A method for optical snow-cover mapping in spar se forest
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ABSTRACT

A snow-cover mapping method for sparse forest by optical
remote sensing is proposed. The method is based on linear
sub-pixel reflectance modeling of the surface components
snow, individual tree species, tree shadows and bare ground.
Experiments are performed using a 100% snow-covered
Landsat TM scene and aerial photos covering spruce, pine
and birch forest in the Jotunheimen mountain area of South
Norway. The results show that sub-pixel modeling of snow in
sparse forest is possible, but effects of topography and direct
and diffuse illumination, which influence the reflectance
variability, should be accounted for to improve the resullts.

INTRODUCTION

Seasonal snow may cover up to 50 million km? of the Earth’s
land surface [1]. Most of the seasonal snow is located in the
Northern Hemisphere. The boreal forest is seasonally snow-
covered and covers 12 million km’ of the land surface.
Seasonally snow-covered forest is also present in high
mountain regions of temperate latitudes.

Monitoring the snow-cover extent is important both for
climatological studies and for hydrological applications. Due
to the high snow abedo and emissivity of snow compared to
other natural surfaces, variations in the global snow-cover
distribution affect the global energy balance. Hydrological
applications include support to hydropower production
planning and river flood predictions.

Severa classification methods have been developed or
adapted to optical snow-cover mapping, e.g. the SNOMAP-
algorithm [2], linear spectra unmixing [3], and an empiric
linear sub-pixel classification method [4]. The classification
methods give reasonable results for unforested areas, see e.g.
[2]. However, forested areas congtitute a problem due to the
trees contributed radiance, in addition to reducing the
radiance from the snow below the trees. Classification
methods generally underestimate the snow cover in forest,
see eg. [5]. The SNOMAP-algorithm has been extended by
including the Normalized Difference Vegetation Index to
map snow-covered forest [6], and verification of the
algorithm isinvestigated by [7].

The objective of this work is to study the possihilities for
determining the snow coverage at sub-pixel level in sparse
forest by optical remote sensing. A snow-cover mapping
method, based on linear sub-pixel reflectance modeling, is
proposed. Experiments focus on physical models of the forest
in order to understand how the various effects influence the
pixel reflectance, and with the aim to derive a simplified

operational model from a physica model. Results from
experiments for spruce, pine and birch forest, and mixed pine
and birch forest are presented and discussed. The experiments
deal with situations of 100% snow coverage, while less than
100% snow coverage will be investigated in alater work.

SPARSE FOREST SNOW-COVER MAPPING METHOD

The satellite measured radiance above a snow-covered forest
during the snowmelt season is influenced by a number of
scene components, illumination- and atmospheric effects.
The main scene components of a snow-covered forest are the
surface covers trees, snow and bare ground. The spectral
radiance of each surface cover is affected by the temporal
natural variability of the surface cover and the topography.
Based on the influence of the variation in radiance due to
temporal natural variability, a ranking of the scene
components is proposed. Snow is temporally the most
unstable surface component. Due to the continuous snow
metamorphoses, which changes the snow physical properties,
the albedo may vary between 35% and 90%. [1]. Bare ground
consists of vegetation, vegetation litter, rocks and soils. Bare
ground is ranked as the second most influencing surface
component provided that the vegetation is hon-green and the
temporal moisture conditions are sable. Non-green
deciduous trees, conifers and topography are the least
changing surface components, giving the most stable
influence on the radiance. Added to these components are the
illumination effects, which are due to direct and diffuse
sunlight, individual trees (shadowed tree crowns, shadowed
snow and mutual shadowing) and topography. Topography
alters the areas covered by shadows.

