction sequences give the same end
result (up to structural congruence), so the dynamic aspect of the model is in a
sense robust.

Further remarks to Model 4.3:

e Communication is provided by resource n, but the actual peer-to-peer
communication capacity is provided by a newly allocated 7-calculus chan-
nel d. This also models the port/socket mechanisms of Unix.

e N died after helping A, B to communicate once, preventing further chan-
nels of communication to be established between the two.

e Data transfer is still ideal in the sense remarked to Model 4.2.

Note that the two models seen so far rely on the fact that A and B are the only
actors trying to communicate using n. If this were not the case another actor
could interfere with the communication.

The next model solves these problems by introducing a more sophisticated
network. First the network process IV is defined as the replication of a different
process N¢, and it is once instance of the latter process that models the specific
service of communication between two specific actors. N can be viewed as a
pool of communication resources for pairs of actors.

Second the network allocates not just a fresh w-calculus channel, but a pro-
cess C to serve as a better model of a real channel than a m-calculus channel
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A c B

i1 02 -

Figure 4.4: Process C modeling a thick duplex channel C(i1, 01, 2,02).

A{a, b)|B{a,b)|N
=n(a, b).a(i, 0).0(z).A1|b(i, 0).i(y)-B
['n(c1,c2). newiyo1igon (Cl<21,01>|Cz<22,02>|0<21,01,12,02>)
= =7(a, b).a(i, 0).0(z). A1|b(i, 0).i(y). B
In(c1, c2). new 1014202 (cl<21,01>|cQ<12,02)|C(11,01,12,02))|N (to)
— a(i,0).6(z).A1/b(i, 0)-i(y)-B
[new i101%209 (G(i1,01)|b (22,02>|C<21,01,22,02>)|N
A1[b(3, 0)-i(y)-B

=new i1014203 [a(i, 0).6(x).

|a <11,01>|E<12,02>|C<21,01,12,02>]|N (t1)
— new i101202 [01 (). A2|b(i, 0).i(y). B1|0[b{iz, 02)|C (i1, 01,82, 02) IV (t2)
— new 101202 [01 (2). Ao iz (y). Ba|0J0|C i, 01, i2, 02)]|N (ta)

— new 41017209 [Az]iz(y).B2|0|0|C’ (i1, 01, i, 02)]| N
(' does something to z; then sends it out on 4s:
— new i1011202 [Az|iz(y)-B2[0/0|C" (i1, 01, 42, 02)]|N (ta)
—>new i1 014209 [Ag|[{z/y} B2[0]0|C" (i1, 01,42, 02)]| N
=Ay|{z/y}Bz| new iy01iz02 [C" (i1, 01,42, 02)]| N

Figure 4.5: Reductions in Model 4.4.

does. We call models of channels that involve m-calculus process ‘thick chan-
nels’.  The process C : 4 takes 4 arguments ¢1,01,%2,02 and makes a duplex
channel process with two inputs 41,i2 and two outputs 01,0,. What goes in
on i; comes out on oy and vice versa for ig,0;. Such a channel, from a black
box viewpoint, is shown in Figure 4.4. The next model also addresses other
problems.

Model 4.4 Actors:

A(a,b) ¥ 7i(a, b).a(i, 0).6(z). A;

B(a, b) = b(z 0).i(y).B1
Ndef'NC
def
N¢ = n(c1,c2). newiqo1iz02 (¢1(21, 01)|é2(i2, 02)|C(i1, 01, 12, 02))

Communication: See Figure 4.5.

Note that both actors are identified by a unique m-calculus channel name, A by
a and B by b, and that both have knowledge about their own name and the
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. c
a,b
’i1,01
a
N N
(a) Time to. (b) Time ¢1.
® [ 6 @1
i2,02
b
N N
(c) Time ¢s. (d) Time ¢3.

Figure 4.6: Communication on thick channel C in Model 4.4.

(@)

N

(e) Time t4.
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other actor’s name. For example the actors can be created like this:
new ab (A{a, b)| B{a, b}).

This convention is necessary if both actors are to be able to initiate communi-
cation with the other, and it is a reasonable model: an actor can’t communicate
with somebody it cannot identify.

As before, the reduction sequence shown in Figure 4.5 is just one possibility
but all results are the same up to structural congruence. Figure 4.6 shows
diagrammatically what happens in the reduction sequence:

(to): A requests a duplex channel from the network. The channel
should connect A itself—identified by a and B—identified by b.

(t1): N allocates a thick duplex channel C, and A gets a fresh pair
of I/O channels connected to C' back from N.

(t2): N sends B a different pair of fresh I/O channels, also connected
to C.

(t3): Using its output channel o; actor A sends data z into C, where
T is in transit.

