
Managing Meta-Information
with Microsoft Repository

OMNI/01/00

Egil P.Andersen, NR

Oslo

August 2000

© Copyright Norsk Regnesentral

NR-notat/NR Note

Norsk Regnesentral / Norwegian Computing Center
Gaustadalléen 23, Postboks 114 Blindern, 0314 Oslo, Norway
Telefon 22 85 25 00, telefax 22 69 76 60

 © Copyright Norsk Regnesentral

Tittel/Title: Managing Meta-Information with Microsoft Repository Dato/Date: 31.August
År/Year: 2000
Notat nr: OMNI/01/00
Note no:

Forfatter/Author: Egil P.Andersen (NR)

Sammendrag/Abstract:
A "meta-information repository" is one or more databases that contain meta-information, and
applications that provide access to this information. Meta-information ("information about
information") can be e.g. schema information on UML models for a particular project,
information on documents that belong to a particular project (system documentation, user
documentation, QA plans, etc), and typically all kinds of information that is relevant to a software
development process.

The purpose of using a meta-information repository is both to ease access to all relevant project meta-
information, and also to ease the maintenance of this information, which can possibly be very large. The
information may well be distributed, but e.g. a developer or a project manager should be able to access all
project information from a single entry point.

The rest of this document provides an introduction to Microsoft Repository; a meta-
information repository available on the NT/Windows platform. In summary, the following seems
to be the main advantages and disadvantages of using MS Repository v.2.0.
advantages:

• It is "mainstream" and may become a widespread standard for managing meta-information.
• It is huge and covers meta-information from many subject areas. It can also be extended to

include meta-information from new subject areas.

disadvantages:
• Some tool support already exists, and more can be expected, but the latest version of Rose,

Rose 98i, does not support Repository as much as one could desire. Manual adaptions and
extensions must be implemented.

• It takes some time to become familiar with the basic, generic model used by every
Repository (the Repository Type Information Model); particularly with respect to deciding
how to record new kinds of meta-information.

Emneord/Keywords: Meta-information repositories, UML, XML, COM, databases

Tilgjengelighet/Availability: Open

Prosjektnr./Project no.: 636011, SINAI

Satsningsfelt/Research field: Software architectures for distributed information systems

Antall sider/No. of pages: 32

1

Contents

1. Background and Motivation.. 2

2. Microsoft Repository v.2.0 .. 3

3. The Repository Browser.. 5

4. The Object Information Model - OIM... 6

5. The Repository Database..10

6. The Repository Type Information Model (RTIM) ..13

7. XML for Exchanging Meta-Information ..22

8. The Visual Component Manager (VCM) Repository...26

9. Rational Rose 98i ..28

10. Repository Support in SQL Server v.7.0 ..31

2

1. Background and Motivation

Meta-Information Repositories

A "meta-information repository" is one or more databases that contain meta-information, and
applications that provide access to this information. Meta-information ("information about
information") can be e.g. schema information on UML models for a particular project, information on
documents that belong to a particular project (system documentation, user documentation, QA plans,
etc), and typically all kinds of information that is relevant to a software development process.

The purpose of using a meta-information repository is both to ease access to all relevant project meta-
information, and also to ease the maintenance of this information, which can possibly be very large. The
information may well be distributed, but e.g. a developer or a project manager should be able to access all
project information from a single entry point.

The rest of this document provides an introduction to Microsoft Repository; a meta-information
repository available on the NT/Windows platform. In summary, the following seems to be the main
advantages and disadvantages of using MS Repository v.2.0.
advantages:

• It is "mainstream" and may become a widespread standard for managing meta-information.
• It is huge and covers meta-information from many subject areas. It can also be extended to

include meta-information from new subject areas.

disadvantages:
• Some tool support already exists, and more can be expected, but the latest version of Rose, Rose

98i, does not support Repository as much as one could desire. Manual adaptions and extensions
must be implemented.

• It takes some time to become familiar with the basic, generic model used by every Repository
(the Repository Type Information Model); particularly with respect to deciding how to record
new kinds of meta-information.

SINAI Code Generation from UML Models

This introduction to MS Repository particularly emphasises aspects relevant to managing meta-information
about UML models. This is a key issue in the SINAI project ("Seamless Integration of Non-homogenous
Applications and their Information") at OMNI.

UML models, e.g. made in Rational Rose, play a key role in SINAI. They will, amongst others, be
used to generate parts of the application specific code in server- and ("fat") client side components.
Figure 1 illustrates which kind of code it is relevant to generate. SINAI distinguishes between
information models versus application models. Both these models, for a particular domain or
application, can be defined in e.g. Rational Rose. They are each given a globally unique identifier
(GUID) and kept in a model repository as the authoritative source for model meta-data. Authorised
clients will have access to this information the same way they will have access to objects
implementing these models, and repositories can be distributed similar to how object instance
databases are distributed.

From the model repository, an information model can be used to generate a database schema for
object instances, a stored procedure interface for this schema, and possibly OLE DB wrapper classes
(for Win/NT platforms). An application model cannot, in general, be used to generate actual
application code. That is, except for "fat" client cache components (both their IDL and also an
implementation of this IDL). It can be used to generate IDL specifications, and possibly code shells
for their implementation, however.

3

Domain Models

UML
modelling tool

(e.g. Rational Rose)

save

Information
Models

Information Model
 Repository

UML Model
Database

generate

 (authoritative model sources)

Application Model
 Repository

UML Model
Database

create

save

create

Application
 Models

generate

stored procedure
interface

in database

Database
Schema

database
tables, keys, etc

IDL
 specification

”fat” client cache
IDL + implementation

OLE DB wrapper classes
(if Win/NT platform)

IDL
 specification

server application layer
IDL + code shell

IDL
 specification

”fat” client application
IDL + code shell

IDL
 specification

Figure 1. UML models and model information repositories in SINAI.

2. Microsoft Repository v.2.0
Unfortunately, and at least to my knowledge, there are currently (autumn '99) no good books
describing how to work with the Microsoft Repository. Microsoft Repository is not easy to get into at
first, and it is huge. It is much more than just a database schema, more like an architecture for the
management of meta-information in continuously evolving domains. According to the MSDN Library,
Microsoft Repository "provides a common place to persist information about objects and
relationships between objects, and in doing so it provides a standard way to describe object-oriented
information used by software tools".

Microsoft Repository v.2.0 ships with Visual Basic v.6.0, Visual Studio v.6.0 and SQL Server v.7.0. It uses
UML for modelling domain-dependent meta-data, relational databases for data storage, SQL for data retrieval,
and XML for meta-data interchange. It consists of two major components; a set of interfaces for defining Open
Information Models and to operate on the information they describe, and a Repository engine that is the
underlying storage medium for these models and their data.

The Open Information Model (OIM) is a model that describes the objects that represent meta-information in
the Repository, and their relationships. The OIM is defined in UML and organized into several domains
(subject areas). That is, the OIM consists of an abstract core model that is extended with new domains; e.g. to
store information on UML models, relational database schemas, COM components, datatypes, and more.
There are mechanisms for extending the OIM to enable further evolution of the models, and the inclusion of
new domains.

The OIM is developed by Microsoft together with over 20 industry-leading companies, and based
on industry standards such as SQL, COM, Java, and UML, and has been reviewed by over 300
companies as part of Microsoft's Open Process. In December, 1998, Microsoft transferred rights to
maintain and evolve the Open Information Model to the Meta Data Coalition (MDC), an industry
consortium comprising dozens of vendors of enterprise tools, meta data management tools, and data

4

warehousing products. The Meta Data Coalition will maintain and evolve the Open Information
Model as a technology-independent and vendor-neutral meta data standard. In July 1999, the Meta
Data Coalition announced the acceptance of version 1.0 of the MDC Open Information Model as a
standard.

The Repository engine sits on top of a Repository database, which can be either SQL Server or a
Microsoft Jet database (Access). It manages data in the Repository, and it provides basic functions to
store and retrieve Repository objects and relationships between them.

The repository engine exposes repository information as COM objects with interfaces for manipulating data
stored in a Repository, and thereby making the database schema and its storage format transparent to a user. It
allows for both COM and Automation programming, thus making it relatively easy to integrate Repositories and
different programming tools on the Microsoft platform.

In addition to basic object management, Microsoft Repository v.2.0 offers version and configuration
management facilities. To support evolving meta-information shared by different development teams, the
repository engine allows objects to be versioned, grouped into configurations, and managed using check-
out/check-in.

MS Repository SDK 2.1b

There exists a Repository SDK v.2.1b that can be downloaded from
http://msdn.microsoft.com/repository. The SDK works with Microsoft Repository v.2.0+, and using it
requires Visual Studio v.6.0 Enterprise Edition, or Visual Basic v.6.0 Enterprise Edition.

The SDK contains a number of useful files in the following catalogs:

• Readme.htm -- general information
• Setup folder -- files needed to install (or remove) the SDK executable programs on your hard

disk
• Bin folder -- files necessary for the SDK to run
• Doc folder -- the help file RepSDK.chm and three example models discussed in the

documentation
• Include folder -- header and constants files
• OIM folder -- all files and subfolders of the Open Information Model (OIM)
• Samples folder -- development sample programs.
• SQLTools folder -- add-on tools for SQL Server 7.0.

