

Tools for Mapping Technique

between PIM and PSM

OMNI/03/02

Xiuhua Zhang

Oslo
June 2002

 NR-notat/NR Note

Norsk Regnesentral / Norwegian Computing Center
Gaustadalléen 23, Postboks 114 Blindern, 0314 Oslo, Norway
Telefon 22 85 25 00, telefax 22 69 76 60

 © Copyright Norsk Regnesentral

Tittel/Title: Tools for Mapping Technique between PIM and PSM

Dato/Date: June, 2002
År/Year: Juni, 2002
Notat nr: OMNI/03/02
Note no: OMNI/03/02

Forfatter/Author: Xiuhua Zhang

Sammendrag/Abstract:

Basically, there exist two kinds of models in the Model Driven Architecture, platform
independent model (PIM) and platform specific model (PSM). The model transformation thus
occurs in the following directions: from PIS to PSM, from PSM to PIS, from PIS to PIS, and
from PSM to PSM. Establishing an MDA application mainly include building PIMs in UML and
mapping them to PSMs. The importance of mapping technology is obvious. This report starts
with core concepts of MDA and gives an overview on the currently available MDA tools.

Emneord/Keywords:

Tool, model-driven architecture, PIM and PSM

Tilgjengelighet/Availability: public

Prosjektnr./Project no.: 636015

Satsningsfelt/Research field: Model-driven architecture

Antall sider/No. of pages:

 NR-notat/NR Note

Norsk Regnesentral / Norwegian Computing Center
Gaustadalléen 23, Postboks 114 Blindern, 0314 Oslo, Norway
Telefon 22 85 25 00, telefax 22 69 76 60

2

1. Introduction

Mapping technology between PIM and PSM is a rather new and important concept in the area f
model-driven architecture (MDA), the initiative of OMG in the last few years. There are not so
many papers published yet. Basically, there exist two kinds of models in the MDA, platform
independent model (PIM) and platform specific model (PSM). The model transformation thus
occurs in the following directions: from PIS to PSM, from PSM to PIS, from PIS to PIS, and from
PSM to PSM. Establishing an MDA application mainly include building PIMs in UML and
mapping them to PSMs. The importance of mapping technology is obvious.

MDA necessitates the formalization of knowledge involved in software development, thus leading
to:1)A better control of an organization's know how (architecture, methodology, etc.), 2) Ability to
apply proven practices in a regular and systematic manner, and 3) Thesaurus of software
development knowledge and practices (Desfray, 2001).

Platform – A Core Concept of MDA

A primary advantage of MDA-based development is the ability to produce applications for virtually
every middleware platform from the same base model (Siegel, 2002). The MDA places a heavy
emphasis on the concept of platform and especially the distinction between platform independent
models (PIMs) and platform specific models (PSMs). There are two problems with the current
treatment. First, the definition of platform is not yet clearly spelled out. Second, the PIM – PSM
dichotomy is overly simplistic. A platform can exist at any of multiple levels and possibly types,
including middleware, programming language, operating system, virtual machine, and hardware
processor. Is PSM focused on the CORBA level? or on CORBA and all levels below it? In the
OMA, CORBA would be regarded as the PIM and the operating system or hardware as the PSM.
The dichotomy also results in mappings between models being discussed only in terms of relations
involving PIMs and PSMs. More separation of concerns is needed that corresponds to different
types of abstraction.

Modeling Space

In Hybertson (2002), some ideas behind MDA are described. Among them, modeling space is
introduced as a step toward a modeling foundation for the MDA. The modeling space consists of
models and relations among the models. The relations among the models are predominantly a
variety of abstraction relations, of which three are defined as dimensions that structure the
modeling space. The primary elements of the modeling space are as follows:
• A composition dimension that represents a whole-part hierarchy ranging from the most inclusive
system of systems to the lowest level indivisible unit. It is recursive in that a given whole can be
part of a larger whole.
• A commonization dimension that represents “kind-of” and “instance-of” hierarchies ranging from
universal models to highly specialized models, and universal categories to individuals. It is
recursive in that a general model can in turn be further generalized, and a category can be instance
of another category.

 NR-notat/NR Note

Norsk Regnesentral / Norwegian Computing Center
Gaustadalléen 23, Postboks 114 Blindern, 0314 Oslo, Norway
Telefon 22 85 25 00, telefax 22 69 76 60

3

• A conceptualization dimension that ranges from problem domain languages and universes of
discourse to the languages and universe of discourse of computer processors. The opposite poles
of the conceptualization dimension are the problem space and the execution space.
• A general interaction model of components and connectors that addresses system interaction,
coordination, and integration in a uniform way throughout the modeling
• A specification approach that emphasizes precision, contracts, and semantics, and has two
primary specification types or views for each component and connector: external and internal. The
same kinds of specification information apply throughout the modeling space.
• Mappings that capture knowledge about the relations among models, specifications, and views
throughout the modeling space – especially abstraction relations.