(ts): Eventually C sends data x to B using B’s input channel 5.
Remarks to Model 4.4:

e We choose to say that C is allocated the moment once N communicates
one of its 7-calculus channel names to an actor.

e Each time it is contacted process N will create a new thick channel and
communicate its m-calculus channel names to the actors involved. This
ensures that channels between different actors cannot get interfere with
each other.

e Communication is no longer necessarily ideal: the ‘thick channel’ C can be
made to delay messages (for some reduction steps) or re-order them using
a local buffer. Non-deterministic data loss can be realized by including
“+0” at some point in C where data is passed around.

The model is not perfect, for example, the actors always gets a resource
(channel name) from the network. In a real system obtaining this resource
would sometimes fail.

A final subtle point about the model. The thick channel C models a network,
and naturally it would be used model that communication across the network
takes time. But assume that channel z identifies a local resource R4 inside
A. When A sends z to B using C, then B will have access to R4 is just the
same manner that A does, and this is not a natural model. One way to avoid
this would be to introduce a more sophisticated thick channel C' that would
translate = to ' and send z’ to B, thereby trapping B’s communication on z’
and delaying it before sending it out on .

4.3 Modeling channels

This section explores how channels and patterns of communication can be mod-
eled using the m-calculus.
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4.3.1 Channel characteristics

The simplest form of channel we have in our model language is the m-calculus
channel. Generalization to the polyadic case, that is, several arguments, can be
done using the standard ‘trick’ used for w-calculus channels in Section 3.1.3.
Here are some simple channels of varying characteristics.
Perfect simplex channel:

Cy(i, 0) ¥ i(z).0(x).Cp i, 0)

(Simplex means one-way communication.)
Leaking simplex channel:

Ci(4,0) % i(x).(3(z) + 0).Cy(i, 0)

Noisy simplex channel:

Cn(i,0) & i(2).(0(z) + newy 6(y)).Cn i, o)

Reordering simplex channel:

.\ def . _ .
Cr(i,0) = i(x)-(8(x)|C: (i, 0))
A channel C is said to be, for example, a reordering channel, if it is obser-
vation equivalent [25, Ch. 6&13] to, or weakly bisimilar to, C, above,

C(i,o0) = C.(i,0),

and so on for the other characteristic channels.
Note that one can make a channels with combined characteristics as follows:

Cri(i, 0) % new o,4; (C, (i, 0,) |0y ()51 (x)|Ci (i1, 0))

Channel C,; will not be a (pure) reordering channel since it will not be obser-
vation equivalent to C,. By an analogy to circuit design this could be seen as
a ‘serial composition’ of two channels. Consider ‘parallel composition’ of chan-
nels, that is, sending the same data out into two different channels and then
merging outputs from those two channels and it into a new output. The parallel
combined channels does not make sense as channel: it may give more than one
output for one input.

On the other hand, one can use a related idea to combine 2 simplex channels
into a duplex channel, that is, a channel that permits 2-way communication
between 2 parties, as is shown below.

Uniform duplex channel: Let C(¢,0) be a simplex channel. Then the follow-
ing is a uniform duplex C-channel:

Calir, 01,12,00) & C(i1,01)|Cliz, 0)

A non-uniform duplex channel is made by combining two different simplex chan-
nels.

A limited capacity channel can be modeled in several ways depending on
what to do with excess data, that is, data sent into a channel when the capacity
is exceeded. Here are some alternatives for what the channel could do with such
data:

e it is lost;

e the channel refuses to accept it.
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4.3.2 Communications patterns

The trivial communication pattern involves two parties talking to each other. In
this section we look at this and more advanced cases of communicating parties.

A broadcast channel mechanism, that is, a way of communicating messages
to an unlimited number of recipients, seems difficult to implement in 7w-calculus.
Note that one can make a one-time broadcast on a m-calculus channel b by
using replication, but there is no way to stop the broadcast. This effectively
renders the channel unusable. The distribution of fresh channels in which to
perform broadcast leads to a bootstrap problem: new broadcast channels must
be broadcast ...

Multi-cast communication can be achieved, though, but let us first look at
the problem of interconnecting two actors, A(%,0), B(i,0) that are both para-
metric in their input and output channels (be it m-calculus channels or other
kinds of channels) as indicated by the argument names. The two actors can be
connected together as follows:

new a;, a, (A(a;, ao)|B(ao, a;))

This is a one-to-one setting where the two actors are equals.
Assume instead that an actor A(i,0) wants to communicate with two other
actors B (i, 0), B(i,0) in the following way:

e A’s output should be input to both B, Bs;
e the output from both B;, By should be input to A4;
e B, Bs should not talk to each other.