The SDK also includes a Model Development Kit (MDK), which is a development environment for
information models, used to define new information models extending the current OIM. The MDK
tool takes a Visual Modeler, or Rational Rose, model as input, performs basic validations, and
generates all necessary deliverables to develop and deploy the custom made information model
extending the OIM.

Finally, the SDK includes sample code and the following Repository add-on utilities:

• Repository Browser
• Information Model Installer
• XML Import/Export
• OLE DB Scanner

Sources of Repository Information

The main sources of information on the Repository are:
• On-line help for MS Repository SDK 2.1 (RepSDK.chm)
• MSDN library

5

• http://msdn.microsoft.com/repository (lots of information, but also very much useless
information)

Newsgroups

The microsoft.public.repository newsgroup features peer-to-peer discussion of the Microsoft
Repository. In order to access this newsgroup, you must go through the msnews.microsoft.com server.
If you are using Outlook Express as your news reader, you can add this server to your list through the
"Tools|Accounts" menu item.

3. The Repository Browser
The repository browser is a good starting point to get an overview of how repository information is
organized, and which services are available for working with repositories. However, at first it is
quite difficult to understand how the various information elements, e.g. models, objects, interfaces,
etc, are related to each other.

Figure 2. Browsing Repository content

The Repository Browser visualizes Repository data in a hierarchical fashion, and every Repository
has a unique root object, which is where the Repository Browser starts its browsing. All objects are
normally related to the Repository root, either directly, or indirectly through other objects and
relationships, which thus makes it possible to navigate the Repository hierarchically. Figure 2
illustrates an example, where the book icon named "Repository" is the root object.

A Repository object is an instance of a class that has been defined in a Repository information model
(within the OIM). A class implements one or more interfaces, and a Repository object thus provides one or
more interfaces as defined by the class to which it conforms. A Repository object is encapsulated and is only
accessible through its interfaces. For example, the "Repository" root object in figure 2 has two interfaces
"IManageReposTypeLib" and "IMdoModel".

Repository data may be thought of as having a set of repeating patterns (see section 6 for further
details):

• Repository objects have interfaces
• Interfaces are composed of properties, methods, and collections
• Collections contain relationships relating Repository objects (or actually object interfaces)

The Repository Browser displays Repository data by iterating through all of the interfaces attached to
the root object, then iterating through the collections attached to those interfaces, and so on. For

6

example, in figure 2 then the interface IMdoModel has a collection MdoProjects that contains the
objects Project1 and RepVbBrowser (which are both instances of a class MdoProject, but this class
and these object-class relationships are not seen here). The object Project1 has two interfaces
IMdoModelItem and IMdoProject, that each may have yet other collections, and so on.

A Repository collection is itself a Repository object containing a set of Repository relationship
objects (i.e., a collection is a collection of relationship objects). A relationship (object) is a logical
connection between two Repository objects. For each relationship (object) between two Repository
objects, one is assigned as the Origin and the other as the Destination for this relationship (this
independent of how they are navigated - in which case the "from" object is called the "source" and
the "to" object the "target", but this independent of which object is the origin and which is the
destination). In general, an object above in the tree-view control (the left window in the browser) is
the origin in a relationship with the object(s) below as destination objects in this relationship. For
example, the "Repository" root object is the origin object in a relationship with the Project1 object,
as the destination object, via a relationship object in the MdoProjects collection. The root object is
similarly related to the RepVbBrowser object via another relationship object in the same
MdoProjects collection.

The Repository Browser can view two kinds of properties (and methods); properties that are common to all
Repository objects, and properties that are specific to a particular class of Repository objects. The properties
that are common to all Repository objects are displayed in a special tabbed dialog box. Properties that are
specific to a particular class of objects are represented as members of a particular Members collection of the
interfaces that are implemented by the object.

The definition of a Repository object may be extended by adding interfaces to its corresponding class, or by
adding properties, methods, or collections to an existing interface.

Presentation Filter

The information that is presented by the browser can be customised by selecting the "View|Filters"
menu item. In the "Visual" tab select "Objects, Interfaces and Collections" as these are the key
elements when browsing the content of a Repository.

In the "Type" tab check "Interfaces" to view them, and uncheck "Empty Relationship
Collections" to reduce the amount of information presented.

By default the browser illustrates relationships such that the Origin object is above the Destination
object in the tree-view control. Check "Destination->Origin Relationships" if you want to navigate
along object relationships both ways be expanding tree-view nodes; i.e., the tree-view is a tree
structure, but if object A as the origin is related to object B as the destination, then B is below A in
the tree-view control, but then A will also exist below B further down.

Browser Services

Beside browsing the content of a Repository, the browser also offers services for
• Creating a new Repository (i.e., database schemas for recording Repository information)
• Installing different model subsets of the overall OIM
• Exporting or importing Repository information formatted in XML (XIF - see section 7)

4. The Object Information Model - OIM

OIM Domain Models

An information model (IM) specifies the structure and semantics of information. In database
terminology, an IM is a schema. For example, it may consist of the tables, columns, keys, etc., in a
relational database. In logical database design, an IM is often expressed as an entity-relationship
model, consisting of entities, attributes of the entities, and relationships between the entities. In

7

object-oriented systems, an IM is an object model, consisting of classes, interfaces, members,
properties, etc.

An IM is a meta model, and a language in which IMs are expressed is called a meta meta model.
Examples of meta meta models are SQL data definition language, entity-relationship diagrams,
interface definition language (IDL), and COM type libraries. Each persistent store and data exchange
protocol has its own meta meta model for describing data that it stores or transfers.

An IM can be used to describe data in a persistent store. It tells applications how to interpret data
that conforms to the model, that is, how the data is structured, what constraints must be honored, and
how the data can be used. This enables applications to share data, by telling applications what they
can count on from data supplied by other applications. An IM can also be used to describe data that is
exchanged between applications.

The organization of Repository information is based on the Open Information Model (OIM),
which is a set of meta data models that facilitate sharing and reuse. OIM v.1.0 is huge, containing
about 250 interfaces and about 100 relationship types. It is described in UML and grouped into
subject areas addressing domains of varying complexity and generality. Based on an abstract core
model, additional subject areas are added over time. The current OIM v.1.0 targets three main areas:

• Object-oriented Analysis and Design
• Component Description and Specification
• Database Schema and Data Warehousing

and it is composed of the following subject areas:

Table 1. Open Information Model subject areas

RTIM Repository Type Information Model. This is the meta meta model – the
language in which the other information models (or meta models) are defined.

Uml Unified Modeling Language Model. This information model represents the
conceptual UML v.1.0 model.

Umx Uml Extension Model. A set of generic extensions to the Uml model, and a
realization of some of the predefined stereotypes in UML v.1.0.

Dtm Data Type Model. A set of Uml model extensions that supply numerous
common data types.

Cde Component Description Model. A set of generic component-related Uml model
extensions describing run-time (executable) components and their
specifications.

Com COM (Component Object Model) Model. A set of COM-specific extensions to
the Cde and Dtm models.

Gen Generic Model. A set of general-purpose interfaces, relevant across diverse
information models.

Dbm Database Model. A set of extensions to the Uml model covering generic
database concepts.

Sql SQL Server Model. A set of SQL Server-specific extensions to the Dbm
model.

Ocl Oracle Model. A set of Oracle-specific extensions to the Dbm model.
Db2 DB2 Model. A set of DB2-specific extensions to the Dbm model.
Ifx Informix Model. A set of Informix-specific extensions to the Dbm model.
Tfm Database Transformation Model. Describes transformations for moving data

between databases.
Olp OLAP Model. An extension of the Dbm model describing multidimensional

databases.
Sim Semantic Model. An extension of the Dbm model that enables users to interact

8

with database data without learning data manipulation languages.

Each subject area includes a Visual Modeler/Rational Rose model file, specifications, an
installation file, a type library, a database, header files, test scripts, and each subject area has its own
documentation. You must install the subject areas of the OIM in the sequence defined by the following
dependencies between the individual submodels.

Figure 3. Subject area dependencies within the OIM

Figure 3 summarizes the dependencies among the OIM submodels; e.g. the Dbm model depends on the
Uml, Umx, Gen, and Dtm models, and is depended upon by the Sql, Ocl, Db2, Tfm, and Olp models.
These dependencies are derived from dependencies between the interfaces and classes within those
models. That is, if there is a dependency between a pair of models, then the interfaces in one model
may inherit (or imply) interfaces in the other, or the classes in one model may support interfaces in the
other. Figure 3 provides a simplified view of these dependencies by depicting the inheritance
between models. Each model can depend in several ways on a parent model. However, only the main
dependency for each model is shown. The actual fine-grained dependencies can be determined from
the full specification details of each model.

RTIM - The Repository Type Information Model

The Repository Type Information Model (RTIM) is an information model that the Repository uses to
understand all other information models, and all OIM information models are defined by RTIM; i.e.,
methods and properties exposed by RTIM are also used to define new information models in the
Repository. RTIM itself is automatically stored in the Repository database when a Repository is
created (see section 5 for information on Repository creation).

Section 6 describes RTIM in further detail.

The Uml Model in OIM

There are differences between the Repository OIM Uml Information Model and the UML v.1.0
conceptual model, and in this section Uml (lowercase) refers to the Uml information model, whereas
UML (uppercase) refers to the UML v.1.0 conceptual model.