Composition, commonization, and conceptualization collectively structure the modeling space into
three dimensions as shown in Figure 1. They are separate dimensions because two entities can be
at the same point on any two dimensions but differ on the third. This modeling space structure
replaces—or at least deprecates—the traditional temporal life

Figure 1. Modeling space dimensions

The modeling space is a fractal in the sense that each dimension defines multiple levels of a
spectrum in which the same types of entities and relations repeat in a self-similar or recursive way

Hardware
Processor
domain

Problem
domain

System of systems

Indivisible Unit

Model of individual
system/component

Universal model

 Modeling space
C
o
m
p
o
s
i
t
i
o
n Conceptualization

Language/notation
Universe of discourse

Commonization Kinds
Categories

 NR-notat/NR Note

Norsk Regnesentral / Norwegian Computing Center
Gaustadalléen 23, Postboks 114 Blindern, 0314 Oslo, Norway
Telefon 22 85 25 00, telefax 22 69 76 60

4

at each level. This uniformity enables the modeling space to support scale up and scale down in a
natural way.

PIM - The Platform-Independent Model

All MDA development projects start with the creation of a Platform Independent Model (PIM),
expressed in UML and shown at the top of Figure 1. Reflecting business functionality and
behavior undistorted by technology, MDA models at this highest level can be constructed by
business experts rather than systems programmers. PIMs exist at several levels; more refined
PIMs include some behavior reflecting their general platform type (a component activation
pattern, for example) although they never specialize to an individual platform.

Specializations and extensions to UML give it the power to express the detailed models required by
the MDA. Termed a UML Profile, a standardized set of extensions (consisting of stereotypes and tagged
values) defines a UML environment tailored to a particular use, such as modeling in a specific
environment or on a specific platform. PIMs will be modeled using the profile for Enterprise
Distributed Object Computing (EDOC) or Enterprise Application Integration (EAI), both near the
end of their successful adoption processes. The UML profile for CORBA completed adoption by
OMG in 2000; profiles for other platforms are in process.

PSM - The Platform-Specific Model

Once the first iteration of your PIM is complete, it is stored in the MOF and input to the mapping
step which will produce a Platform-Specific Model (PSM) as shown in the second row from the top in
Figure 1. To produce your PSM, you will have to select a target platform or platforms (you don’t have
to run your entire model in the same component environment, as we’ll show in the next section) for
the modules of your application.

During the mapping step, the run-time characteristics and configuration information that we designed
into the application model in a general way are converted to the specific forms required by our target
middleware platform. Guided by an OMG-standard mapping, automated tools perform as much of this
conversion as possible, flagging ambiguities for programming staff to resolve by hand. Early versions
of the MDA may require considerable hand adjustment here; the amount will decrease as profiles and
mappings mature over time.

Mapping technology

PIM to PSM - The way a PIM could go directly to code is by an automatic mapping from a
PIM to the stereotypes of a PSM and then a code generator that can generate code from the
automatically generated PSM. There may be some default mappings defined for PIM to
Corba PSM or some of the other platforms but not yet for XML (that I know of).

Model transformation

 NR-notat/NR Note

Norsk Regnesentral / Norwegian Computing Center
Gaustadalléen 23, Postboks 114 Blindern, 0314 Oslo, Norway
Telefon 22 85 25 00, telefax 22 69 76 60

5

Figure 1. Dimensions of Model Transformation between PIM and PSM

PIM based on UML offers the starting point for the model transformation in the MDA-based
systems development. There will be four types of model transformation as shown in Figure 1, from
PIMs to PSMs and vice versa, from one PIM to another, and from one PSM to another.

The reasons for developing PIM lie in

2. MDA Tool Development

This report gives a classification into the currently available MDA tools listed in Table 1.

Objecteering /UML Profile Builder provides an explorer and on-line hypertext help for the
Objecteering metamodel.This metamodel, which was itself defined in UML, is easily accessible by
the user. New annotations (tagged values, stereotypes) and new text types, destined to specialize
models and drive transformations, can be added at metamodel level. A complete environment for
developing rules using the J language (including an interpreter) can be used to build transformation
rules and fine tune them on a project, before diffusing them on real projects.