Here is how to do it:
new a;a,b1bs (A(a;, a,)|lao(z).(b1(x)|b2(z))| B1 (b1, a;)| B2 (b2, a;))

Here A could be seen as a server and B;, By as clients. Note that the B;’s
must identify themselves to A if needed since A has no way of telling who it is
receiving data form. This can be generalized to a one-to-many setting.

The listener pattern

Here we look at one particularly useful pattern of communication that we shall
call the ‘listener pattern’ by analogy to the Unix network listener daemon.

Consider some process R that provides a resource for use by several other
processes. There are two issues of concern in safe resource usage:

1. The integrity of resource R, that is, the use of it may require one-at-a-time
access (using critical regions or similar mechanisms) in order to keep R’s
internal data structure consistent. This is an internal issue for R and we
do not consider it further.

2. The integrity of communication with the resource. One must make sure
that communication between an entity, A say, and R is not interfered with
by another entity B. If A is to use R in non-trivial ways the two parties
will need to engage in duplex communication, and then it is possible that
messages from a third party on the same channel could be interpreted by
A as coming from R or vice-versa.
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For simplicity we assume that R has just a single channel r known to the
outside world. The idea of the listener pattern of communication is that an
actor A uses channel r as a means to obtain a fresh channel on which duplex
communication between the two parties can take place undisturbed.

Assume that both A and R are parametric on the single channel where
their duplex communication is to take place. Then the following new processes
realizes safe resource usage:

L(1) “11(ca). newr (e4(r)|R(r))
A'(1) ¥ newal{a).a(cr).Alcr)

A system of two actors using R through the listener process L is initiated as
follows:

new c (L{c)| A’ (c)| A’ {(c))

All processes are parametric on a channel ¢ that is used only initially, before
the real resource usage starts. An actor (A’ instance) sends a fresh channel a
on the global channel (called ! inside A") and this is read by L. Process L sends
a fresh channel r back on the channel that it receives (called c4 inside L), and
initializes the resource R with channel r. (Since we are not concerned with the
internal integrity of R, we simply duplicate it for each new actor.) Process A’
initializes A with the channel cp that it received on channel a. Finally, the
processes R and A are can communicate safely.

4.4 Modeling sessions

In chapter 4 we mentioned several examples of ’sessions’. We shall describe one
typical usage of a session, and present a model for it in terms of a m-calculus
specification. As indicated by our simple example, several other specifications
of ’session’ should be given, but we leave it for future work.

4.4.1 A session on a remote host machine

The context of usage is the following: Assume that we have a host machine H,
and that you are a guest G. The host H permits one or several guests G1,... ,G,
to use a set of resources R on the host machine H. This is done in two ways.
First, H can be accessed from a remote machine G, by knowing a code (username
and password) to login to H. In other words, we presuppose that the knowledge
of G’s name is known to the community of machines able to be involved in an
reaction.

Then G might run several services on H and log-off at the end of the day.

Key concepts in this session:

e reserved (unique) channel
e encapsulation
e login/logoff

e prevail extended resources
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@ init on Kill Kill

Figure 4.7: Session commands and states.

e Partitioning of H / Protection of G’s
Encapsulation can be implemented in several ways. One way is to hide processes

by a restriction.

4.4.2 A ghost-session on a remote host machine

Similar to the context above, but in addition, it should be possible for G to logg
off at the end of the day where H preserves the processes run by G. The life
cycle of a session is characterized by the phases:

1. The guest G logg in to the host H - the opening of a session
The guest G logg off the host H - but is keeping the session alive

G being logged on, and using the recourses H is providing

&~ W N

The guest G is logging off the host H.

e identity of user
e protection of G’s processes from attack outside

e freeze/encapsulation of processes

4.4.3 Simple session modeled in 7-calculus

This section illustrates how to model a simple, yet meaningful session concept
in 7-calculus. The situation we want to model is the following:

There exists a resource Res and a number of actors. The actors’ access to
the resource can only happen a controlled manner using ‘sessions’. A session is
obtained from a listener process in a way similar to Section 4.3.2. The session
process only understands a few ‘commands’, sends out a few ‘commands’, and
can be in one of five states, see the finite-state machine in Figure 4.7.The session
regulates access to R. Using the command channel use the session mediates
duplex communication between an actor A and the resource Res. The semantics
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of off is that A leaves the session to (possibly) compute on its own, while on
is used to re-active the session. The actor uses kill to kill the session. Note in
particular that A cannot use the resource (command use) when the session is
in state ‘off’—any attempt to communicate on channel use will be delayed by
the session.