The Uml model is an implementation of the conceptual UML v.1.0 model in a specific modeling
language, the RTIM, and its role in OIM is twofold. Uml serves first as model for meta data of the
analysis and design domain and second as the OIM's core model from which all the other sub-models
inherit. Generic modeling features, such as type, containment, dependency, and naming, are all
defined by Uml and are subsequently inherited by other subject areas. Each subject area either reuses
or refines these core concepts, and thereby avoids redundancy and enables generic access.

The following are some differences between Uml and UML:

9

• Uml is a subset of UML. The Uml model includes the core, structural, and view aspects of
UML; it does not include the behavioral aspects, namely the packages for collaborations, state
machines, and interactions.

• Extensibility. UML supports extensibility mechanisms in the form of stereotypes, tagged
values, and constraints. Predefined instances of these elements are provided as Standard
Elements in each UML package. Microsoft Repository uses an extensibility scheme based on
interface inheritance, as defined in the RTIM model. Although the Uml model includes the
definition of stereotype, tagged value, and constraint, the predefined instances of these (as
defined in the UML Standard Elements package) are realized with specific repository
interfaces. For example, the stereotype <<interface>> of UML Type is realized as the
interface ICdeInterface (in the Cde model). This interface, which derives from IUmlType, and
the stereotype <<library>> of UML Component, is realized as IUmxLibrary (in the Umx
model). IUmxLibrary inherits from IUmlComponent.

• Modeling Variations. Since Uml defines the same concepts as UML, yet uses a different
modeling language (RTIM), there are some areas where slight modeling variations from UML
occur. However, the semantics remain the same. For the most part, the Uml model faithfully
follows UML.
The most important areas of variation are:

• Association Types (UML calls these Association Classes.) These are usually realized in Uml
as explicit interfaces. For example, UML Generalization is realized as the interface
IUmlGeneralization. In cases where the association has a role with cardinality 1 or 0..1, any
characteristics of the association are moved onto the interface definition referenced by the
inverse role. For example, in UML Package Owns Element, Owns has a property Visibility
that is moved onto IUmlElement, and there is no interface definition for Owns.

• Composition Relationships. UML Composition (filled-diamond symbol) is a strong form of
aggregation. This means the associated items have a related lifetime — they can be created
independently, but they are deleted together. This is represented in Microsoft Repository by
delete propagation semantics on the appropriate relationship collection.

• Derived Semantics. These are not currently supported by Microsoft Repository. In particular,
UML-derived associations are not modeled as Repository relationships.

The Dbm Model in OIM

The Database Information Model (Dbm) describes meta-data about data sources like e.g. relational
database schema information.

Dbm covers the basic elements of SQL data provider, such as tables, columns and relationships. It
does not address physical or implementation details. A goal for the Dbm is to provide enough
descriptive information to allow any schema stored in a Repository to be re-generated in such a
manner that the re-generated schema is indistinguishable from the original schema.

The Dtm Model in OIM

The Data Type Information Model (Dtm) is defined as a set of extensions to the UML Information
Model (Uml). It provides a set of interfaces for describing data types, and the intent is that this model
can be extended and specialized by information models for particular domains.

Custom Made Extensions to the OIM

The extendability of the OIM is essential since meta information models evolve over time, both with
respect to new objects and relationships, and also to include entire new domains. The Repository
SDK has tools for doing this, and it also includes some examples, but I have not tested this myself.

10

First, define an information model in Rational Rose/Visual Modeler, save it in a Repository, and
then use the SDK tools Model Checker, Model Generator and Documentation Generator. Model
Checker identifies structural errors in the model relative to being a Repository OIM extension. The
Model Generator produces a model installation script. The Document Generator produces a document
in RTF which defines all interfaces, relationships, and classes in the information model.

The repository engine automatically creates the database tables required to store instances of the
information model. After an information model is installed, the repository offers operations for
creating objects that are instances of the model's types, and for storing and retrieving these objects'
properties and relationships to and from the repository database.

Each information model normally adds an interface either to the Repository root object, or to some
other object that is ultimately connected to the Repository root object. The added interface is then
defined to contain one or more collections that relate to other objects in that information model.

A new option has been added to Visual Modeler/Rational Rose that enables you to create XML
DTD documents from an information model. To do this, select the XML DTD check box in the
Repository SDK-Distributable Files dialog box.

5. The Repository Database

Repository Database Schemas

Repository information is stored in a dedicated Repository database, e.g. an SQL Server or Access
RDBMS. The Repository database is created and maintained as any other application specific
database. Its schema consists of a standard schema, and possibly a set of extended schemas. The
standard schema consists of tables that contain the core information needed to manage all Repository
objects, relationships, collections, etc. The standard schema also contains tables that are used by the
Repository to store the definition of its information models themselves.

An extended schema exists for each of the OIM subject areas described above. The Repository
SDK can be used to generate schema extensions when an information model in the OIM is created or
extended. Normally, one table is created for each interface that is defined in the information model.
The table contains the instance data for persistent properties that are attached to the interface. One
column in the table is created for each property. If an interface is defined without any member
properties, then no table is created.

The set of SQL tables that comprise the standard schema are named "RTbl*", while the set of SQL
tables that comprise extended schemas are named "Uml*", "Dbm*", "Dtm*", and so on.

Creating a Repository = Installing the Standard Schema

In order for a Repository engine to use a particular database as a Repository database, the Repository
standard schema must be installed in the database. That is, to create an SQL Server Repository
requires first to create an SQL Server database, as any other database, and then to install the
Repository standard schema. To do this for an SQL Server database, first create an ODBC connection
for the database by using "ODBC Data Sources" in the Control Panel (remember to change the
"default database" to this SQL Server database). Then select "File | New Repository | ODBC
Database" in the Browser menu, and enter the ODBC DSN for this database.

After installation the database will contain a number of tables (currently 15) named "RTbl*", and
it will be ready to serve as a Repository for information organized according to the RTIM
(Repository Type Information Model); see section 6 below.

Installing Extended Schemas

An export to Repository operation fails if the Repository database does not have the required
extended database schemas installed. These schemas can be installed from the Repository Browser,

11

by selecting the "File | Install Model File" menu item, and then specify a particular "*.rdm" file.
There exists a particular "*.rdm" file for each extended schema, e.g. "Uml.rdm", and these files can
be found in the Repository SDK catalog ".../oim/install/*.rdm".

It is also possible to install a particular schema into a Repository database programmatically from e.g. Visual
Basic or Visual C++. In the folder "\Program Files\Common Files\Microsoft Shared\Repostry" there is a dll
"Insrepim.dll" with a component offering a dual interface IMInstall with a single function installRDM for
installing extended schemas:
 installRDM(<DSN:string>,<RDMFile:string>,<UserName:string>,<Password:string>)

Read but no Write to a Repository Database

You can construct an SQL query to extract specific information from a Repository database. That is,
the database can be queried directly with SQL queries, but an application should never update the
Repository's database tables directly with SQL statements, since the Repository engine's update
methods maintain the integrity of the database in subtle ways that a user could easily miss.

Transaction Support

When programming against the Repository (see section 6 for more information on this), transactions
are supported. The following is an example in Visual Basic:

Dim refRepository As Repository
.....
refRepository.Transaction.Begin
.....<transaction body>.....
refRepository.Transaction.Commit (or .Abort)

12

Figure 4. Objects, interfaces, properties, collections and relationships in a Repository

Repository Performance

A Repository database can be tuned to optimize performance and data retrieval, and new indexes can
be added to tables. The implementation of Repository database operations are also optimized. For
example, the engine generates and later calls information model specific stored procedures to avoid
run-time compilation of SQL. It also maintains a cache of objects in the application's process, so that
most retrieval operations can be serviced without accessing the database.

The article "Performance Hints for Using Microsoft Repository", available at
"http://msdn.microsoft.com/repository/technical", should be considered before extending the
Repository with new information models and database objects.

13

6. The Repository Type Information Model (RTIM)

RTIM - The basic foundation for the Repository Information Models

The RTIM (Repository Type Information Model) is the basic information model in any Repository.
Every Repository information model consists of a set of type definitions, namely classes, relationship
types, interfaces, property and methods definitions, and collection types. The Repository engine
provides methods for creating objects that are instances of these classes, and for storing and
retrieving these objects' properties and relationships to and from a Repository database.

Repository type definitions are grouped into Repository Type Libraries (which have the same
logical structure and namespace behaviour as Automation Type Libraries). This type library
abstraction provides a mechanism for partitioning large information models, and different type
libraries are used for the type definitions of particular OIM subject areas. The Browser snapshot in
figure 4 illustrates this. The Repository root object (the book icon) has an interface
IManageReposTypeLib, which has a collection ReposTypeLibs containing one type library for each
of the OIM subject areas that are currently installed in this Repository database (in this case Cde,
Com, Dbm, Dtm, Gen, RTIM, Sql, Uml and Umx).

A Repository type library contains definitions of the following kinds of objects:
• Class - defines the class ID, name, and which interfaces it supports.
• Relationship class - defines which collections (on which interfaces) are connected by

instances of the relationship class.
• Interface - defines the interface ID, which properties, methods and collections are members of

this interface, and which interface it inherits from (properties, methods and collections are
inherited). Interfaces are supported by classes, and they contain properties, methods and
collections.

• Property - defines properties of the property, amongst others its data type.
• Method - defines properties of the method, such as its dispatch ID.
• Collection - defines properties of the collection, such as min and max cardinality. These are

properties of endpoints(roles) of a relationship type.