 PIM PSM

 NR-notat/NR Note

Norsk Regnesentral / Norwegian Computing Center
Gaustadalléen 23, Postboks 114 Blindern, 0314 Oslo, Norway
Telefon 22 85 25 00, telefax 22 69 76 60

6

Tool/Company Functionality MDA

Cores
Domain

specification
/UML Profile

Programming
language

Others

Adaptive
Framework

Manage all
OMG MDA-
related
metamodel.
An open
platform based
on MOF, XMI
and JMI.
To be an
integration hub
to bridge
different tools.
Traceability
and end-to-end
impact
analysis

MOF,
XMI and
JMI (Java
Metadata
Interface)

 Repository-based
tool.
Sub-product:
Adaptive
Repository -
Adaptive
Workshop –
environment to
customize a
repository solution
Adaptive Portal –
web-based user
interface

Financial
Systems
Architects
- Financial
Service
Gateway (FSG)

Community
integration
from external
participants.
(M x N
external and
internal
applications).
Intensified
collaboration
with partners.
FSG

MDA
approach

Financial
Domain

 Straight
Through
Processing
(STP).
The first
MDA based
technologies,
the standard
in the future.

Repository-
based

 NR-notat/NR Note

Norsk Regnesentral / Norwegian Computing Center
Gaustadalléen 23, Postboks 114 Blindern, 0314 Oslo, Norway
Telefon 22 85 25 00, telefax 22 69 76 60

7

Basis of Orientation Major features MDA core

technology applied
Products

Repository-based UML model and
metamodel

1) Adaptive
Adaptive Framework
2) Project Technology

Domain-based System interoperability.
Community integration
facility.
Industry business
modeling and community
process and integration
for a certain application
domain such as finance,
telecom or healthcare.

UML modeling and
domain specification.
Model transformation
from PIS to PSM.

1) Financial System
Architects

WebService-based

UML profile-based
Data & Middleware-

based

Full MDA supported

Pattern-based

Standard UML-based With design-level
debugging you can
visualize your
application in its UML
design form as the
code runs on either the
host or target
platforms.

 Rhapsody provides
standard UML as the
analysis and design
entry vehicle. No
proprietary extensions
and no profiles. Only
Rhapsody provides
dynamic model/code
associativity. This
technology ensures
that your UML design
and your code are
always in sync.

 NR-notat/NR Note

Norsk Regnesentral / Norwegian Computing Center
Gaustadalléen 23, Postboks 114 Blindern, 0314 Oslo, Norway
Telefon 22 85 25 00, telefax 22 69 76 60

8

 NR-notat/NR Note

Norsk Regnesentral / Norwegian Computing Center
Gaustadalléen 23, Postboks 114 Blindern, 0314 Oslo, Norway
Telefon 22 85 25 00, telefax 22 69 76 60

9

Adaptive; Adaptive Framework Secant's ModelMethods Software
As seen in OMG News, July 2001

Financial Systems Architects Softeam

Headway Software; Headway
reView

Consortium for Business Object
Promotion

IKV++ GmbH; m2c(tm) Rösch Consulting

Interactive Objects Software;
ArcStyler

Data Access Technologies (DAT)
Provides MDA™ Services

Kabira Technologies, Inc Project Technology's BridgePoint
and DesignPoint

Kennedy Carter Ltd: iUML and
iCCG Hendryx & Associates

MetaMatrix Commitment Codagen Technologies Corp.;
Gen-it Architect

BoldSoft's Bold for Delphi, Bold
for C++ and ModelRun

Sodifrance's Scriptor-
Transformation and Scriptor-
Generation

CalKey Technologies' Caboom Borland's Enterprise Studio

Metanology's MDE TechOne's ACE

Objexion Software's NETSILON I-Logix' Rhapsody

Table 1. Existing Tools studied (Source: http://www.omg.org/mda/products_success.htm)

 NR-notat/NR Note

Norsk Regnesentral / Norwegian Computing Center
Gaustadalléen 23, Postboks 114 Blindern, 0314 Oslo, Norway
Telefon 22 85 25 00, telefax 22 69 76 60