A linear sub-pixel reflectance model, which is an area-
weighted sum of the surface components, is chosen for the
modeling:

R=AoRp + AsRs + AgRg + AswRsw + AswRswp +
AswRRswst AsweRswe+ AscRac:

where R is the pixel reflectance, A,, A, A, are the area
proportions of a pixel covered by pine, spruce and birch tree
crowns, respectively. A, and A, represent the area
proportions covered by illuminated snow and bare ground,
respectively. R,, R, R, are the tree-crown reflectances of
pine, spruce and birch, respectively. R, is the illuminated
snow reflectance, while R, is the bare ground reflectance.
Shadows within the tree crowns are included in the model by
using tree-crown reflectances representing both illuminated
and shadowed tree crowns. A shadowed snow component for

pine (Agp Ryp), Spruce (A, Ry and birch (A, Rge)



models the shadows on the snow. Spruce and pine tree
crowns are assumed opague, while leafless birch tree crowns
are transparent with a contributing reflectance from the areas
below the tree crowns. The birch tree crown reflectance (R.)
is modeled separately using a linear mixing reflectance model
of illuminated snow and estimated effective branch area
proportion (the proportion of birch branches within a tree
crown when projected on the ground). The effective branch
area proportion (A;') is estimated with tree height (TH) as
input parameter to the regression function A;’ = aTH + b.
Similarily, the effective shadow area proportion (A,,.') is
estimated from the tree height (TH): A, = CTH + d. These
functions are determined empirically using field measured
spectral signatures of entire tree crowns, single branches and
shadows of birch trees of variable heights.

The model assumes that the ground area covered by a pixel
is greater than the size of individual trees. Other assumptions
concerning a snowmelt season are constant tree-crown
reflectance for a given solar elevation angle, snow-free tree
crowns and constant area covered by tree crowns.

DATA SET

A study area with maximum 10° terrain dope in the
Joutunheimen mountain area of South Norway (9°E, 61°N,
900 m.as.l.) covering spruce, pine and birch forest was
selected for experiments. Infrared aerial photos (1:15,000)
from August 1998 were used as reference data for a 100%
snow-covered Landsat TM scene from 21 April 1998. A
forest model representation was generated by high precision
photogrammetrical measurements of individual trees. Tree
species, tree height, tree-crown diameter and position were
measured for each tree. In total 14,511 birch trees, 13,611
pine trees and 1652 spruce trees were measured. These data
served to generate crown coverage maps for each tree species
of Landsat TM spatia resolution. Shadow maps were
generated by calculating the shadowed ground area of each
tree based on its tree height, tree crown diameter, the solar
elevation angle, the solar azimuth angle and modeling the
trees as cylinders with spherical top. Sub-areas of the Landsat
TM image were geometrically corrected using coordinates
from the aerial photos. The satellite image pixel values were
calibrated to reflectance using spectral signature of tap water
[8] and in-situ field measured snow spectral signatures. The
calibration eliminated TM5 and TM7 due to low water and
snow reflectance. TM1 was excluded due to pixel saturation
from high snow reflectance.

EXPERIMENTS

The experiments in the work described here focus on
situations with 100% snow coverage, thus the bare ground
component is eliminated. This is to reduce the number of
effects in this first approach. The following data sets were
analyzed: 1. Snow and pine forest (762 pixels); 2. Snow and
spruce forest (153 pixels); 3. Snow and birch forest (467
pixels); and 4. Snow and mixed pine and birch forest (607
pixels). The number of pixels covering other mixtures of tree
species was too low for statistical analysis. As a first

approach the snow was modeled totally illuminated for data
sets 1-4. TM2-4 reflectance values were simulated from field-
measured spectral signatures of snow, spruce tree crowns,
pine tree crowns and branches of birch trees (Tab. 1).
Reflectance of birch branches was calculated by a solar
elevation adjusted mixture of illuminated and shadowed
branch spectral signatures. The aerial-photo-derived crown
coverage map constituted the area proportions of pine, spruce
and birch tree crowns (A, A, Ay).

In a second approach, shadowed snow from single tree
species was included by integrating a shadowed snow
component for each tree species. The generated shadow maps
constituted the shadowed area proportions (A, Aqe Ase)-
TM2-4 reflectance values were derived from field measured
spectral signatures of shadowed snow from individual pine,
spruce and birch trees (Tab. 1). The applied regression
functions for determining the effective birch branch area
proportion and the effective shadow area proportion was: A;’
=47TH+ 205and A,,,’ = 3.9 TH + 16.8. The average tree
height (TH) for single TM pixels were input to the regression
functions. The results from the modeling without shadows,
and with shadows, were evaluated against the measured
Landsat TM reflectance (Fig. 1, Tab. 2). Measured TM2-4
reflectance were highly correlated (R°=0.97-0.99), therefore
only TM3is presented.