Repository type definitions are themselves ordinary Repository objects (see below) that have certain
type-specific properties and relationships that are interpreted by the Repository engine. For example,
a class definition is an object that has a property containing its unique identifier and a relationship to
the interfaces that it implements. Like all Repository objects they are instances of classes, which in
turn support interfaces that have properties and relationships stored in the Repository. Hence classes,
relationship classes, interfaces, properties, methods and collections are instances of the classes
ClassDef, RelationshipDef, InterfaceDef, PropertyDef, MethodDef and CollectionDef, respectively
(and these classes are described as instances of themselves, i.e., all these classes are instances of
ClassDef, and their relationships are instances of RelationshipDef, and so on).

Repository Objects

When programming against the RTIM you will be working with the following kinds of Repository
objects (each offering different kinds of interfaces) supported by the Repository engine.

Repository

A Repository is accessed via, and programmatically represented by, a Repository object; "Dim
refRepository As Repository" in Visual Basic.

14

Transactions are supported via this object since a RepositoryTransaction object cannot be
instantiated directly. When you connect to a Repository, a RepositoryTransaction object is created for
you, and made accessible via the Repository.Transaction property.

RepositoryObject

A RepositoryObject object is a Repository object that represents an instance of a Repository object
defined as a class in a Repository information model.

Notice that a "RepositoryObject object" is a "Repository object" in line with Relationship objects,
Collections, and so on.

Relationship

A Relationship object represents a connection between two RepositoryObjects. That is, a
Relationship has an origin RepositoryObject, a destination RepositoryObject, and a set of
properties. Each Relationship conforms to a particular Relationship type, i.e., similar to how a
RepositoryObject is considered an instance of a particular class. Relationship objects are used to
manipulate the properties of a relationship, to delete a relationship, or to refresh the cached image of
a relationship.

Notice that a Relationship between two objects is actually a relationship between interfaces of
these two objects. This is a key point in working with Repository data: the Repository contains
collections of relationships between interfaces of objects. The example below may make this more
clear.

Property (ReposProperty)

A Property object (called ReposProperty) is a persistent single-valued property or collection that is
attached to a Repository object. It is used to retrieve the name, type or value of a property, or to set
the value of a property.

Collection (ObjectCol/RelationshipCol)

These are some different kinds of collections in a Repository:
• A RelationshipCol object (called a relationship collection) represents a collection of

Relationship objects for the relationships from a single particular RepositoryObject, called the
source, to a set of one or more related RepositoryObjects, called the targets.
Notice that all of the Relationships in a relationship collection must conform to the same
relationship type.

• An ObjectCol object represents a collection of RepositoryObjects that conforms to a particular
class (the instances of this class) or that supports a particular interface in the Repository.

• A Properties collection object represents a collection of ReposProperties attached to a
RepositoryObject or Relationship via a particular interface.

Workspace

A workspace is a repository object that can provide a context for your work separate from other work
occurring in the Repository

15

Object Identification

Every Repository object has an internal ID which uniquely identifies this object within a particular
Repository database, but it is not necessarily unique to all Repositories. Every Repository object has
also an external object ID which uniquely identifies this object across all Repositories.

Versioning

In Repository v.2.0, RepositoryObject and Relationship objects can be versioned. A
RepositoryObject version is a particular rendition of a RepositoryObject object. Each version of an
object can differ from other versions of that object in its property values and collections. When you
manipulate a RepositoryObject programmaticaly you are actually manipulating a particular version of
that object, i.e., you manipulate a RepositoryObjectVersion object.

Similarly, every Relationship object is a VersionedRelationship object that can connect a
particular version of a RepositoryObject to one or more specific versions of its related
RepositoryObjects.

Example

Figure 5 illustrates how Repository meta-information, e.g. in a new OIM subject area concerning files
and directories, can be defined in RTIM and its data represented by the above Repository objects.

In the RTIM information model there are two classes, File and Directory, and the following three
interfaces:
• IFile exposes behavior unique to files. Thus, only the File class implements it.

• IDirectory exposes behavior unique to directories. Thus, only the Directory class implements it.

• IDirectoryItem exposes behavior appropriate to any object that can appear as an item within a
directory. Since this is the case for both File and Directory objects, both the File and the
Directory class implements this interface.

The IFile interface exposes one property; the Size property. The IDirectoryItem interface exposes
one property; the ModificationDate property. The IDirectory interface exposes one property; the
ChildCount property. None of the interfaces exposes any methods.

There is one relationship type, Containment, and there are two collection types in association with
this containment relationship:
• Collections that conform to the ItemsOfDirectory collection type are origin collections for

Containment relationships. The IDirectory interface exposes this collection.

• Collections that conform to the DirectoryOfItem collection type are destination collections for
Containment relationships. The IDirectoryItem interface exposes this collection.

Actual data from this model will be represented as follows in a Repository. Directory and File
objects will be represented by RepositoryObjects, supporting the interfaces IDirectory and
IDirectoryItem, and IFile and IDirectoryItem, respectively. ChildCount, ModificationDate and Size
are represented by ReposProperties. ItemsOfDirectory and DirectoryOfItems are relationship
collections represented by RelationshipCol objects.
Finally, Containment relationships are represented by Relationship objects.

16

Figure 5. How information is organized according to RTIM

Basic RTIM Programming against the Repository

To program with the basic RTIM interfaces of a Repository use the "repodbc.dll" located in the
"\Program Files\Common Files\Microsoft Shared\Repostry" catalog. In Visual Basic this
corresponds to making a reference to "Microsoft Repository". To run the example below include also
the file "...\Microsoft Repository SDK\include\RepEng.bas" from the Repository SDK into the
Visual Basic project. "RepEng.bas" contains object ID's for a number of predefined RTIM objects.

The following Visual Basic example is an adaption of the "TreeWalk" sample accompanying the
Repository SDK. Starting from a particular Repository object (objectID "{{AFEA9392-9B2C-11D3-
AA33-0060973166C2}, 00000001}" - copied from the Repository Browser), its interfaces with their
properties and collections are traversed, and the traversal continues with the objects that are related
to this object via relationships in its interface collections. Notice that the IRepositoryItem interface is
common to both RepositoryObject objects and Relationship objects.

' This example uses the Repository Type Information Model (TIM) to navigate
' relationships between objects in the repository. Note that while
' only Origin->Destination relationships are navigated, this does not ensure
' that the cyclic relationships will not be found.

Option Explicit

Private Repos As Repository

Sub Main()
 Dim Root As RepositoryObject

 Set Repos = New Repository

17

 ' Initialize some Repository constants for VB - a method in RepEng.bas
 Call InitRepository

 ' Open a repository
 Set Root = Repos.Open("SERVER=OSLPCM55;DATABASE=VCMTest", "sa", "")

 ' Starting point - the Repository.Object function returns a an object
 ' with a particular object ID. The objectID can be copied from the Browser
 ' (right mouse button in right browser window.
 Set Root = Repos.object("{{AFEA9392-9B2C-11D3-AA33-0060973166C2},00000001}")

 ' Navigate the repository from this object
 Debug.Print "Beginning Repository Walk"
 Call ReposTree(Root, "")
 Debug.Print "Finished Repository Walk"
End Sub

' Navigate the specified repository object, recursively traversing
' origin->destination relationships.
Sub ReposTree(Obj As IRepositoryItem, indent As String)
 Dim Relship As Relationship
 Dim ObjType As RepositoryObject
 Dim ObjProp As ReposProperty
 Dim ObjPropType As RepositoryObject
 Dim ObjTarget As RepositoryObject
 Dim Iface As RepositoryObject

 ' Print the object's name
 Call PrintName(Obj, indent)

 ' Get the object's type definition (Obj.Type = class ID) and output the name.
 Set ObjType = Repos.object(Obj.Type)
 Debug.Print indent & "Class: " & ObjType.Name

 ' Find the interfaces supported by Obj.
 ' ObjType is the class of Obj, and thus supports "IClassDef" from which the
 ' Interfaces function can be used to find the interfaces supported by this
 ' class and thus its instances.
 For Each Iface In ObjType.Interface("IClassDef").Interfaces
 ' Print the interface name.
 Debug.Print indent & "Interface: " & Iface.Name

 ' Disregard annotational properties
 If Iface.Name = "IAnnotationalProps" Then GoTo NextIface

 ' Disregard Repository Type Libraries
 If Iface.Name = "IManageReposTypeLib" Then GoTo NextIface

 ' Get the list of properties and collections of the interface Iface
 ' supported by Obj (ObjProp is a ReposProperty which can be a
 ' single valued property or a collection
 For Each ObjProp In Obj.Interface(Iface.Name).Properties

 ' Get the type definition of ObjProp
 Set ObjPropType = Repos.object(ObjProp.Type)

 ' Check if ObjProp is a property or collection
 If SameOBJID(ObjPropType.Type, OBJID_PropertyDef) Then
 ' Print the property name
 Debug.Print indent & " Property: " & ObjProp.Name & " = ";

 ' Print property value
 If IsNull(ObjProp.Value) Then
 Debug.Print "Null"
 ElseIf IsArray(ObjProp.Value) Then
 Debug.Print "(Array)"
 ElseIf IsEmpty(ObjProp.Value) Then

18

 Debug.Print "(Empty)"
 Else
 Debug.Print ObjProp.Value
 End If

 ' Check if ObjProp is a collection
 ElseIf SameOBJID(ObjPropType.Type, OBJID_CollectionDef) Then
 ' If this object is the origin of this relationship
 If ObjPropType.Interface("ICollectionDef").IsOrigin <> 0 Then