Here are the listener and session processes that realizes the above:

Listener(l) ey I(c). new init (¢(init)| new res (Res(res) |Session{init, res)))

Session(init, res) déf(new on off use kill )

init(on, off , use, kill).Session’ {on, off , use, kill, res)

Session' (on, off , use, kill, res) def
off .on.Session' (on, off , use, kill, res)
+ use(x).Tes(x).res(y).use(y).Session' {on, off , use, kill, res)
+ kill

4.5 Tools
4.5.1 Buffer

A buffer is a general mechanism used to store messages in order to accomplish
asynchronous communication. One operation should be used to create a buffer,
and three external operation on it: insert a message, remove a message and
kill the buffer. As long as the buffer exists, assume there are three channels
associated with it, for the time being called: p,c and m, denoting producer,
consumer and management. Call the buffer process B, and we expect that a
producer process may interact with it as:

p(v).P|B— P|B’
where v is a channel representing some value. Similarly with consumers:
¢(z).Q|B —{v/z}Q|B’
assuming v is a channel representing the first value in the buffer B.

Internals

An operating buffer cell that is neither the first nor the last in the buffer might
be represented as follows:

Cell(t,v,n) = t(z).z(v).n{z)

The channel ¢ symbolizes that the cell is waiting for the token, x which tells
it is the first in queue. This will be the same as the channel ¢ for consumers.
Whenever it receives this, it is the first in the queue, and anyone “listening” on
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this channel will receive this cell’s value, namely v. At last, the cell must pass
over its token to the next cell, n and then — die.

Producers need to access the last cell in order to (1) generate a new cell, and
(2) tell the current last cell where to pass over its token when time due. Like
this:

Last(t,v,p) = new n (Cell(t, v, n)|p(y).Last(n, y,p))

So that whenever a cell is created, it becomes the current last cell, and a
process is ready to accept a new message from a producer and make still another
last cell, and so on. Finally, we need a system to start the whole process:

Buffer(p, ¢) = newm (m(c) | p(y)-Last(m, y,p))

Two reasons for this construction: First, it waits for the first message to be
received (p(y))and then activates a cell (last and m(c)) in order to store it and
pass the token to the next last process. Second, whenever the buffer is empty
(produced messages is equal to consumed) the process expression achieved will
be structural congruent to the above definition.

To test the buffer, lets simulate two producers and two consumers and write
out the reaction chain:

(P(v)-p(v").c(x)-c(y).Use(z, y)) | Buffer(p, c)

This will lead to the reaction chain show in Figure 4.8.
To create a buffer, one just issues the following process:

BufferCreate = (b) ! [b(). new p, ¢ (7(pc)|Buffer(p, c))]

Datatypes

Datatypes in m-calculus are abstract processes. A particular value is also an
abstract process, and the binding of a value to a variable is represented as an
input channel and a process.

Consider an enumeration example as in Milner’s book [25]. In algebraic
specification, one would write this out as:

Male: — Person (4.1)
Female: — Person .
Child: — Person (4.3)

These functions, Male, Female and Child, are called generators. When functions
are made, one case split on the generators. Like:

CanBeFather: Person — Boolean (4.4)
CanBeFather(Male) =true (4.5)
CanBeFather(Female) =false (4.6)
CanBeFather(Child) =false (4.7

In 7-calculus, one represent the generators as channels, and a datatype value
returns the channel it “identifies” itself with:



4.5. TOOLS 55

[{v/x} c(y)-Use(z,y)]| | newmn [fi(c) | Last(n, ',p)]

) Use(wr2)] | newmn [-< )| Lasr, v,p)| =

y).Last n',y p)

!

.Last(n', y,p

!

)
(¥) )
(v) )
(p(y)-Last(n', y, p)
() )
(v)- )

]

’

(

(
Last(n',y,p

(
Last(n',y,p

Last(n', y,p
| [Buffer(p, c)]

Figure 4.8: Two producers, two consumers and a buffer.
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Man = (z)z(mwc).m() (4.8)
Woman = (z)z(mwc).w() (4.9
Child = (z)z(mwc).&() (4.10)

Case splitting in m-calculus is implemented with three processes:

CanBeFather = (z,7) new m, w, c Z{mwc).(m().true(r)|w().false(r)|c().false(r))

This process “asks” whether the channel z represents a man, woman or a child,
and returns true or false binded to 7.

Natural numbers

A little bit more complicated example is to represent natural numbers. The
generators are:

0: —» Nat (4.11)
S: Nat — Nat (4.12)

And we can define plus like

+:Nat x Nat — Nat (4.13)
z+0=z (4.14)
z+Sy=5S(+y) (4.15)

In m-calculus, we get the following:

= (¢)e(ns).n) (4.16)

S(a ) (e)e(n )§< ) (4.17)
Plus(z,y) = (r) newn, sg(ns). n().copy(z,r) | (4.18)
s(y").r(ns).newr’ 5(r')Plus(z,y')(r') (4.19)
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