10

Glossary

Abstraction: 1. (as an entity) Entity that is related to another entity or set of entities (called the
target) and represents in this relation a proper subset of the information that is represented by the
target. 2. (as a relation) Relation between two or more entities in which one of the entities (called
the abstraction entity) represents a proper subset of the information represented by the other entity
or entities (called the target). Types of abstraction entities in the modeling space include model,
view, and specification. Types of abstraction relations in the modeling space include
generalization, categorization, composition, and formalization (the latter as the converse of
interpretation).
Commonization: One to many relation between a modeling entity and a target set of entities in
which the modeling entity captures what is common among the target set. One of the dimensions of
the modeling space. Includes two cross-cutting hierarchies: generalization (with conjugate
specialization or kind-of) and categorization (with conjugate instantiation or instance-of).
Component: Computational entity, i.e., performs operations on data
Composition: One to many relation between a whole and a set of parts. One of the dimensions of
the modeling space.
Conceptualization: A translation or transformation relation between models in terms of the
language used and the universe of discourse addressed. One of the dimensions of the modeling
space.
Connector: Interaction entity that mediates communication and coordination among components;
examples: remote procedure call, pipe, event broadcast.
Modeling entity: Element or object of interest in the modeling space that describes an entity of any
type. Modeling entity types are model, specification, and view.
Entity: Any concrete or abstract thing of interest. While in general the word entity can be used to
refer to anything, in the context of modeling it is reserved to refer to things in the universe of
discourse being modeled.
Environment: Environment of a system consists of all other systems with which it interacts.
Executable model: Model that can be executed by an existing processor, i.e., a processor exists
that interprets the model as a set of instructions and that carries out those instructions.
Execution space entity: Element or object of interest in an execution environment that is required
to make a software system an information system, such as a computer processor.
Interaction model: General component-connector model that applies to all internal views.
Leverage: Leverage of a solution (e.g., a model or component) is defined as the degree to which it
satisfies these two conflicting criteria: (1) number of problem situations to which it applies; and (2)
proportion of solution it provides—i.e., extent to which it provides the complete solution needed
for the applicable problem set. Leverage as a metric is the product of these two criteria, adjusted
so they have equal weight.
Mapping: Relation between or among models, especially a general reusable relation. Relations in
the modeling space include all the abstraction relations mentioned in the definition of Abstraction,
plus translation and optimization.
Model: Explicit description of an entity or set of entities. Represents either an external view or an
internal view.

 NR-notat/NR Note

Norsk Regnesentral / Norwegian Computing Center
Gaustadalléen 23, Postboks 114 Blindern, 0314 Oslo, Norway
Telefon 22 85 25 00, telefax 22 69 76 60

11

Platform Independent Model (PIM): (1) A model that is not executable. (2) (Informal) A model
that targets a relatively large platform set. [Rationale: (1) If a model is executable, it can be
executed by a processor, which is its execution platform, and therefore it is a “platform specific
model”. (2) “independence” is problematic; it is recast in terms of the size of the target platform set
for which the model captures commonality.]
Platform Specific Model (PSM) : (Informal) A model that targets a relatively small platform set.
[Rationale: “specific” is not a binary true/false property, but a part of a continuum; it is recast in
terms of the size of the target platform set for which the model captures commonality.]
Platform: A platform of a model or component has two aspects. One is the set of components in its
environment that provide its required services, typically defined via an API or other interface
specification. The other aspect is a processor that directly executes the model. Only executable
models have the latter.
Port: Point of interaction of a component with its environment, and through which a component
provides or receives a service; structural part of component interface.
Problem domain entity: Elements or objects of interest in a problem domain.
Processor: Actor that performs an action on a model. The actor may be human, software, or
hardware. The action may be produce another model, execute the model, or analyze the model.
Proposition: An observable fact or state of affairs involving one or more entities, of which it is
possible to assert or deny that it holds for those entities.
Protocol: Specification of behavior pattern that may be performed by a component in an interaction
context; behavioral part of connector interface.
Role: Name of behavior pattern that may be performed by a component in an interaction, context;
structural part of connector interface; examples: client, server.
Service: Data operation(s) that may be performed by one component on behalf of another
component; behavioral part of component interface.
Software system: A model that can be executed on a computer to solve a problem in a problem
domain.
Specification: Precise shared understanding of an entity or set of entities
System: 1. Synonym for component. {By convention, in a whole-part relation, the whole is said to
be a system and the part is said to be a component. Thus, if component C is part of component B,
and component B is part of component A, then C is said to be a component of system B, and B is
said to be a component of system A.} 2. Something of interest as a whole or as comprised of parts.
View: Any useful subset of a modeling entity or set of entities.
Viewpoint: Perspective from which a view is defined or seen.

 NR-notat/NR Note

Norsk Regnesentral / Norwegian Computing Center
Gaustadalléen 23, Postboks 114 Blindern, 0314 Oslo, Norway
Telefon 22 85 25 00, telefax 22 69 76 60

12

References

Desfray, Philippe (2001) THE MDA APPROACH WITH UML PROFILES,
http://www.omg.org/news/meetings/workshops/presentations/uml2001_presentations/7-
2_Desfray_UML_Profiles_for_MDA.pdf)

Siegel, Jon (2002) Developing in OMG’s New Model-Driven Architecture
www.componentworld.nu/corp/Developer/ whitepapers/UsingMDA.pdf

Hybertson, Duane (2002) THE MODEL DRIVEN ARCHITECTURE: PROPOSED IDEAS,