 ' Print the collection name
 Debug.Print indent & " Collection: "; ObjProp.Name

 ' Enumerate the relationships in this collection for the object
 For Each ObjTarget In ObjProp.Value
 ' Traverse target objects.
 Call ReposTree(ObjTarget, indent & " ")
 Next
 End If
 End If
 Next
NextIface:
 Next
End Sub

' Compare the two object IDs. ObjIDs are defined as an array of 5 longs,
' which represents the 16 single byte values in a contiguous GUID variant
' plus a 4 byte unique value.
Private Function SameOBJID(ID1 As Variant, ID2 As Variant) As Boolean
 Dim i As Integer

 For i = LBound(ID1) To UBound(ID1)
 If ID1(i) <> ID2(i) Then
 SameOBJID = False
 Exit Function
 End If
 Next
 SameOBJID = True
End Function

Private Sub PrintName(Obj As IRepositoryItem, indent As String)
 On Error GoTo NoName
 Debug.Print indent & "Object: "; Obj.Name
 Exit Sub
NoName:
 Debug.Print indent & "Object: Unnamed"
End Sub

Programming against specific Subject Areas in the Repository

Each OIM subject area information model contains an interface model and a class model. All
interface models define a set of interfaces through which clients can manipulate Repository objects.
All class models define a set of classes that may be used to create Repository objects. These are not a
standard, and many clients using a Repository will typically define their own class models (and
additional interface models). Normally, only the client that creates an object needs to know its class.
All other clients manipulating the object will only be concerned with the interfaces it supports. That
is, clients should not make assumptions about the classes used by other clients to create objects. The
classes provided are intended as a basic starting point and as an example of how to combine
interfaces in useful ways.

19

Repository files for programming in Visual Basic or Visual C++

Automation type libraries for programming with various subject area interfaces are located in the
Repository SDK catalog "\oim\TypeLib"; e.g. Uml.tlb, Dbm.tlb, Sql.tlb, etc.

When programming with Visual Basic the catalog "\oim\VBConst" contains object ID's for a
number of predefined Repository objects relevant to a particular subject area; e.g. Umlconst.bas,
Dbmconst.bas, Sqlconst.bas, etc.

When programming with VC++ the catalog "/oim/CHeader" similarly contains .h files, and the catalog
"/oim/idl" contains IDL files for the various subject areas.

An example of programming with the Uml Interfaces

The following Visual Basic example requires the following references to be made:
• Microsoft Repository (\Program Files\Common Files\Microsoft Shared\Repostry\repodbc.dll)
• Unified Modeling Language Information Model (\Microsoft Repository

SDK\oim\TypeLib\Uml.tlb)

and the following files must be included into the project:
• RepEng.bas (\Microsoft Repository SDK\include catalog)
• Umlconst.bas (\Microsoft Repository SDK\oim\VBConst catalog)

Notice that all Repository objects for Rose model elements support the INamedObject interface, and
this is the only place to find the name of model elements. It can be used as follows from Visual Basic:
 Dim refName As INamedObject
 Set refName =some Repository object....
 refName.Properties.Item("name")

Example code (it does nothing meaningful - just for demonstration purposes):

 Dim Repos As Repository
 Dim root As RepositoryObject
 Dim repObj As RepositoryObject
 Dim repObj2 As RepositoryObject
 Dim refName As INamedObject
 Dim UMLTypeLib As RepositoryObject

 Dim refModel As UML.IUmlModel
 Dim refPackage As UML.IUmlPackage
 Dim refClass As UML.IUmlClass
 Dim refAssos As UML.IUmlAssociation
 Dim refRole As UML.IUmlAssociationRole
 Dim refAttribute As UML.IUmlAttribute
 Dim refOperation As UML.IUmlOperation
 Dim refPar As UML.IUmlParameter

 Dim i As Integer

 ' Initialize some Repository constants for VB - method in RepEng.bas
 Call InitRepository

 ' Open a repository.
 Set Repos = New Repository
 Set root = Repos.Open("SERVER=OSLPCM55;DATABASE=VCMTest", "sa", "")

 Set UMLTypeLib = GetTypeLib(root, "UML Type Information Model")

 Debug.Print "------------------- NEW SESSION -------------------------------------"

 ' Find the Repository object of a particular Rose model and print its name

20

 Set refModel = Repos.object("{{9B6271E3-A0C0-11D3-AA34-0060973166C2},00000001}")
 Call PrintName(refModel, "")

 ' Find its first package and print its name (it is the Logical View in this case)
 Set refPackage = refModel.Packages.Item(1)
 Call PrintName(refPackage, "")

 ' Start a Repository transaction
 Repos.Transaction.Begin

 ' Traverse all elements in the Package (they are either Associations or Classes)
 For i = 1 To refPackage.Elements.Count
 Set repObj = refPackage.Elements.Item(i)
 Call PrintName(repObj, "")

 If (InterfaceSupported(repObj, "IUmlClass")) Then
 ' It is a class
 Debug.Print "Class"

 ' Make the class abstract
 Set refClass = repObj
 refClass.IsAbstract = True

 ' Add an extra attribute
 Set refAttribute = CreateReposObject(UMLTypeLib, "UmlAttribute")
 Set refName = refAttribute
 refName.Properties.Item("name") = "newAttribute" ' Set its name
 refAttribute.TypeExpression = "long" ' Set its type
 Call refClass.Members.Add(refAttribute) ' Add it to the class

 ' Print the members, as attributes and/or operations of this class
 Debug.Print " Members:"
 For Each repObj In refClass.Members
 Call PrintName(repObj, "")

 If (Repos.object(repObj.Type).Name = "UmlAttribute") Then
 Debug.Print " Attribute"
 Set refAttribute = repObj
 Debug.Print " Type=" & refAttribute.TypeExpression
 ElseIf (Repos.object(repObj.Type).Name = "UmlOperation") Then
 Debug.Print " Operation"
 Set refOperation = repObj
 Debug.Print " Operation parameters:"

 For Each repObj2 In refOperation.Parameters
 Call PrintName(repObj2, " ")
 Set refPar = repObj2
 Debug.Print " Type: " & refPar.TypeExpression
 Next
 End If
 Next
 ElseIf (InterfaceSupported(repObj, "IUmlAssociation")) Then
 ' It is an association
 Debug.Print "Association"

 ' Traverse the two roles of this association
 Set refAssos = repObj
 For j = 1 To refAssos.Roles.Count
 Set refRole = refAssos.Roles.Item(j)
 Call PrintName(refRole, " ")

 Set refName = refRole
 If (refName.Properties.Item("name") = "ra") Then
 ' Set the multiplicity of role "ra" and make it ordered
 refRole.Multiplicity = "*"
 refRole.IsOrdered = True
 Debug.Print "Role ra changed into ordered!"
 Else

21

 ' Set the multiplicity of other roles beside "ra" to "2..7"
 refRole.Multiplicity = "2..7"
 Debug.Print "Multiplicity changed!"
 End If
 Next
 End If
 Next

 ' Commit the transaction
 Repos.Transaction.Commit

 ' Terminate repository
 Set Repos = Nothing

 ' Close file
 Debug.Print "------------------- END SESSION -------------------------------------"

' Find the specified repository type library in the repository. it will
' be located in a collection located off the repostiory root.
'
Private Function GetTypeLib(RootObject As RepositoryObject, _
 TypeLibName As String) As RepositoryObject
 Dim ManageLib As RepositoryObject
 Set ManageLib = RootObject.Interface("IManageReposTypeLib")
 Set GetTypeLib = ManageLib("IManageReposTypeLib").ReposTypeLibs.Item(TypeLibName)
End Function

' Create the specified object instance in the repository. First, verify
' that the class exists by attempting to find the class definition in the
' type library, then create a new object accordingly.
'
Private Function CreateReposObject(TypeLib As RepositoryObject, _
 ClassName As String, _
 Optional ObjectId As Variant) As RepositoryObject
 Dim ClassDef As RepositoryObject
 Dim Repos As Repository

 Set ClassDef = TypeLib("IReposTypeLib").ReposTypeInfos.Item(ClassName)
 Set Repos = TypeLib.Repository

 If IsMissing(ObjectId) Then
 ObjectId = OBJID_NULL
 End If
 Set CreateReposObject = Repos.CreateObject(ClassDef.ObjectId, ObjectId)
End Function

' Returns "true" if the object supports the named interface
Private Function InterfaceSupported(objRep As RepositoryObject, _
 iface As String) As Boolean
 On Error GoTo Exception

 TypeName objRep.Interface(iface)
 InterfaceSupported = True
NormalExit:
 Exit Function
Exception:
 InterfaceSupported = False
End Function

' Compare the two object IDs. ObjIDs are defined as an array of 5 longs,
' which represents the 16 single byte values in a contiguous GUID variant
' plus a 4 byte unique value.
'
Private Function SameOBJID(ID1 As Variant, ID2 As Variant) As Boolean
 Dim i As Integer

 For i = LBound(ID1) To UBound(ID1)
 If ID1(i) <> ID2(i) Then

22

 SameOBJID = False
 Exit Function
 End If
 Next
 SameOBJID = True
End Function

' Print the name of a property
Private Sub PrintProperty(Obj As ReposProperty, indent As String)
 On Error GoTo NoName

 Debug.Print indent & "Property: " & Obj.Name
 Exit Sub
NoName:
 Debug.Print indent & "Property: Unnamed"
End Sub

' Print the name of an object
Private Sub PrintName(Obj As IRepositoryItem, indent As String)
 On Error GoTo NoName

 Debug.Print indent & "Object: " & Obj.Name
 Exit Sub
NoName:
 Debug.Print indent & "Object: Unnamed"
End Sub

7. XML for Exchanging Meta-Information

XIF - XML Interchange Format

The XML Interchange Format (XIF) is used as the exchange format for the Open Information Model
(OIM). XIF is based on the Extensible Makeup Language (XML) v.1.0, as defined by the W3C, and it
consists of a set of rules that govern the encoding of metadata objects described by OIM in XML
format. XML interchange facilities described below can be used to move meta data between a
Repository and other OIM-compliant systems.