RESULTS

Comparing the measured and modeled Landsat TM
reflectance shows as expected a general tendency of reduced
reflectance with increasing crown coverage for all data sets.
Integrating the shadows considerably improved the
regression functions for measured and modeled reflectance
for all data sets (Tab. 2). For the data sets with single tree
species, the snow and pine forest shows the best model fit by

Tab. 1. Simulated mean TM2-4 reflectance for the surface
components used in the reflectance modeling.

Surface component TM2 | TM3 | TM4
[lluminated snow (R,,) 92 89 7
Pine tree crowns (R,) 12 7 47
Spruce tree crowns (Ry) 10 6 48
Birch branches (R;’) 10 11 23
Pine, shadowed snow (R,,.) 14 9 8
Spruce, shadowed snow (R, 20 17 16
Birch, shadowed snow (R,,.) 26 21 16

Tab. 2: Estimated regression parameters from measured
and modeled Landsat TM 3 reflectance.

Data set number Slope I nter ception R’
1. Hluminated snow 0.33 66.85 0.50
1. Shadowed snow 1.14 2.16 0.54
2. llluminated snow 0.07 80.85 0.26
2. Shadowed snow 0.44 39.71 0.45
3. llluminated snow 0.15 76.15 0.35
3. Shadowed snow 0.48 48.17 0.58
4. 1lluminated snow 0.24 70.51 0.43
4. Shadowed snow 0.95 13.5 0.55




1. Snow and pine forest 2. Snow and spruce forest
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Fig. 1: Measured and modeled Landsat TM3 reflectance for
the data sets 1-4 with tree shadows included.

approaching the dope 1 and intercept 0. The data set covers a
pine forest composed of a very sparse forest (0-12% crown
coverage) and a denser forest (0-30% crown coverage). The
mean crown coverage is 7.4%. Data set 2, snow and spruce
forest, shows an improved result when including shadows,
but still the model greatly overestimates the reflectance. The
crown coverage varies between 0-12%, with 3.9% mean
crown coverage. Modeling the very sparse pine forest
separately shows a similar overestimation of reflectance.
Including denser spruce forest would likely improve the
model. Unfortunately, cumulus clouds in the Landsat TM-
scene occupied areas with dense spruce forest. Data set 3,
snow and hirch forest, considerably improves the results
when including shadows, athough the mode till
overestimates the reflectance. Crown coverage varies from 0-
34% with 7.8% mean crown coverage. Data set 4, snow and
mixed pine and birch forest, models the reflectance quite well
when shadows are included. Pine and birch crown coverage
varies between 0-27% and 0-30%, respectively. Mean pine
and birch crown coverage are 6.4% and 4.0%. Typically,
pixels with high reflectance have low crown coverage of both
pine and birch, while low reflectance is associated with high
pine crown coverage.

DISCUSSION AND CONCLUSIONS

The importance of including shadows in the models was
demonstrated through the improved results for al tree
species. Shadows cover great areas in a sparse forest when
solar elevation is modest. Including other effects affecting the
amounts of direct and diffuse illumination in forest may
reduce the large scattering in the models. Increased crown
coverage reduces the diffuse illumination of the snow, and
increases the effect of mutual shadowing from surrounding
trees. Single trees get increased areas of shadowed branches
with increasing crown density. Accounting  for
topographically induced shadow effects will also improve the

modeling. Outliers of the pine forest model are located at a
forest limit between sparse and denser pine forest, thus
indicating that sub-pixel displacement of the coregistration of
the Landsat TM-scene may improve the model results.
Further work will be performed to quantify and integrate
these effectsin the models.

The results from the physical modeling will be exploited to
develop a simplified operational model. An operational
model will be based on retrieving the necessary forest
parameters (crown coverage, tree height, tree species) from
existing forest maps, supplied by a spectral library of tree
crowns, snow and bare ground spectral signatures. Dense
conifer forest may be applied as control areas for detecting
whether intercepted snow is present in the tree crowns.
Intercepted snow changes the tree-crown reflectance and has
to be taken into account.
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