Special care has been taken in XIF such that all instances of an information model are represented
as content, references between objects as HREFs, and all model and support information as begin/end
tags and attributes of tags. This ensures that XML browsers and applications are able to process the
XML documents even if they do not understand the semantics expressed by the information model.

XML Namespaces provide a simple method to qualify names in XML documents. Namespaces are
still in a draft state in the W3C. XIF makes use of namespaces, since without namespace
modifications, an information model would have to be modified to have globally unique names, which
is considered unacceptable.

XML Links provides concepts to describe links between objects in XML documents. Links are
still in a draft state in the W3C, and XML Links are currently not used in XIF since their addition
would not add more expressiveness or simplify the concepts. However, care has been taken to ensure
that the specified format is compatible with current proposals.

The Meta Data Coalition (MDC) will support multiple XML vocabularies for the OIM in order to
make it easy for different vendors and end-user to integrate the standard into their environments. By
standardizing on the MDC OIM as semantic model for a metadata interchange, it is straightforward to
convert between different XML vocabularies using technologies like the Extensible Style Sheet
Language (XSL), a standard mapping technology. The MDC will use XSL to provide mappings
between the alternative XML vocabularies for the MDC OIM.

23

XML Export

The XIF Exporter is a utility that exports objects from a Repository by using the XIF encoding; i.e., it
generates an XML representation of repository object instances based on XIF rules. Notice that using
XIF to export objects from a Repository is a two-step process:

• Marking objects for export
• Generating the XML file

The export is handled by a COM component with the ProgID MSRXML.XIFExport, that has a
single dual interface IXIFExport. First the client marks objects for export by using the
IXIFExport::Add method to create a list of objects to be exported. The Add method eliminates all
duplicate objects that may exist. The order in which objects are added determines the order in which
the objects will appear in the XML document. After the collection has been created, a client can
enumerate through this collection and get information, such as the number of objects, just like any
normal collection.

Afterwards the client starts the export by invoking the IXIFExport::ExportXML method. The name
of the file into which the XML document should be exported is passed as a parameter. The method
will overwrite the file if it already exists. The client can specify flags that control the way in which
objects are handled in the output.

The following Visual Basic code illustrates how the XIF Exporter can be used programmatically.
Notice that the Visual Basic project has references to:

• Microsoft Repository (\Program Files\Common Files\Microsoft Shared\Repostry\repodbc.dll)
• MSRXML 1.0 Type Library (\Program Files\Common Files\Microsoft Shared\Repo-

stry\msrxml.dll)

In this case just a single Repository object is exported, namely the object with the objectID
"{{BD8C9483-8DEF-11D3-AA2B-0060973166C2},00000001}"

 Dim Exporter As MSRXMLLib.XIFExport
 Dim Repos As Repository
 Dim repObj As RepositoryObject

 Set Repos = New Repository
 Set repObj = Repos.Open("SERVER=OSLPCM55;DATABASE=VCMTest", "sa", "")
 Set repObj = Repos.object("{{BD8C9483-8DEF-11D3-AA2B-0060973166C2},00000001}")

 Set Exporter = New MSRXMLLib.XIFExport
 Call Exporter.Add(repObj) ' Mark this object for export

 Call Exporter.ExportXML("test1.xml", ' XML file name
 "Repository XML generert for Test1.mdl", ' Description
 "...more info...", ' Publisher
 0) ' Flags

Notice that when generating XML from the Repository Browser, as opposed to when doing it
programmatically, then it is not necessary to explicitly mark every object for export. Instead it is
possible to specify that every child node below a particular node in the Browser tree-view control
shall be marked for export.

XML Import

The XIF Importer is a utility that can be used to import objects encoded in XIF format into a
Repository OIM. The import process takes an XML document and converts it into OIM object
instances in a Repository according to encoding rules defined by XIF. The XIF Importer uses the
Microsoft XML parser to read the XML document. It makes use of a plug-in mechanism that the XML

24

parser defines, which allows the parser client to plug in its own handler for the entities to be parsed
(the custom NodeFactory mechanism).

The import is handled by a COM component with the ProgID MSRXML.XIFImport, that has a
single dual interface IXIFImport.

PS: When testing the XIF Importer I have not actually been able to import XML into a Repository!

An Example of Generated XML

The XIF XML produced is quite voluminous, but it is outside the scope of this document to run
performance tests to see how time-consuming it is to parse these XML files.

The following is an excerption of XML produced based on a small Rose model with a few classes
and associations.

File outline:
<?xml version="1.0" encoding="windows-1252"?>
<xif:Transfer

version="1.1"
xmlns:xif="http://msdn.microsoft.com/repository/oim/xif.dtd"
xmlns:UML="URN:REPOS:UML Type Information Model"
xmlns:xif.SummaryInformation="URN:REPOS:Repository Type Information

Model/ISummaryInformation"
xmlns:UML.Model="URN:REPOS:UML Type Information Model/IUmlModel"
xmlns:UML.Package="URN:REPOS:UML Type Information Model/IUmlPackage"
xmlns:UML.ModelElement="URN:REPOS:UML Type Information Model/IUmlModelElement"
xmlns:UML.Element="URN:REPOS:UML Type Information Model/IUmlElement"
xmlns:UML.AssociationRole="URN:REPOS:UML Type Information

Model/IUmlAssociationRole"
xmlns:UML.Association="URN:REPOS:UML Type Information Model/IUmlAssociation"
xmlns:UML.Relationship="URN:REPOS:UML Type Information Model/IUmlRelationship"
xmlns:UML.Generalization="URN:REPOS:UML Type Information Model/IUmlGeneralization"
xmlns:UML.GeneralizableElement="URN:REPOS:UML Type Information

Model/IUmlGeneralizableElement"
xmlns:UML.Type="URN:REPOS:UML Type Information Model/IUmlType"
xmlns:UML.Attribute="URN:REPOS:UML Type Information Model/IUmlAttribute"
xmlns:UML.Operation="URN:REPOS:UML Type Information Model/IUmlOperation"
xmlns:UML.Member="URN:REPOS:UML Type Information Model/IUmlMember"
xmlns:UML.Parameter="URN:REPOS:UML Type Information Model/IUmlParameter"
xmlns:UML.Class="URN:REPOS:UML Type Information Model/IUmlClass"
xmlns:UML.ObjectType="URN:REPOS:UML Type Information Model/IUmlObjectType">
<xif:TransferHeader>

<xif:Exporter>MSRXML</xif:Exporter>
<xif:ExporterVersion>1.0</xif:ExporterVersion>
<xif:TransferDateTime>1999-10-23T11:34:11</xif:TransferDateTime>

</xif:TransferHeader>

<UML:Model xif:id="_0" xif:objid="{{0DB06784-A18C-11D3-AA35-0060973166C2},00000001}">
<xif:Name>test6rep</xif:Name>
<UML.Model:Packages>
<UML:Package xif:id="_1" xif:objid="{{0DB06784-A18C-11D3-AA35-0060973166C2},00000003}">
<xif:Comments></xif:Comments>
<xif:Name>Logical View</xif:Name>
<UML.Package:Elements>
.....associations, classes and generalizations/specializations....
</UML.Package:Elements>
</UML:Package>
</UML.Model:Packages>
</UML:Model>
</xif:Transfer>

Association and its roles:

25

<UML:Association xif:id="_2" xif:objid="{{0DB06784-A18C-11D3-AA35-
0060973166C2},00000031}">
<xif:Comments></xif:Comments>
<xif:Name>assosAC</xif:Name>
<UML.Association:Roles>
<UML:AssociationRole xif:id="_3" xif:objid="{{0DB06784-A18C-11D3-AA35-
0060973166C2},00000033}">
<xif:Comments></xif:Comments>
<xif:Name>ra</xif:Name>
<UML.AssociationRole:Multiplicity>0..*</UML.AssociationRole:Multiplicity>
<UML.AssociationRole:IsNavigable>1</UML.AssociationRole:IsNavigable>
<UML.AssociationRole:IsAggregate>0</UML.AssociationRole:IsAggregate>
<UML.AssociationRole:IsChangeable>0</UML.AssociationRole:IsChangeable>
<UML.AssociationRole:IsOrdered>1</UML.AssociationRole:IsOrdered>
<UML.Element:Visibility>PublicAccess</UML.Element:Visibility>
</UML:AssociationRole>
<UML:AssociationRole xif:id="_4" xif:objid="{{0DB06784-A18C-11D3-AA35-
0060973166C2},00000035}">
<xif:Comments></xif:Comments>
<xif:Name>rc</xif:Name>
<UML.AssociationRole:Multiplicity>1..1</UML.AssociationRole:Multiplicity>
<UML.AssociationRole:IsNavigable>1</UML.AssociationRole:IsNavigable>
<UML.AssociationRole:IsAggregate>0</UML.AssociationRole:IsAggregate>
<UML.AssociationRole:IsChangeable>0</UML.AssociationRole:IsChangeable>
<UML.AssociationRole:IsOrdered>0</UML.AssociationRole:IsOrdered>
<UML.Element:Visibility>PublicAccess</UML.Element:Visibility>
</UML:AssociationRole>
</UML.Association:Roles>
</UML:Association>

Class, its roles and elements (attributes and operations/methods):

<UML:Class xif:id="_11" xif:objid="{{0DB06784-A18C-11D3-AA35-0060973166C2},00000005}">
<xif:Comments></xif:Comments>
<xif:Name>Class A</xif:Name>
<UML.Type:Roles>
<UML:AssociationRole xif:id="_28" href="#_6" xif:objid="{{0DB06784-A18C-11D3-AA35-
0060973166C2},00000039}"></UML:AssociationRole>
<UML:AssociationRole xif:id="_29" href="#_3" xif:objid="{{0DB06784-A18C-11D3-AA35-
0060973166C2},00000033}"></UML:AssociationRole>
</UML.Type:Roles>
<UML.Type:Members>
<UML:Attribute xif:id="_12" xif:objid="{{0DB06784-A18C-11D3-AA35-
0060973166C2},00000009}">
<xif:Comments></xif:Comments>
<xif:Name>att1</xif:Name>
<UML.Attribute:InitialValue></UML.Attribute:InitialValue>
<UML.Attribute:TypeExpression>integer</UML.Attribute:TypeExpression>
<UML.Element:Visibility>PrivateAccess</UML.Element:Visibility>
</UML:Attribute>
....more attributes.....
<UML:Operation xif:id="_21" xif:objid="{{0DB06784-A18C-11D3-AA35-
0060973166C2},0000001D}">
<xif:Comments></xif:Comments>
<xif:Name>opC</xif:Name>
<UML.Operation:Concurrency>Sequential</UML.Operation:Concurrency>
<UML.Operation:IsPolymorphic>0</UML.Operation:IsPolymorphic>
<UML.Operation:IsQuery>0</UML.Operation:IsQuery>
<UML.Operation:IsAbstract>0</UML.Operation:IsAbstract>
<UML.Operation:Parameters>
<UML:Parameter xif:id="_22" xif:objid="{{0DB06784-A18C-11D3-AA35-
0060973166C2},00000021}">
<xif:Name>inpArg</xif:Name>
<UML.Parameter:DefaultValue></UML.Parameter:DefaultValue>
<UML.Parameter:Kind></UML.Parameter:Kind>
<UML.Parameter:TypeExpression>Boolean</UML.Parameter:TypeExpression>
</UML:Parameter>

26

<UML:Parameter xif:id="_23" xif:objid="{{0DB06784-A18C-11D3-AA35-
0060973166C2},00000023}">
<xif:Name>opC</xif:Name>
<UML.Parameter:DefaultValue></UML.Parameter:DefaultValue>
<UML.Parameter:Kind>return</UML.Parameter:Kind>
<UML.Parameter:TypeExpression>Class A</UML.Parameter:TypeExpression>
</UML:Parameter>
</UML.Operation:Parameters>
<UML.Element:Visibility>PublicAccess</UML.Element:Visibility>
</UML:Operation>
....more operations.....
</UML.Type:Members>
<UML.GeneralizableElement:Specializations>
<UML:Generalization xif:id="_33" href="#_19" xif:objid="{{0DB06784-A18C-11D3-AA35-
0060973166C2},00000045}"></UML:Generalization>
</UML.GeneralizableElement:Specializations>
<UML.GeneralizableElement:Generalizations>
<UML:Generalization xif:id="_16" xif:objid="{{0DB06784-A18C-11D3-AA35-
0060973166C2},00000043}">
<xif:Name>Class C->Class A</xif:Name>
</UML:Generalization>
</UML.GeneralizableElement:Generalizations>
</UML:Class>

Specialization/Generalization Relationships

<UML:Generalization xif:id="_34" href="#_16" xif:objid="{{0DB06784-A18C-11D3-AA35-
0060973166C2},00000043}">
</UML:Generalization>

8. The Visual Component Manager (VCM) Repository
Visual Component Manager (VCM) is a utility for publishing different kinds of application items,
e.g. COM components or Rose/VM models, to a Repository based catalog, where they can be located,
inspected, retrieved, and reused. The items are stored along with attributes and search keywords to
enable others to find and reuse them. VCM provides a keyword and a full text search mechanism to
help organize and cross-reference items. VCM items can be cataloged and searched for by their name,
type, description, keywords, and annotations.

In addition to single components and models, VCM can also store component libraries,
templates, and complete application frameworks. For example, a tool developer might create a set of
forms and basic modules that are the starting point for new forms and modules of the same type. By
creating a template stored in VCM, any developer can get a copy of the forms or modules and be able
to add to or change it without affecting the original.

Since VCM supports multiple databases, i.e., like Repository, it is possible to selectively browse
through items in a local repository database, switch to a departmental repository database (on a
shared server), and then finally to enterprise scope on another shared database. VCM can be used to
drag items of interest into a local database, or insert them directly into a project.

A particular VCM item may require the presence of additional support files such as .dll files, help
files, or documentation, and multiple files can be associated with any VCM item. This association
becomes a part of the item's properties in VCM, and the associated files can be loaded along with the
item. When used this way, VCM can be the central location for approved project programming
conventions, functional specifications, architectural models, and diagrams.

VCM supports the sharing and reuse of code components, documentation, and other pieces of a
project, as well as complete projects. After having located a component, reusing it in a project may
just require clicking Add to the project on the component's shortcut menu. When reusing components
that require COM registration, VCM automatically registers the component when adding it to a
project.

27

PS: The above description is a cut-and-paste from MSDN - I have not tested all these capabilities to
see if they can deliver what they promise...

VCM can be started by e.g. selecting it in the View menu in Visual Basic. It provides a simple user
interface to navigate through its contents. As illustrated in figure 6 it presents the following three
panes:

• The explorer pane
• The contents pane
• The properties pane

To browse a published Rose/VM model, open the folder where the published model is located; e.g.
Visual Models in figure 6. Then select the model you want to browse. A brief description of the
model is displayed in the lower frame. To view the contents of the selected model, press the right
mouse button and click Browse Item. Then a hierarchical view of the logical packages, associations,
and classes is displayed in the lower right frame.

Figure 6. The Visual Component Manager user interface.

The VCM versus the Repository

Technically the VCM and the Repository are similar in many respects, but there are some differences
with respect to their information models, and thus the corresponding database tables used to store
their information. Repository uses the OIM with its extendable set of submodels for various subject
areas. VCM uses a VCM information model that overlaps with the OIM. For example, the RTIM and
the Uml models seems to be the same (as far as I can see...), but for other subject areas then VCM

28

extend the OIM submodel (e.g. the Gen model), while others are not present in VCM. In addition
VCM has its own core VCM model (as another subject area, prefixed Vcm* for e.g. database tables).

9. Rational Rose 98i

Support for Repository

Rational Rose 98i is integrated with both Repository and VCM. The Repository Add-In adds three
commands to the Tools menu in Rational Rose:

• Publish to VCM
• Export to Repository
• Import from Repository

These commands apply to entire models, not to single model elements. However, from within VCM a
single class or logical package of a published model can be imported into Rose (according to
documentation by using drag and drop - but I did not get this to work...).

To export the logical view of a current open Rose model to the Repository:
1. Save the model
2. Choose Export to Repository from the Tools menu
3. In the displayed dialog box, select the folder into which you want to publish the current open

model
4. Give the exported model a name to be used in the repository. Click Save

To import a model from Microsoft Repository into an empty model:
1. In Rational Rose, open a new empty model
2. Choose Import from Repository from the Tools menu. A dialog box is displayed
3. Select the model you want to import and click Open

There is an important difference between Repository and VCM with respect to the information
exported.

According to Rose documentation:
"The difference between the Publish to VCM and Export to Repository commands is the type of the
published/exported model. Export to Repository uses the UML tool information model [Uml in
OIM] to store the model, whereas Publish to VCM uses the VCM tool information model. The type
of the published/exported model defines how much information that can be published/exported.
The Publish to VCM command covers the entire model file, including all views and diagrams. The
Export to Repository command applies only to classes, attributes, operations, and a subset of the
relationships of the logical view of the model. Also, the Export to Repository command does not
export any diagrams."

According to Visual Modeler documentation:
"....The Export to Repository command covers only the logical view of the model, and no
diagrams. The Publish to VCM command covers the entire model file, including all views and
diagrams."

At first when reading and testing this I believed that VCM was more powerful than Repository (OIM)
with respect to the amount of model information recorded. This is not entirely correct, however. It
seems clear that VCM both contains a reference to the files of e.g. a published Rose model, as well as
some meta information on this model stored separately. That is, some meta-information on a Rose
model published to the VCM is available via interfaces and database tables similar to as in

29

Repository. However, meta information available as in the Repository does not affect the content of a
subsequently imported model. That is, if e.g. the name of a class in a published Rose model is
changed in the VCM database, then this change is not reflected when importing the model into Rose
afterwards (actually, much of the meta information can be deleted without affecting a subsequent
import). I have not been able to find out (by tests and by browsing the VCM documentation) exactly
how these file references are organized, however (they seem to be independent of file names, amongst
others).

There does not seem to be much differences in the meta information explicitly recorded in the
database for both Repository and VCM. That is, the difference is mainly that VCM also references the
model file - and if a Rose model consists of several files (.cat files), then VCM have troubles in
handling this (see below).

Notice that there are some important deficiencies with respect to the meta information recorded,
namely:

• That a class is abstract, root or leaf (in its inheritance hierarchy)
• That an association-end is ordered
• That an association-end is qualified

However, while the Rose export/publish programs does not include this information, both the OIM
and the VCM information models are able to record this kind of information. Thus this information
can be added "manually", i.e., by programmatically accessing the Rose model via its
COM/Automation interface. Hence, to be able to export the required model information from Rose
into Repository (or similarly VCM) we must replace the built-in export utility in the menu of Rose
with a program (or script) that uses this utility programmatically, but in addition collects information
on the missing parts above, and then adds it to the Repository itself. The following subsections
explains how this can be done.

Retrieving Meta-Information from Rose via its COM/Automation Interfaces

The following Visual Basic code illustrates this. In this case an existing model "test6rep.mdl" is
opened, the names of all its classes printed, with a notification for those that are abstract, and if there
is a class named "C" then for each of its opposite roles (at the other end of its associations), the
names of these roles and any qualifying keys are printed.

To run this program remember to include a reference to "Rational Rose" in the references section
of VB; i.e., to use "\Program Files\Common Files\Microsoft Shared\Repostry\repodbc.dll".

 Dim refApp As RationalRose.RoseApplication
 Dim refMod As RationalRose.RoseModel
 Dim refClassColl As RationalRose.RoseClassCollection
 Dim refClass As RationalRose.RoseClass
 Dim refRoleColl As RationalRose.RoseRoleCollection
 Dim refRole As RationalRose.RoseRole
 Dim refAtt As RationalRose.RoseAttribute
 Dim refAttColl As RationalRose.RoseAttributeCollection
 Dim i As Integer
 Dim j As Integer
 Dim k As Integer

 Set refApp = New RoseApplication
 Set refMod = refApp.OpenModel("c:\home epa\vmod projects\test6rep.mdl")

 Set refClassColl = refMod.GetAllClasses
 For i = 1 To refClassColl.Count
 Set refClass = refClassColl.GetAt(i)

 If (refClass.Abstract) Then
 Debug.Print "Abstract Class: " & refClass.Name
 Else

30

 Debug.Print "Class: " & refClass.Name
 End If

 If refClass.Name = "Class C" Then
 Set refRoleColl = refClass.GetAssociateRoles
 For j = 1 To refRoleColl.Count
 Set refRole = refRoleColl.GetAt(j)
 Debug.Print refRole.Name

 Set refAttColl = refRole.Keys
 For k = 1 To refAttColl.Count
 Debug.Print refAttColl.GetAt(k).Name
 Next
 Next
 End If
 Next

 Call refApp.Exit ' NB! To avoid muuuuuch trouble - Do not forget!

Customizing Rose for Repository

Beside programmatically retrieving missing meta information from a Rose model and recording it in a
Repository, the export utility of Rose (invoked when making the Menu selections described above)
can also be invoked programmatically. The Rose scripts for this are in the catalog "\Program
Files\Rational\Rose 98i\repos\scripts":

• RVSReposPu.ebx - publish to VCM
• RVSReposEx.ebx - export to Repository
• RVSReposIm.ebx - import from Repository

and they can be executed as follows via the Rose COM/Automation interfaces (remember to include a
reference to "Rational Rose" in the references section of VB; i.e., to use "\Program Files\Common
Files\Microsoft Shared\Repostry\repodbc.dll").

 Dim roseApp As RationalRose.RoseApplication
 Dim roseMod As RationalRose.RoseModel
 Dim addIn As RationalRose.RoseAddIn
 Dim addInColl As RationalRose.RoseAddInCollection
 Dim j As Integer

 Set roseApp = New RationalRose.RoseApplication
 Set roseMod = roseApp.OpenModel("C:\Home EPA\VMod Projects\dummy\original.mdl")

 ' Traverse add-ins until find the Repository add-in
 Set addInColl = roseApp.AddInManager.AddIns
 j = 1
 While (addInColl.GetAt(j).Name <> "Repository")
 j = j + 1
 Wend
 Set addIn = addInColl.GetAt(j)

 ' Display some information on this add-in
 Debug.Print "---------- ADD-IN"
 Debug.Print "Name: " & addIn.Name
 Debug.Print "Version: " & addIn.Version
 Debug.Print "MenuFilePath: " & addIn.MenuFilePath
 Debug.Print "InstallDirectory: " & addIn.InstallDirectory
 Debug.Print "PropertyFilePath: " & addIn.PropertyFilePath
 Debug.Print "ToolNames: "
 For i = 1 To addIn.ToolNames.Count
 Debug.Print " " & addIn.ToolNames.GetAt(i)
 Next

 ' Execute publish to VCM
 Call addIn.ExecuteScript("scripts\rvsrepospu.ebx")

31

 Call roseApp.Exit

Support for VCM - Control/Uncontrol

A Rose model can be split into several files; a single .mdl file and a set of .cat files for different
logical packages. I am able to publish a Rose model containing several .cat files to VCM, but I
receive error messages when I try to import the model back from VCM (the import from Repository
command). It seems as if VCM is not able to handle Rose models split over several files. Hence, if
we intend to use VCM with Rose then we may have to handle control/uncontrol of .cat files
"manually", i.e., by programmatically uncontrol all packages before publishing them to VCM, and
then control the corresponding packages into their .cat files after importing the model from the VCM
repository.

The following Visual Basic code illustrates how to uncontrol .cat files programmatically from the
COM/Automation interface of Rose (remember to include a reference to "Rational Rose" in the
references section of VB; i.e., to use "\Program Files\Common Files\Microsoft Shared\Repo-
stry\repodbc.dll"). Notice that this program does not seem to work if the Rose 98i editor is in use on
the model when the program is executed.

 Dim roseApp As RationalRose.RoseApplication
 Dim roseMod As RationalRose.RoseModel
 Dim cUnitColl As RationalRose.RoseControllableUnitCollection
 Dim cUnit As RationalRose.RoseControllableUnit

 Set roseApp = New RationalRose.RoseApplication
 Set roseMod = roseApp.OpenModel("C:\Home EPA\VMod Projects\dummy\original.mdl")

 Set cUnitColl = roseMod.GetAllSubUnitItems
 For i = 1 To cUnitColl.Count
 Set cUnit = cUnitColl.GetAt(i)

 ' "Basic Types" and "Work Process" are the packages to uncontrol
 If (cUnit.Name = "Basic Types" Or cUnit.Name = "Work Process") Then
 Debug.Print "------------ Controlled Unit"
 Debug.Print "Name = " & cUnit.Name
 Debug.Print "IsControlled = " & CStr(cUnit.IsControlled)
 Debug.Print "FileName = " & cUnit.GetFileName

 ' Uncontrol the package
 Call cUnit.Uncontrol
 End If
 Next

 Call roseMod.Save
 Call roseApp.Exit

10. Repository Support in SQL Server v.7.0

Support for Repository

As far as I have been able to find out, SQL Server does not support Repository except for its Data
Transformation Services (DTS) (and via this support it is also possible (but as a detour) to export a
specific database schema into a local Repository called MSDB). However, the OLE DB Scanner
utility described below seems well suited for exporting a particular SQL Server database schema into
a particular Repository.

32

SQL Server COM Interfaces

SQL Server offers COM/Automation interfaces that can be used to retrieve information on a
particular database schema (I have not tried these interfaces myself, however). For SQL Server v.7.0
these interfaces are available from "MSSQL7\Binn\Resources\1033\sqldmo.dll".

It may be relevant to use these interfaces e.g. to compare the schema of a particular database against
database schema information in the Repository.

OLE DB Scanner - Importing a Database Schema to Repository

OLE DB Scanner is a utility with a function ScanDB which provided a database available as an OLE
DB provider, imports the schema of this database into a Repository. It can be used from Visual Basic
by including references to:

• Microsoft Repository (\Program Files\Common Files\Microsoft Shared\Repostry\repodbc.dll)
• DBScanner 1.0 Type Library (\Program Files\Common Files\Microsoft Shared\Repo-

stry\dbscan.dll)

and including the following files into the Visual Basic project:
• RepEng.bas (Repository SDK "...\include" catalog)
• UMLConst.bas (Repository SDK "...\oim\VBConst" catalog)
• DBMConst.bas (Repository SDK "...\oim\VBConst" catalog)

It can then be used as follows:
<object>.ScanDB <pIRepository:Repository>, <pDbmDataSource:RepositoryObject>,

<szProviderName:String>, [<szProviderString:String>],
[<szDataSource:String>], [<szCatalog:String>], [<szUserName:String>],
[<szPassword:String>]

where <object> is of type RepOLEDBScanner (i.e., "Dim <object> As RepOLEDBScanner" in
Visual Basic), and square brackets indicate optional arguments.

The Repository SDK includes an example of its use, but I have not tested this utility myself.
However, in order to compare a particular database schema with information in the Repository, then
the SQL Server COM interfaces may be better suited for this.

